TiN-W/Mo(S_x)复合涂层的制备、结构和摩擦学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于具有高硬度、优异的耐磨性能和耐腐蚀性能,TiN涂层已经被广泛应用于机械加工领域的刀具和模具表面。近年来,TiN的应用领域还进一步拓展到人工器官等医疗领域和太阳能薄膜等光学领域。而随着工业和技术的不断发展,越来越多精密零部件的加工需要TiN涂层具有更优异的表面性能。另一方面,TiN涂层向特殊地质工程钻探领域、汽车工业领域和其它机械工程领域的应用受到极大限制。这就要求TiN涂层不仅具有优异的耐磨性能,还要具有更低的摩擦系数和更优异的减摩性能。
     本文以金属W、Mo为主线,将离子镀、金属离子注入、磁控溅射和低温离子渗硫工艺相结合,制备了TiN-W/Mo(Sx)减摩硬质复合涂层,在MS-T3000球盘摩擦磨损实验机上考察了该复合涂层的摩擦学性能,利用三维光学形貌仪、扫描电子显微镜(SEM)、X射线衍射仪(XRD)、扫描俄歇系统(SAM)、X射线光电子能谱仪(XPS)、和纳米压痕仪等微观分析仪器研究了涂层的表面形貌、磨损形貌、微观结构、元素化合价态和硬度等表面性能,并对其减摩机理进行探讨。
     研究结果表明,采用金属蒸汽真空弧源(MEVVA源)可以在离子镀TiN涂层表面制备100~200nm的W、Mo离子注入改性层,使涂层表面出现Ti2N新相结构,而W氧化物、Mo氧化物的润滑及其对Ti氧化物润滑时间的有效延长,使TiN涂层的减摩性能得到明显改善,其中9E17剂量的W离子注入和1E18剂量的Mo离子注入可以使金属离子含量大幅增加,对TiN涂层摩擦学性能的改善效果更好,但其溅射效应也很显著;低温离子渗硫后处理对W、Mo离子注入后TiN涂层的溅射效应非常显著,使得W、Mo金属离子的注入深度和含量、以及涂层的表面硬度均显著降低,虽然形成的20~50nm的金属硫化物层可以在磨损前期进一步降低摩擦系数但其作用时间很有限;采用磁控溅射和低温离子渗硫处理在316L不锈钢基体上制备了厚度约2.5μm的TiN-W/Mo(Sx)复合涂层,结果表明随着W靶材或Mo靶材电流的提高,涂层沉积速率提高,涂层的硬度也提高,TiN-WSx和TiN-MoSx涂层的相结构分别主要由TiN、W2N、W、WS2和TiN、Mo2N、Mo、MoS2组成,涂层磨损表面的磨粒磨损和粘着磨损均得到显著改善,并且随着W、Mo含量的增加,其减摩性能和耐磨性能均进一步改善,其减摩机理主要包括Ti氧化物的润滑、WSx/MoSx的润滑、W/Mo氧化物的润滑和不同润滑相之间的叠加效应等四个方面,其中以具有层状结构和优异润滑性能的WSx/MoSx的润滑为主,而W-WSx-WOx/Mo-MoSx-MoOx各自三种润滑相之间的相互转化,以及多种润滑相叠加后显著延长了金属氧化物特别是Ti氧化物的有效润滑时间,都有助于该减摩硬质复合涂层在较长时间内保持优异的减摩性能。
Titanium nitride (TiN) coatings have high hardness, good wear and corrosionresistance, and have been used as wear resistant coatings for cutting tools and dies. Inrecent years, they have been used in medical fileds like artificial internal organs andoptical fields like solar films. However, along with the gradual developments ofindustries and technologies, there are more and more precise parts with higherrequirements on good surface properties of TiN coatings. Moreover, it is impossiblefor TiN coatings to be used on machine parts in fields like special drilling enginnering,automobile industry, or other critical mechanical engineering industries. Therefore,besides good wear resistance, lower friction coefficient and better anti-frictionproperty are supposed to be essential properties for TiN coatings in some specialmechanical industries and machining environments.
     In this paper, low-friction and hard TiN-W/Mo(Sx) coatings were prepared bycombining treatments of Ion plating, Metal ion implantations, Magnetron sputteringdoping (MSD), and Low temperature ion sulfuration (LTIS), with the metal W andMo as the mainline. The tribological properties of coatings were carried out on aMS-T3000ball-on-disc friction and wear tester. The surface morphology before andafter wear, microstructures, elment valence, and hardness were investigated by thethree-dimension optical profilometer, scanning electron microscope (SEM), X-raydiffraction (XRD), Scanning Auger microprobe (SAM), X-ray photoelectronspectroscope (XPS), and Nano-hardness tester. Also, the anti-friction mechanism ofTiN-W/Mo(Sx) coatings was proposed.
     The results demonstrated that W or Mo implanted layers with thickness of about100~200nm could be prepared on Ion plating TiN coatings by Metal Vapor VacuumArc (MEVVA) source. New phase of Ti2N appeared on surfaces of TiN coatings afterion implantations. Under lubrications of W oxides or Mo oxides, and their effectiveprolonging of the lubrication time of Ti oxides, W-implanted and Mo-implanted TiNcoatings could obtain much better low-friction properties with higher contents of Moions and W ions, better tribological properties and more obvious sputtering effects atimplantation doses of9E17for W ions and1E18for Mo ions. After post-treatmentsof LTIS, obvious sputtering effects were shown on W-implanted and Mo-implantedTiN coatings, with evident decreasing of implantation depth and contents of W andMo ions and significant decreasing of coating hardness. A metal sulfide layer of about20~50nm were formed on W-implanted and Mo-implanted TiN coatings, whichcould further reduce the friction coefficients of coatings only for a short period at thebegnnning stages of wear. By combining the treatments of MSD and LTIS,TiN-W/Mo(Sx) coatings were prepared on316L stainless steel substrates, with thethickness of about2.5μm. It was found that depostion rates and surface hardness ofcoatings increased along with the rising of target current of W or Mo. The phases ofTiN-WSxand TiN-MoSxcoatings mainly included TiN, W2N, W, WS2and TiN,Mo2N, Mo, MoS2, respectively. Abrasive wear and adhesive wear of coatings weresignificantly reduced, and the low-friction and anti-wear properties were improvedfurther along with higher contents of W or Mo in coatings. The anti-friction mechanism of TiN-W/Mo(Sx) coatings included four factors, which were lubricationof Ti oxides, lubrication of WSx/MoSx, lubrication of W oxides or Mo oxides, andsuperposition effects of multi-lubricants. On one hand, WSxand MoSxhad the layeredstructures and excellent lubricantion effects, which played the most important roles inthe anti-friction process of TiN-W/Mo(Sx) coatings. On the other hand, the reciprocaltransformation among W-WSx-WOxor Mo-MoSx-MoOxand the effective extendingof lubrication time of metal oxides, especially for Ti oxides, made the coatings be ableto maintain good low-friction properties in a much longer time.
引文
A. Azushima, Y. Tanno, H. Iwata, et al. Coefficients of friction of TiN coatings with preferredgrain orientations under dry condition.Wear.2008,265:1017~1022
    A. G. Nikolaev, E. M. Oks, K. P. Savkin, et al. Upgraded vacuum arc ion source for metal ionimplantation. Review of Scientific Instruments.2012,83(2):02A501
    B. Deepthi, H. C. Barshilia, et al. Structural, mechanical and tribological investigations of sputterdeposited CrN–WS2nanocomposite solid lubricant coatings. Tribology International.2011,44:1844~1851
    B. Deepthi, H. C. Barshilia, K. S. Rajam, et al. Mechanical and tribological properties of sputterdeposited nanostructured Cr–WS2solid lubricant coatings. Surface and Coatings Technology.2010,205:1937~1946
    B. Deng, Y. Tao, D. L. Guo. Effects of vanadium ion implantation on microstructure, mechanicaland tribological properties of TiN coatings. Applied Surface Science.2012,258:9080~9086
    B. Deng, Y. Tao, Y. Wang, et al. Study of the microstructure and tribological properties ofMo+C-implanted TiN coatings on cemented carbide substrates. Surface and CoatingsTechnology.2013,228S1: S597-S600
    C. L. Chang, J. H. Chen, P. C. Tsai, et al. Synthesis and characterization of nano-compositeTi–Si–N hard coating by filtered cathodic arc deposition. Surface and Coatings Technology.2008,203:619~623
    C. L. Chang, D.Y. Wang. Characterization of surface enhancement of carbon ion-implanted TiNcoatings by metal vapor vacuum arc ion implantation. Nuclear Instruments and Methods inPhysics Research B.2002,194:463~468
    E. Zalnezhad, A. A. D. Sarhan, M. Hamdi. Optimizing the PVD TiN thin film coating’s parameterson aerospace AL7075-T6alloy for higher coating hardness and adhesion with better tribologicalproperties of the coating surface. The International Journal of Advanced ManufacturingTechnology.2013,64:281~290
    F. T. Wang, T. X. Ren, F. Hungerford, et al. Advanced directional drilling technology for gasdrainage and exploration in Australian coal mines. Procedia Engineering.2011,26:25~36
    G. Gassner, P. H. Mayrhofer, K. Kutschej, et al. Magnéli phase formation of PVD Mo–N andW–N coatings. Surface and Coatings Technology.2006,201:3335~3341
    G. Strapasson, P. C. Badin, G. V. Soares, et al. Structure, composition, and mechanicalcharacterization of dc sputtered TiN-MoS2nanocomposite thin films. Surface and CoatingsTechnology.2011,205:3810~3815
    G. Z. Xu, Z. G. Zhou, J. J. Liu, et al. An investigation of fretting behavior of ion-plated TiN,magnetron-sputtered MoS2and their composite coatings. Wear.1999,225~229:46~52
    H. C. Barshilia, M. S. Prakash, A. Jain, et al. Structure, hardness and thermal stability of TiAlNand nanolayered TiAlN/CrN multilayer films. Vacuum.2005,77:169~179
    H. D. Wang, B. S. Xu, J. J. Liu, et al. Microstructures and tribological properties on the compositeMoS2films prepared by a novel two-step method. Materials Chemistry and Physics.2005,91:494~499
    H. H. Molgonova. Molybdenum Alloys. Metallurgical Industry Press, Beijing.1984
    H. Holleck, V. Schier. Multilayer PVD coatings for wear protection. Surface and CoatingsTechnology.1995,76~77:328~336
    J. A. Davis, P. J. Wilbur, D. L. Williamson, et al. Ion implantation boriding of iron and AISI M2steel using a high-current density, low energy, broad-beam ion source. Surface and CoatingsTechnology.1998,103~104:52~57
    J. A. Sue, T. P. Chang. Friction and wear behavior of titanium nitride, zirconium nitride andchromium nitride coatings at elevated temperatures. Surface and Coatings Technology.1995,76~77:61~69
    J. An, Q. Y. Zhang. Structure, hardness and tribological properties of nanolayered TiN/TaNmultilayer coatings. Materials Characterization.2007,58:439~446
    J. E. Sundgren. Structure and properties of TiN coatings. Thin Solid Films.1985,128(1/2):21~44
    J. Narojczyk, Z. Werner, D. Morozow, et al. Wear resistance of TiN coatings implanted with Aland N ions. Vacuum.2007,81:1275~1277
    J. Sundberg, H. Nyberg, E. S rhammar, et al. Tribochemically Active Ti–C–S NanocompositeCoatings. Materials Research Letters.2013,1(3):148~155
    J. Y. Zheng, J. Y. Hao, X. Q. Liu, et al. A thick TiN/TiCN multilayer film by DC magnetronsputtering. Surface and Coatings Technology.2012,209:110~116
    K. P. Purushotham, L. P. Ward, N. Brack, et al. Tribological studies of Zr-implanted PVD TiNcoatings deposited on stainless steel substrates. Wear.2003,254:589~596
    M. B. Karamis, H. Sert. The role of PVD TiN coating in wear behavior of aluminum extrusion die.Wear.1998,271:46~55
    M. N. Gardos. Magneli phases of anion-deficient rutile as lubricious oxides. Tribology Letters.2000,8:65~96
    M. Rahman, J. Haider, D. P. Dowling, et al. Deposition of magnetron sputtered TiN+MoSxcoatingwith Ti–TiN graded interlayer. Surface and Coatings Technology.2005,200:1071~1075
    M. Rahman, J. Haider, D. P. Dowling, et al. Investigation of mechanical properties of TiN+MoSxcoating on plasma-nitrided substrate. Surface and Coatings Technology.2005,200:1451~1457
    M. Stoiber, E. Badisch, C. Lugmair, et al. Low-friction TiN coatings deposited by PACVD.Surface and Coatings Technology.2003,163~164(2003)451~456
    M. Ueda, C. Leandro, H. Reuther, et al. Plasma immersion ion implantation of nitrogen into H13steel under moderate temperatures. Nuclear Instruments and Methods in Physics Research B.2005,240:204~207
    N. M. Renevier, J. Hamphire, V. C. Fox, et al. Advantages of using self-lubricating, hard,wear-resistant MoS2-based coatings. Surface and Coatings Technology.2001,142~144:67~77
    O. ztürk. Microstructural and mechanical characterization of nitrogen ion implanted layer on316L stainless steel. Nuclear Instruments and Methods in Physics Research B.2009,267:1526~1530
    P. Cosemans, X. Zhu, J. P. Celis, M. V. Stappen, Development of low friction wear-resistantcoatings. Surface and Coatings Technology.2003,174~175:416~420
    P. D. Fleischauer, J. R. Lince. A comparison of oxidation and oxygen substitution in MoS2solidfilm lubricants. Tribology International.1999,32:627~636
    Q. Z. Wang, F. Zhou, K. M. Chen, et al. Friction and wear properties of TiCN coatings slidingagainst SiC and steel balls in air and water. Thin Solid Films.2011,519:4830~4841
    Q. Z. Wang, F. Zhou, X. N. Wang, et al. Comparison of tribological properties of CrN, TiCN andTiAlN coatings sliding against SiC balls in water. Applied Surface Science.2011,257:7813~7820
    R. Gilmore, M. A. Baker, P. N. Gibson, et al. Low-friction TiN–MoS2coatings produced by dcmagnetron co-deposition. Surface and Coatings Technology.1998,108~109:345~351
    R. Goller, P. Torri, M. A. Baker, et al. The deposition of low-friction TiN–MoSxhard coatings by acombined arc evaporation and magnetron sputter process. Surface and Coatings Technology.1999,120~121:453~457
    R. R. Manory, C. L. Li, C. Fountzoulas, et al. Effect of nitrogen ion-implantation on thetribological properties and hardness of TiN films. Materials Science and Engineering A.1998,253:319~327
    R. R. Manory, S. Mollica, L. Ward, et al. The effects of MEVVA ion implantation on thetribological properties of PVD-TiN films deposited on steel substrates. Surface and CoatingsTechnology.2002,155:136~140
    S. B. Hu, J. P. Tu, Z. Mei, et al. Adhesion strength and high temperature wear behaviour of ionplating TiN composite coating with electric brush plating NiWinterlayer, Surface and CoatingsTechnology,2001,141:174~181
    S. Gangopadhyay, R. Acharya, A. K. Chattopadhyay, et al. Composition and structure–propertyrelationship of low friction, wear resistant TiN–MoSxcomposite coating deposited by pulsedclosed-field unbalanced magnetron sputtering. Surface and Coatings Technology.2009,203:1565~1572
    S. Gangopadhyay, R. Acharya, A. K. Chattopadhyay, et al. Effect of substrate bias voltage onstructural and mechanical properties of pulsed DC magnetron sputtered TiN–MoSxcompositecoatings. Vacuum.2010,84:843~850
    S. H. Yao, Y. L. Su, W. H. Kao, et al. A wear-resistant coating-Oxidized graded multilayer TiN/Wcoating. Materials Letters.2010,64:99~101
    S. Novak, M. Komac. Wear of cermet cutting tools coated with physical vapor deposited TiN.Wear.1997,205:160~168.
    S. PalDey, S. C. Deevi. Single layer and multilayer wear resistant coatings of (Ti, Al)N:a review.Materials Science and Engineering A.2003,342:58~79
    S. Y. Lee, G. S. Kim, J. H. Hahn. Effect of the Cr content on the mechanical properties ofnanostructured TiN/CrN coatings. Surface and Coatings Technology.2004,177~178:426~433
    T. Aizawa, A. Mitsuo, S. Yamamoto, et al. Self-lubrication mechanism via the in situ formedlubricious oxide tribofilm. Wear.2005,259:708~718
    T. W. Scharf, A. Rajendran, R. Banerjee, et al. Growth, structure and friction behavior of titaniumdoped tungsten disulphide (Ti-WS2) nanocomposite thin films. Thin Solid Films.2009,517:5666~5675
    V. Chawla, R. Jayaganthan, R. Chandra. Structural characterizations of magnetron sputterednanocrystalline TiN thin films. Materials Characterization.2008,59:1015~1020
    V. I. Lavrentiev, A. D. Pogrebnjak. High-dose ion implantation into metals. Surface and CoatingsTechnology.1998,99(1~2):24~32
    W. F. Tsai, J. H. Liang, J. J. Kai, et al. A study of high-temperature implantation of72keV copperions into nickel. Nuclear Instruments and Methods in Physics Research B.2005,228:151~155
    W. H. Kao, Y. L. Su. Optimum MoS2–Cr coating for sliding against copper, steel and ceramic balls.Materials Science and Engineering A.2004,368:239~248
    X. H. Zheng, J. P. Tu, B. Gu, S. B. Hu. Preparation and tribological behavior of TiN/a-Ccomposite films deposited by DC magnetron sputtering. Wear.2008,265:261~265
    Y. A. Abdel-Aziz, A. M. Abd EI-Hameed. Ground-based simulation for the effects of space plasmaon spacecraft. Advances in Space Research.2013,51:133~142
    Y. Jing, J. B. Luo, S. Q. Pang. Effect of Ti or TiN codeposition on the performance of MoS2-basedcomposite coatings. Thin Solid Films.2004,461:288~293
    Y. M. Zhou, R. Asaki, K. Higashi, et al. Sliding wear behavior of polycrystalline TiN/CrNmultilayers against an alumina ball. Surface and Coatings Technology.2000,130:9~14
    Y. Tanno, A. Azushima. Effect of counter materials on coefficients of friction of TiN coatings withpreferred grain orientations. Wear.2009,266:1178~1184
    Y. Yasuda, M. Kano, Y. Mabuchi, et al. Research on Diamond-like Carbon Coatings forLow-friction Valve Lifters. Special Publications, Society of Automobile Engineers SP-1744.2003:77-82.
    Z. W. Xie, L. P. Wang, X. F. Wang, et al. Mechanical performance and corrosion behavior ofTiAlSiN/WS2multilayer deposited by multi-plasma immersion ion implantation and depositionand magnetron sputtering. Transactions of Nonferrous Metals Society of China.2011,21:S470~S475
    白彬,张鹏程,邹觉生,等.00Cr17Ni14Mo2不锈钢高温氮离子注入层的氮分布和组织.中国表面工程.2000,(3):21~25
    北京师范大学低能核物理研究所. MEVVAIIA-H强流金属离子源说明书.2010
    曹荣. Ti6Al4V表面纳米化及离子注入特性研究.[硕士学位论文].南京:南京理工大学,2006
    车德良.多弧离子镀氮化物薄膜的性能及应用.[硕士学位论文].大连:大连理工大学,2005
    陈莹.磁控溅射TiN薄膜工艺优化及其结构性能研究.[硕士学位论文].南京:东南大学,2008
    龚海飞,邵天敏. TiN/Ti多层膜韧性对摩擦学性能的影响.材料工程.2009,10:26~31
    顾斌.磁控溅射复合金属氮化物薄膜和纳米多层膜的摩擦磨损性能.[硕士学位论文].杭州:浙江大学,2007
    韩秀明,樊建春.钻杆防磨技术的现状的发展.石油矿场机械.2007,36(3):17~22
    何玉定,胡社军,谢光荣. TiN涂层应用及研究进展.广东工业大学学报.2005,22(2):31~36
    胡社军,曾鹏,谢光荣,等. Ti-Mo-N三元多层膜的结构与性能.材料科学与工程.2000,18(3):30~34
    黄佳木,徐成俊,王亚平.室温磁控溅射制备(Ti,Zr)N薄膜及其性能研究.材料科学与工程学报.2005,23(5):517~520
    黄美东,孙超,林国强,等.脉冲偏压电弧离子低温沉积TIN硬质薄膜的力学性能.金属学报.2003,39(5):516~520
    康嘉杰,李国禄,王海斗,等.层状固体润滑薄膜的研究进展.金属热处理.2007,32(4):15~18
    李戈扬,许俊华,顾明元.纳米多层膜的微结构与超硬效应.上海交通大学学报.2001,35(3):457~461
    李明,王凤,蔺增,等. Ti/TiN/TiC/DLC固体膜润滑特性实验研究.真空.2007,44(5):19~21
    李鹏,黄美东,佟莉娜,等.磁控溅射与电弧离子镀制备TiN薄膜的比较.天津师范大学学报.2011,31(2):32~37
    李倩倩,尹桂林,郑慈航,等.添加TiN对MoS2基复合薄膜结构和性能的影响.摩擦学学报.2011,31(1):40~44
    李晓芳. TiN薄膜的制备及其腐蚀磨损性能研究.[硕士学位论文].太原:太原理工大学,2010
    李学超,李长生,莫超超,等.磁控溅射W1-xTixN薄膜的结构与摩擦学性能研究.真空科学与技术学报.2010,30(3):249~253
    刘家浚.材料磨损原理及其耐磨性.北京:清华大学出版社,1993
    刘沅东.轴承钢的离子渗硫处理及固液复合润滑机理与应用研究.[博士学位论文].北京:中国地质大学(北京),2010
    苗志岭.偏压占空比对电弧离子镀氮化物薄膜结构和性能的影响.[硕士学位论文].北京:中国地质大学(北京),2012
    沈阳科友真空技术有限公司. ISB700型多功能离子束溅射镀膜机使用说明书.2010
    宋贵宏,杜昊,贺春林.硬质与超硬涂层—结构、性能、制备与表征.北京:化学工业出版社,2007
    孙健.升温氮离子注入及预处理工艺对钢表面改性层影响的研究.[博士学位论文].北京:中国地质大学(北京),2012
    孙跃,陈继新,夏立芳,等.等离子体基高温离子注入研究进展.金属热处理学报.2001,22(3):55~61
    唐伟忠.薄膜材料制备原理、技术及应用.北京:冶金工业出版社,2003
    王成彪,刘家浚,韦淡平,等.摩擦学材料及表面工程.北京:国防工业出版社,2012
    王福贞,闻立时.表面沉积技术.北京:机械工业出版社,1989
    王海斗,徐滨士,刘家浚,等.金属钼层表面渗硫层的表征与减摩耐磨性能研究.稀有金属材料与工程.2005,34(10):1513~1516
    王海斗,徐滨士,刘家浚.固体润滑膜层技术与应用.北京:国防工业出版社,2009
    王浩杰.氮化钛薄膜的磁控溅射研究.[硕士学位论文].南京:南京理工大学,2007
    王利捷,杨军胜.钛合金表面MoS2/TiN复合涂层的摩擦性能研究.表面技术.2010,39(2):11~13
    吴敏镜.超精密加工技术的现状和展望.航空精密制造技术.2002,38(3):1~6
    肖金泉,郎文昌,赵彦辉,等.轴对称磁场对电弧离子镀TiN薄膜结构及摩擦学性能的影响.金属学报.2011,47(5):566~572
    徐雷.高温离子注入工艺对钢表面氮注入层结构和性能的影响.[硕士学位论文].北京:中国地质大学(北京),2012
    杨义勇,彭志坚,苗赫濯,等.脉冲高能量密度等离子体陶瓷刀具表面改性研究进展.稀有金属材料与工程.2009,38(s2):102~105
    叶惠琼.7A04表面纳米化及其对离子注入的影响.[硕士学位论文].南京:南京理工大学,2006
    于翔,刘宝林,王成彪.载能粒子沉积用于钻探机具的硬质润滑薄膜.探矿工程(岩土钻掘工程).2009, S1:74~81
    于翔,王成彪,刘阳,等.真空阴极多弧离子镀沉积纳米超硬氮化钛薄膜.金属热处理.2008,33(12):49~52
    张碧云.电弧离子镀TiN薄膜的制备及其特性研究.[硕士学位论文].重庆:西南大学,2007
    张德元,邓鸣.多弧离子镀(TixAly)N系超硬薄膜中Al的作用.材料科学与工程.1997,15(2):61~64
    张德元,彭文屹,许兰萍,等.添加元素对TiN涂层磨损机理的影响.材料科学与工艺.1998,6(4):89~92
    张金林,贺春林,王建明,等.基体温度对磁控溅射TiN薄膜结构与力学性能的影响.沈阳大学学报(自然科学版).2012,24(4):23~27
    张嗣伟.我国摩擦学工业应用的节约潜力巨大—谈我国摩擦学工业应用现状的调查.中国表面工程.2008,21(2):50~52
    张也晗,崔彤,张扬,等.表面粗糙度三维测量和评定的研究.计量与测试技术.2012,39(11):31-33
    赵文轸.材料表面工程导论.西安:西安交通大学出版社,2003
    赵彦辉,肖金泉,林国强,等.超硬纳米多层膜的材料选择与结构设计.机械工程材料.2010,34(10):68~71,95
    郑鹏飞. TiN镀膜玻璃的制备机理及其光学电学性能研究.[硕士学位论文].杭州:浙江大学,2006
    周琴,刘宝林,李颖.旋转导向工具心轴弯曲对悬臂轴承影响的研究.石油机械.2010,38(10):14~17
    朱丽娜.磁控溅射辅助低温离子渗硫固体润滑薄膜的组织结构与摩擦学性能.[硕士学位论文].天津:河北工业大学,2008
    朱朋建. Cr-Al-N、Cr-Mo-N复合膜及CrN/Mo2N纳米多层膜的制备与性能研究.[硕士学位论文].镇江:江苏科技大学,2011

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700