锂离子电池复合负极材料Si@SiO_x/C和Si@Fe-Si/SiO_x的制备及其电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硅具有储锂能量密度高(理论容量高达3580mA h/g),储量丰富等优点,是极具应用前景的锂离子电池负极材料。然而硅负极材料存在导电性差、脱嵌锂过程中体积变化大,从而导致其循环稳定性差等问题。因而常采用纳米材料、多孔结构和引入高电导率的碳以缓解体积变化、增加硅材料的电接触、提高其循环稳定性,但纳米化和多孔结构导致了材料体积比能量密度降低,且其制备方法普遍复杂,成本高,限制了其商业化应用。本文在全面综述国内外Si基负极材料研究现状的基础上,提出用微米/亚微米尺度的硅为原材料,采用高效的喷雾干燥—高温裂解法和球磨法等制备方法,通过球磨非晶化、原位引入低含量的碳导电网络和高电导率的硅合金导电相,并在硅表面原位引入硅氧化物缓冲相,以获得兼具高容量和良好循环性能、高振实密度和低制备成本的复合材料。研究影响微米/亚微米硅电极材料电化学性能的关键因素及其影响机理。
     本文以微米硅粉和柠檬酸为原料,采用喷雾干燥—高温裂解法制备微米Si/C原位复合材料。研究了不同裂解温度下微米硅的晶体结构转变和不同含量裂解碳的引入对Si/C复合材料电化学性能的影响。研究表明,复合材料中形成了直片状和弯曲片状碳,其有效缓解了Si颗粒充放电过程中体积变化,并增加了硅颗粒间的电接触。在复合材料中碳含量仅为5.9wt%的条件下,经过60次循环后可逆容量高达1860mA h/g,容量保持率为69%。
     采用氩气作为球磨保护气氛制备非晶硅粉体材料,球磨后获得了颗粒尺寸基本小于200nm的非晶态硅(a-Si),球磨后Si颗粒的高表面活性特性,诱发其表面生成较高含量的SiOx,形成a-Si@SiOx复合结构。a-Si@SiOx经100次循环后容量达1060mA h/g,容量保持率由初始Si的23%提高到38%。该a-Si@SiOx材料进一步结合柠檬酸,经高温裂解获得了a-Si@SiOx/C复合材料。系统研究了柠檬酸引入量对复合材料中碳的含量及其形貌结构的影响,研究了碳和SiOx的引入对复合材料电化学性能的影响。研究结果表明,当C含量为8.4wt%时,复合材料在100mA/g电流下,经过100次循环后容量达1450mAh/g,保持率为73%,在500mA/g较大电流下循环100次后,容量为1230mAh/g。复合材料中形成了絮状碳导电网络,其有效的提高了a-Si颗粒间的电接触。SiOx的引入进一步提高了复合材料循环性能。
     本文系统研究了在较低球磨能量下,球磨气氛(NH3、H2、N2、N2/H2混合气体和Ar气)对球磨Fe和Si混合粉末的产物结构的影响。NH3、N2/H2混合气体及H2和N2气氛均有利于FeSi和FeSi2合金相的生成。结合采用HCl去除球磨产物中残余Fe,得到了FeSiy/SiOx复合层包覆无定形和纳米晶Si结构的微米/亚微米尺寸的Si@FeSiy/SiOx复合材料。采用NH3辅助球磨制备Si@Fe-Si/SiOx复合材料的过程中,NH3经球磨后分解为N2/H2混合气体。当NH3未完全分解时(球磨20-40小时),复合材料中生成了少量的FeSi相(5wt%)和较高含量的SiOx(41-59wt%);当NH3完全分解为N2/H2时(球磨60-100小时),材料中含较高量的FeSi2及少量的FeSi相(37-40wt%)和较低的SiOx(14-18wt%)。非晶态的SiOx起到了部分抑制体积膨胀的作用,较高含量高电导率Fe-Si相的引入,大幅提高了复合材料的电导率,并对Si颗粒在循环过程中的体积变化起到有效缓冲作用,非晶态及纳米晶硅在充放电过程中的体积变化小,因而复合材料可逆容量高、循环稳定性和倍率性能好。其中球磨80小时的材料表现出良好的综合性能,其首次可逆容量为1150mAh/g,150次循环后容量为880mAh/g,容量保持率为77%。球磨60小时的材料因其略低的惰性FeSi2和SiOx包覆层具有优良的倍率性能,在4000mA/g电流密度下可逆容量达560mAh/g。
     本论文的制备方法工艺简单,成本低,适合规模化生产。获得的硅基复合材料只含少量的碳或不含碳,颗粒尺寸为亚微米级,振实密度高。本论文在缓解微米、亚微米低碳和无碳硅基负极材料的体积膨胀和提高导电性的研究结果为获得高容量和高振实密度的硅基负极材料提供了新的思路。
As one of the most promising anode materials for Lithium-ion batteries, Si-based materils have been attracting much attention in recent years due to its high energy density and its high abundance. However, Si suffers from a large volume change (>300%) during lithiation/delithiation processes, which leads to its mechanical disintegration and thus the low cyclic stability. To bufferi the huge volume expansion, increase the electrical conductivity and improve the electrochemical performance of Si anodes, various nano-structured, porous structured Si and Si-C composite anodes were studied. The commercial applications of nano-or porous structured Si anodes are hindered by low tap density, complicated syntheses and high cost. On the basis of an overall review on the research advances of the Si anode materials, the present work puts forward a simple way for obtaining high capacity, long cycling performance, high energy density and low cost of Si anodes by means of spray drying-carbonization method and ball milling process. In this thesis, micro-Si and submicron Si particles with carbon conductive network were synthesized by spray drying-carbonization method, while Si particles with high electrical conductivity FeSiy nanocrystallite and inactive SiOx layer were acquired by ball milling process.
     Micro-Si and citric acid were used as raw materials to fabricate Si/C composites by spray drying and subsequent carbonization. The effect of citric acid addtions on the carbon content and structre in the composites was studied systematically. Micro-Si/C composites with high capacity and low carbon content were successfully synthesized. The composite with5.9wt%carbon has well dispersed flake-like layers and crooked carbon, providing a reversible capacity of2710mA h/g with capacity retention of69%after60cycles. It is found that, the carbon flakes are beneficial to accommodate the volume expansion of silicon, which improves the electrical conductivity of Si particles.
     Amorphous Si powders were synthesized by a ball milling process. Amorphous Si@SiOx powders were obtained after being milled for100h with a main particle size distribution smaller than200nm with a SiOx layer on its surfure. The reversible capacity of a-Si@SiOx after100cycles is1060mA h/g,38%capacity retention, whereas that of the pristine electrodes is only23%. Moreover, the Li+diffusion coefficient of the a-Si@SiOx is3.5times higher than that of the pristine Si. a-Si@SiOx and citric acid were used as raw materials to fabricate a-Si@SiOx/C composites. The effect of citric acid addtions on the carbon content and structre in the composites was studied systematically. The effects of introducing carbon and SiOx on the electrochemical performance of the composites were also studied. Composites with high capacity and stable cycling performance were successfully synthesized. By wrapping of silicon particle with floc-like carbon network, a markedly improved cycling performance is achieved with reversible discharge capacity over1450mAh/g and capacity retention of73%after100cycles at the current density of100mA/g. Furthermore, this sample has excellent rate performance with reversble capacity of1230mA h/g after100cycles at500mA/g.
     Si@FeSiy/SiOx composites were obtained by a low energy ball milling Fe and Si powders at different gases, such as Ar, H2, N2, NH3as well as gas mixture of N2and H2. The microstructure and composition of the composites depend strongly on milling atmosphere. The surface activity of the Fe and Si powders are enhanced and FeSi and FeSi2phase are formed when milling in H2, N2, NH3as well as gas mixture of N2and H2. The composites show nanocrystallite and amorphous Si core coated with an uneven thick SiOx (41-59wt%) layer and embedded with a few FeSi (5wt%) nanocrystallites after20-40h of milling, during which NH3is partially decomposed to H2and N2. Whereas high content of FeSiy (37-40wt%) and lower content of SiOx (14-18wt%) are formed for60-100h of milling, during which NH3is fully decomposed to H2and N2. The initial charge capacity of the sample with80h of milling at a current density of100mA/g is1150mA h/g, and still maintains a high charge capacity of880mA h/g after150cycles. Rate capacity of the sample with60h of milling is560mA h/g at4000mA/g due to the appropriate content of FeSi2and SiOx. It is found that SiOx layer uppresses the valume changes, FeSiy, inactive phase improves the conductivity, while the amorphous Si decreases the valume changes as well as optimizes the kinetic properities.
     The synthetic method developed in this work possesses several advantages of facile, low-cost and larg-scale. Micro-or submicron Si based composites without or with low carbon content and with high tap density were obtained. This present work provides novel ways to synthesize Si anodes with high capacity, and high tap density.
引文
[1]吴宇平,万春荣,姜长印,方世璧.锂离子二次电池.北京:化学工业出版社.2002:2-5.
    [2]M.S. Whittingham. Electrical energy storage and intercalation chemistry. Science,1976, 192(4244):1126-1127.
    [3]K. Mizushima, K.C. Jones, P.J. Wiseman, J.B. Goodenough. LixCoO2 (0    [4]J.M. Tarascon, M. Armand. Issues and challenges facing rechargeable lithium batteries. Nature, 2001,414(6861):359-367.
    [5]A. Manthiram. Materials Challenges and Opportunities of Lithium Ion Batteries. J. Phy. Chem. Lett.,2011,2(3):176-184.
    [6]J.M. Paulsen, J.R. Muller-Nehaus, J.R. Dahn. Layered LiCoO2 with a different oxygen stacking (O2 structure) as a cathode material for rechargeable lithium batteries. J. Electrochem. Soc.,2000, 147(2):508-516.
    [7]D. Huang. Solid solution:new cathodes for next generation lithium-ion batreries. Adv. Batt. Tech., 1998,11(1):23-27.
    [8]A. Subramania, N. Angayarkanni, S. Lakshmidevi, R. Gangadharan, T. Vasudevan. A microwave-induced combustion method for the synthesis of nano-crystalline Ni-and Mn-doped LiCoO2 for Li-ion battery. B. Electrochem.,2005,21(9):411-413.
    [9]H.S. Kim, T.K. Ko, B.K. Na, W.I. Cho, B.W. Chao. Electrochemical properties of LiMxCo1-xO2 [M =Mg, Zr] prepared by sol-gel process. J. Power Sources,2004,138(1-2):232-239.
    [10]A. Deptula, W. Lada, T. Olczak, D. Wawszczak, B. Sartowska, K.C. Goretta. Formation of LiNixCo1-xO2 by decarbonization of organic gel precursors through treatment with nitric acid and hydrogen peroxide. Ceram. Int.,2007,33(8):1617-1621.
    [11]S. Castro-Garcia, A. Castro-Couceiro, M.A. Senaris-Rodriguez, F. Soulette, C. Julien. Influence of aluminum doping on the properties of LiCoO2 and LiNi0.5Co0.5O2 oxides. Solid State Ionics, 2003,156(1-2):15-26.
    [12]G.E.T.K. Fey, J.D. Huang, T.P. Kumar, Y.C. Chano. Zirconia-coated lithium cobalt oxide as a long-cycling cathode for lithium batteries. J. Chin. Inst. Eng.,2005,28(7):1139-1151.
    [13]Y.X. Gu, D.R. Chen, X.L. Jiao, F.F. Liu. LiCoO2-MgO coaxial fibers:co-electrospun fabrication, characterization and electrochemical properties. J. Mater Chem.,2007,17(18):1769-1776.
    [14]G.T.K. Fey, C.Z. Lu, J.D. Huang, T.P. Kumar, Y.C. Chang. Nanoparticulate coatings for enhanced cyclability of LiCoO2 cathodes. J. Power Sources,2005,146(1-2):65-70.
    [15]J. Cho, C.S. Kim, S.I. Yoo. Improvement of structural stability of LiCoO2 cathode during electrochemical cycling by sol-gel coating of SnO2. Electrochem. Solid State,2000,3(8): 362-365.
    [16]A.G. Ritchie, C.O. Giwa, J.C. Lee, P. Bowles, A. Gilmour, J. Allan, D.A. Rice, F. Brady. Future cathode materials for lithium rechargeable batteries. J. Power Sources,1999,80(1):98-102.
    [17]T. Ohzuku, A. Ueda, M. Nagayama, Y. Iwakoshi, H. Komori. Comparative study of LiCoO2,LiNi1/2Co1/2O2 and LiNiO2 for 4 volt secondary lithium cells. Electrochim. Acta,1993, 38(9):1159-1167.
    [18]J.R. Dahn, U.v. Sacken, C.A. Michal. Structure and electrochemistry of Li1±yNiO2 and a new Li2Ni02 phase with the Ni (0H)2 structure. Solid State Ionics,1990,44(1-2):87-97.
    [19]W. Li, J.N. Reimers, J.R. Dahn. In situ x-ray diffraction and electrochemical studies of Li1-xNiO2. Solid State Ionics,1993,67(1-2):123-130.
    [20]H. Arai, S. Okada, Y. Sakurai, J. Yamaki. Electrochemical and thermal behavior of LiNi1-zMzO2 (M=Co, Mn, Ti). J. Electrochem. Soc.,1997,144(9):3117-3125.
    [21]R. Sathiyamoorthi, P. Shakkthivel, S. Ramalakshmi, Y.G. Shul. Influence of Mg doping on the performance of LiNiO2 matrix ceramic nanoparticles in high-voltage lithium-ion cells. J. Power Sources,2007,171(2):922-927.
    [22]H. Lee, Y. Kim, Y.S. Hong, Y. Kim, M.G. Kim, N.S. Shin, J. Cho. Structural characterization of the surface-modified LixNi0.9Co0.1O2 cathode materials by MPO4 coating (M= Al, Ce, SrH, and Fe) for Li-ion cells. J. Electrochem. Society,2006,153(4):A781-A786.
    [23]B.V.R. Chowdari, G.V.S. Rao, S.Y. Chow. Cathodic performance of anatase (TiO2)-coated Li (Ni0.8Co0.2)O2. J. Solid State Electrochem.,2002,6(8):565-567.
    [24]J. Cho, T.J. Kim, Y.J. Kim, B. Park. High-performance ZrO2-coated LiNiO2 cathode material. Electrochem. Solid State,2001,4(10):A159-A161.
    [25]刘东强,刘兴泉.锂离子蓄电池正极材料LiMn2O4的高温性能研究进展.化工科技.2006,14(3):58-63.
    [26]M.M. Thackeray. Manganese oxides for lithium batteries. Prog. Solid State Ch.,1997,25(1-2): 1-71.
    [27]B.J. Hwang, Y.W. Tsai, R. Santhanam, Y.W. Wu, S.G. Hu, J.F. Lee, D.G. Liu. Evolution of local electronic and atomic structure of Co-doped LiMn2O4 cathode material for lithium rechargeable batteries. J. Power Sources,2003,123(2):206-215.
    [28]M.M. Thackaray, S.H. Kang, C.S. Johnson, J.T. Vaughey, R. Benedek, S.A. Hackney. Li2MnO3-stabilized LiM02 (M= Mn, Ni, Co) electrodes for lithiumion batteries. J. Mater. Chem.,2007,17(30):3112-3125.
    [29]C.S. Johnson, N. Li, C. Lefief, M.M. Thackeray. Anomalous capacity and cycling stability of xLi2MnO3·1-xLiMO2 electrodes (M=Mn, Ni, Co) in lithium batteries at 50℃. Electrochem. Commun.,2007,9(4):787-795.
    [30]J.M. Zheng, J. Li, Z.R. Zhang, X.J. Guo, Y. Yang. The effects of TiO2 coating on the electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium-ion battery. Solid State Ionics,2008,179 (27-32):1794-1799.
    [31]H. Deng, I. Belharouak, C.S. Yoon, Y.K. Sun. High Temperature Performance of Surface-Treated Li1.1(Ni0.15Co0.1Mn0.55)O1.95 Layered Oxide J. Electrochem. Soc.,2010,157(10):A1035-A1039.
    [32]J. Liu, Q. Wang, J.B. Reeja, A. Manthiram. Carbon-coated high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes. Electrochem. Comm.,2010,12(6):750-753.
    [33]F. Lian, M. Gao, W. H. Qiu, P. Axmann, M. Wohlfahrt-Mehrens. Fe-doping effects on the structural and electrochemical properties of 0.5Li2MnO3·0.5LiMn0.5Ni0.5O2 electrode material. J. Appl. Electrochem.,2012,42(6):409-417.
    [34]S.H. Park, Y.K. Sun. Synthesis and electrochemical properties of layered Li[Li0.15Ni(0.275-x/2)AlxMn(0.575-x/2)]O2 materials. J. Power Sources,2003,119(1):161-165.
    [35]J. Gim, J. Song, H. Park, J. Kang, K. Kim, V. Mathew, J. Kim. Synthesis and characterization of integrated layered nanocomposites for lithium ion batteries. Nanoscale Res. Lett.,2012,7(60): 1-9.
    [36]N. Yabuuchi, T. Ohzuku. Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries. J. Power Sources,2003,119-121(0):171-174.
    [37]J.K. Ngala, N.A. Chernova, M. Ma, M. Mamak, P.Y. Zavalij, M.S. Whittingham. The synthesis, characterization and electrochemical behavior of the layered LiNi0.4Mn0.4Co0.2O2 compound. J. Mater. Chem.,2004,14(2):214-220.
    [38]J. Choi, A. Manthiram. Role of Chemical and Structural Stabilities on the Electrochemical Properties of Layered LiNi,/3Mn1/3Co1/3O2 Cathodes. J. Electrochem. Soc,2005,152(9): A1714-A1718.
    [39]A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc.,1997,144(4):1188-1194.
    [40]Z.H. Chen, J.R. Dahn. Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density. J. Electrochem. Soc.,2002,149(9):A1184-A1189.
    [41]G.X. Wang, S.L. Bewlay, K. Konstantinov, H.K. Liu, S.X. Dou, J.H. Ahn. Physical and electrochemical properties of doped lithium iron phosphate electrodes. Electrochim. Acta,2004, 50(2-3):443-447.
    [42]F. Croce, A.D. Epifanio, J. Hassoun, A. Deptula, T. Olczac, B. Scrosati. A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode. Electrochem. Solid. State,2002,5(3): A47-A50.
    [43]H. Liu, Q. Cao, L.J. Fu, C. Li, Y.P. Wu, H.Q. Wu. Doping effects of zinc on LiFePO4 cathode material for lithium ion batteries. Electrochem. Commun.,2006,8(10):1553-1557.
    [44]M. Gaberscek, R. Dominko, J. Jamnik. Is small particle size more important than carbon coating? An example study on LiFePO4 cathodes. Electrochem. Commun.,2007,9(12):2778-2783.
    [45]S.K. Martha, B. Markovsky, J. Grinblat, Y. Gofer, O. Haik, E. Zinigrad, D. Aurbach, T. Drezen, D. Wang, G. Deghenghi, I. Exnar. LiMnPO4 as an Advanced Cathode Material for Rechargeable Lithium Batteries. J. Electrochem. Soc.,2009,156(7):A541-A552.
    [46]M. Yonemura, A. Yamada, Y. Takei, N. Sonoyama, R. Kanno. Comparative Kinetic Study of Olivine LixMPO4(M=Fe,Mn). J. Electrochem. Soc.,2004,151(9):A1352-A1356.
    [47]T. Muraliganth, A. Manthiram. Understanding the Shifts in the Redox Potentials of Olivine LiM1-yMyPO4 (M= Fe, Mn, Co, and Mg) Solid Solution Cathodes. J. Phy. Chem. C,2010, 114(36):15530-15540.
    [48]M.R. Palacin. Recent advances in rechargeable battery materials:a chemist's perspective. Chem. Soc. Rev.2009,38(9):2565-2575.
    [49]黄可龙,王兆翔,刘素琴.锂离子电池原理与关键技术.北京:化学工业出版社.2007.
    [50]戴晓兵,吴宇平,马军旗,程预江.锂离子电池—应用与实践.北京:化学工业出版社.2004.
    [51]B. Scrosati. Lithium rocking chair batteries:an old concept. Electrochemitry Society.1992. 139(10):2776-2781.
    [52]M.S. Yazici, D. Krassowski, J. Prakash. Flexible graphite as battery anode and current collector. J. Power Sources,2005,141(1):171-176.
    [53]G.T.K. Fey, C.L. chen. High-capacity carbons for lithium-ion batteries prepared from rice husk. J. Power Sources,2001,97-8:47-51.
    [54]J.R. Dahn, W. Xing, Y. Gao. The "falling cards model" for the structure of microporous carbons. Carbon,1997,35(6):825-830.
    [55]Y. Matsumura, S. Wang, J. Mondori. Interactions between disordered carbon and lithium in lithium ion rechargeable batteries. Carbon,1995,33(10):1457-1462.
    [56]K. Sato, M. Noguchi, A. Demachi, N. Oki, M. Endo. A Mechanism of Lithium Storage in Disordered Carbons. Science,1994,264(5158):556-558.
    [57]R. Yazami, M. Deschamps. High reversible capacity carbon-lithium negative electrode in polymer electrolyte. J. Power Sources,1995,54(2):411-415.
    [58]H. Fujimoto, A. Mabuchi, K. Tokumitsu, T. Kasuh. Irreversible capacity of lithium secondary battery using meso-carbon micro beads as anode material. J. Power Sources,1995,54(2): 440-443.
    [59]W.J. Zhang. A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J. Power Sources,2011,196(1):13-24.
    [60]L.Y. Beaulieu, T.D. Hatchard, A. Bonakdarpour, M.D. Fleischauer, J.R. Dahn. Reaction of Li with alloy thin films studied by in situ AFM. J. Electrochem. Soc.,2003,150(11):A1457-A1464.
    [61]L.Y. Beaulieu, K.C. Hewitt, R.L. Turner, A. Bonakdarpour, A.A. Abdo, L. Christensen, K.W. Eberman, L.J. Krause, J.R. Dahn. The Electrochemical Reaction of Li with Amorphous Si-Sn Alloys. J. Electrochem. Soc.,2003,150(2):A149-A156.
    [62]J.J. Zhang, Y.M. Zhang, X. Zhang, Y.Y. Xia. NixCu6-xSn5 alloys as negative electrode materials for rechargeable lithium batteries. J. Power Sources,2007,167(1):171-177.
    [63]F.S. Ke, L. Huang, H.H. Jiang, H.B. Wei, F.Z. Yang, S.G. Sun. Fabrication and properties of three-dimensional macroporous Sn-Ni alloy electrodes of high preferential (110) orientation for lithium ion batteries. Electrochem. Commun..2007,9(2):228-232.
    [64]J.G. Ren, X.M. He, L. Wang, W.H. Pu, C.Y. Jiang, C.R. Wan. Nanometer copper-tin alloy anode material for lithium-ion batteries. Electrochim. Acta,2007,52(7):2447-2452.
    [65]J.J. Zhang, Y.Y. Xia. Co-Sn alloys as negative electrode materials for rechargeable lithium batteries. J. Electrochem. Soc.,2006,153(8):A1466-A1471.
    [66]H.L. Zhao, C.L. Yin, H. Guo, W.H. Qiu. Microcrystalline SnSb alloy powder as lithium storage material for rechargeable lithium-ion batteries. Electrochem. Solid State,2006,9(6): A281-A284.
    [67]Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, T. Miyasaka. Tin-Based Amorphous Oxide:A High-Capacity Lithium-Ion-Storage Material. Science,1997,276:1395-1397.
    [68]I.A. Courtney, J.R. Dahn. Electrochemical and in situ X-ray diffraction studies of the reaction of lithium with tin oxide composites. J. Electrochem. Soc.,1997,144(6):2045-2052.
    [69]C. Gejke, E. Zanghellini, L. Fransson, K. Edstrom, L. Borjesson. The Bffect of Lithium Insertion on The Structure of Tin Oxide-based Glasses. J. Power Sources,2001,97-98:226-228.
    [70]P.Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. tarason. Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries. Nature,2000,407(6803):496.
    [71]J. Cheng, B. Wang, C.M. Park, Y. Wu, H. Huang, F. Nie. CNT@Fe3O4@C Coaxial Nanocables: One-Pot, Additive-Free Synthesis and Remarkable Lithium Storage Behavior. Chem-Eur. J., 2013,19(30):9866-9874.
    [72]P. Wang, M. Gao, H. Pan, J. Zhang, C. Liang, J. Wang, P. Zhou, Y. Liu. A facile synthesis of Fe3O4/C composite with high cycle stability as anode material for lithium-ion batteries. J. Power Sources.2013,239(0):466-474.
    [73]Y. Li, B. Tan, Y. Wu. Mesoporous Co3O4 Nanowire Arrays for Lithium Ion Batteries with High Capacity and Rate Capability. Nano Lett.,2007,8(1):265-270.
    [74]H. Wang, Q. Pan, J. Zhao, G. Yin, P. Zuo. Fabrication of CuO film with network-like architectures through solution-immersion and their application in lithium ion batteries. J. Power Sources,2007,167(1):206-211.
    [75]Z. Zhang, Y. Wang, M. Zhang, Q. Tan, X. Lv, Z. Zhong, F. Su. Mesoporous CoFe2O4 nanospheres cross-linked by carbon nanotubes as high-performance anodes for Lithium-ion batteries. J. Mater. Chem. A,2013,1:7444-7450.
    [76]R. Ding, L. Qi, H. Wang. Porous NiCo2O4 as anode materials for 4.5 V hybrid Li-ion capacitors. RSC Adv.,2013,3:12581-12584.
    [77]P.F. Teh, S.S. Pramana, Y. Sharma, Y.W. Ko, S. Madhavi. Electrospun Zn1-xMnxFe2O4 Nanofibers As Anodes for Lithium-Ion Batteries and the Impact of Mixed Transition Metallic Oxides on Battery Performance. ACS Appl. Mater. Inter.,2013,5(12):5461-5467.
    [78]D.C.S. Souza, V. Pralong, A.J. Jacobson, L.F. Nazar. A reversible solid-state crystalline transformation in a metal phosphide induced by redox chemistry. Science,2002,296(5575): 2012-2015.
    [79]B. Mauvernay, M.P. Bichat, F. Favier, L. Monconduit, M. Morcrette, M.L. Doublet. Progress in the lithium insertion mechanism in Cu3P. Ionics.2005,11(1-2):36-45.
    [80]C.M. Park, H.J. Sohn. Black Phosphorus and its Composite for Lithium Rechargeable Batteries. Adv. Mater.,2007,19(18):2465-2468.
    [81]M.C. Stan, R. Klopsch, A. Bhaskar, J. Li, S. Passerini, M. Winter. Cu3P Binary Phosphide: Synthesis via a Wet Mechanochemical Method and Electrochemical Behavior as Negative Electrode Material for Lithium-Ion Batteries. Adv. Energy Mater.,2012,3(2):231-238.
    [82]Y. Lu, X. Wang, Y. Mai, J. Xiang, H. Zhang, L. Li, C. Gu, J. Tu, S.X. Mao. Ni2P/Graphene Sheets as Anode Materials with Enhanced Electrochemical Properties versus Lithium. J. Phy. Chem. C,2012,116(42):22217-22225.
    [83]L. Wang, X. He, J. Li, W. Sun, J. Gao, J. Guo, C. Jiang. Nano-Structured Phosphorus Composite as High-Capacity Anode Materials for Lithium Batteries. Angew. Chem. Int. Ed.,2012,51(36): 9034-9037.
    [84]J.W. Hall, N. Membreno, J. Wu, H. Celio, R.A. Jones, K.J. Stevenson. Low-Temperature Synthesis of Amorphous FeP2 and Its Use as Anodes for Li Ion Batteries. J. Am. Chem. Soc., 2012,134(12):5532-5535.
    [85]J. Cabana, L. Monconduit, D. Larcher, M.R. Palacin. Beyond Intercalation-Based Li-Ion Batteries:The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions. Adv. Mater.,2010,22(35):E170-E192.
    [86]B.A. Boukamp, G.C. Lesh, R.A. Huggins. ALL-SOLID LITHIUM ELECTRODES WITH MIXED-CONDUCTOR MATRIX. J. Electrochem. Soc.,1981,128(4):725-729.
    [87]H. Li, X.J. Huang, L.Q. Chen, G.W. Zhou, Z. Zhang, D.P. Yu, Y.J. Mo, N. Pei. The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature. Solid State Ionics.2000,135(1-4):181-191.
    [88]H. Wu, Y Cui. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today,2012,7(5):414-429.
    [89]X.H. Liu, L. Zhong, S. Huang, S.X. Mao, T. Zhu. J.Y. Huang. Size-Dependent Fracture of Silicon Nanoparticles During Lithiation. Acs Nano,2012,6(2):1522-1531.
    [90]H. Ma, F.Y. Cheng, J. Chen, J.Z. Zhao, C.S. Li, Z.L. Tao, J. Liang. Nest-like silicon nanospheres for high-capacity lithium storage. Adv. Mater.,2007,19(22):4067-4070.
    [91]V.L. Chevrier, J.W. Zwanziger, J.R. Dahn. First principles study of Li-Si crystalline phases: Charge transfer, electronic structure, and lattice vibrations. J. Alloy Compd.,2010,496(1-2): 25-36.
    [92]Y. Kubota, M.C.S. Escano, H. Nakanishi, H. Kasai. Crystal and electronic structure of Li15Si4. J. Appl. Phys.,2007,102(5):053704.
    [93]M.N. Obrovac, L. Christensen. Structural Changes in Silicon Anodes during Lithium Insertion/Extraction. Electrochem. Solid-State Lett.,2004,7(5):A93-A96.
    [94]J.H. Ryu, J.W. Kim, Y.E. Sung, S.M. Oh. Failure modes of silicon powder negative electrode in lithium secondary batteries. Electrochem. Solid-State Lett.,2004,7(10):A306-A309.
    [95]T.D. Hatchard, J.R. Dahn. In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon. J. Electrochem. Soc.,2004,151(6):A838-A842.
    [96]J.Y. Kwon, J.H. Ryu, S.M. Oh. Performance of electrochemically generated Li21Si5 phase for lithium-ion batteries. Electrochim. Acta,2010,55(27):8051-8055.
    [97]X.H. Liu, L.Q. Zhang, L. Zhong, Y. Liu, H. Zheng, J.W. Wang, J.-H. Cho, S.A. Dayeh, S.T. Picraux, J.P. Sullivan, S.X. Mao, Z.Z. Ye, J.Y. Huang. Ultrafast Electrochemical Lithiation of Individual Si Nanowire Anodes. Nano Lett.,2011,11(6):2251-2258.
    [98]X.H. Liu, Y. Liu, A. Kushima, S. Zhang, T. Zhu, J. Li, J.Y. Huang. In Situ TEM Experiments of Electrochemical Lithiation and Delithiation of Individual Nanostructures. Adv. Energy Mater., 2012,2(7):722-741.
    [99]S.W. Lee, M.T. McDowell, J.W. Choi, Y. Cui. Anomalous Shape Changes of Silicon Nanopillars by Electrochemical Lithiation. Nano Lett.,2011,11(7):7034-7039.
    [100]G.A. Tritsaris, E. Kaxiras, S. Meng, E. Wang. Adsorption and Diffusion of Lithium on Layered Silicon for Li-Ion Storage. Nano Lett.,2013,13(5):2258-2263.
    [101]J. Li, J.R. Dahn. An in situ X-ray diffraction study of the reaction of Li with crystalline Si. J. Electrochem. Soc,2007,154(3):A156-A161.
    [102]I. Sandu, P. Moreau, D. Guyomard, T. Brousse, L. Roue. Synthesis of nanosized Si particles via a mechanochemical solid-liquid reaction and application in Li-ion batteries. Solid State Ionics, 2007,178(21-22):1297-1303.
    [103]T. Jiang, S.C. Zhang, X.P. Qiu, W.T. Zhu, L.Q. Chen. Preparation and characterization of silicon-based three-dimensional cellular anode for lithium ion battery. Electrochem. Commun.. 2007,9(5):930-934.
    [104]B. Key, R. Bhattacharyya, M. Morcrette, V. Seznec, J.M. Tarascon, C.P. Grey. Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries. J. Am Chem Soc.,2009,131(26):9239-9249.
    [105]M.N. Obrovac, L.J. Krause. Reversible cycling of crystalline silicon powder. J. Electrochem. Soc.,2007,154(2):A103-A108.
    [106]H.K. Seong, M.H. Kim, H.J. Choi, Y.J. Choi, J.G. Park. Electrochemical characteristics of single crystalline nanowires and their driven mechanism. Met. and Mater. In.,2008,14(4): 477-480.
    [107]C.K. Chan, H.L. Peng, G. Liu, K. Mcllwrath, X.F. Zhang, R.A. Huggins, Y. Cui. High-performance lithium battery anodes using silicon nanowires. Nature Nanotech.,2008, 3(1):31-35.
    [108]K.Q. Peng, J.S. Jie, W.J. Zhang, S.T. Lee. Silicon nanowires for rechargeable lithium-ion battery anodes. Appl. Phy. Lett.,2008,93(3):033105.
    [109]J.J. Feng, P.X. Yan, R.F. Zhuo, J.T. Chen, D. Yan, H.T. Feng, H.J. Li. Ultrafast synthesis of Si nanowires by DC arc discharge method and morphology control. J. Alloy Compd.,2009, 475(1-2):551-554.
    [110]H. Kim, J. Cho. Superior Lithium Electroactive Mesoporous Si@Carbon Core-Shell Nanowires for Lithium Battery Anode Material. Nano Lett.,2008,8(11):3688-3691.
    [111]M.H. Park, M.G. Kim, J. Joo, K. Kim, J. Kim, S. Ahn, Y. Cui, J. Cho. Silicon Nanotube Battery Anodes. Nano Lett.,2009,9(11):3844-3847.
    [112]J.Z. Chen, L. Yang, S. Rousidan, S.H. Fang, Z.X. Zhang, S. Hirano. Facile fabrication of Si mesoporous nanowires for high-capacity and long-life lithium storage. Nanoscale.2013,5(21): 10623-10628.
    [113]Z. Wen, G. Lu, S. Mao, H. Kim, S. Cui, K. Yu, X. Huang, P.T. Hurley, O. Mao, J. Chen. Silicon nanotube anode for lithium-ion batteries. Electrochem. Commun.,2013,29(0):67-70.
    [114]K. Karki, E. Epstein, J.-H. Cho, Z. Jia, T. Li, S.T. Picraux, C. Wang, J. Cumings. Lithium-Assisted Electrochemical Welding in Silicon Nanowire Battery Electrodes. Nano Lett., 2012,12(3):1392-1397.
    [115]Y. Qu, H. Zhou, X. Duan. Porous silicon nanowires. Nanoscale.2011,3(10):4060-4068.
    [116]S. Bourderau, T. Brousse, D.M. Schleich. Amorphous silicon as a possible anode material for Li-ion batteries. J. Power Sources,1999,81(1):233-236.
    [117]A.A. Arie, J.O. Song, J.K. Lee. Structural and electrochemical properties of fullerene-coated silicon thin film as anode materials for lithium secondary batteries. Mater. Chem. Phys.,2009, 113(1):249-254.
    [118]J. Graetz, C.C. Ahn, R. Yazami, B. Fultz. Highly reversible lithium storage in nanostructured silicon. Electrochem. Solid-State Lett.,2003,6(9):A194-A197.
    [119]T. Takamura, M. Uehara, J. Suzuki, K. Sekine, K. Tamura. High capacity and long cycle life silicon anode for Li-ion battery. J. Power Sources,2006,158(2):1401-1404.
    [120]J.Y. Rongguan Lva, P.F. Gao, Y.N. NuLia, J.L. Wang. Electrochemical behavior of nanoporous/nanofibrous Si anode materials prepared by mechanochemical reduction. J. Alloy Compd.,2009,490(1-2):84-87.
    [121]D.K. Kang, J.A. Corno, J.L. Gole, H.C. Shin. Microstructured nanopore-walled porous silicon as an anode material for rechargeable lithium batteries. J. Electrochem. Soc.,2008,155(4): A276-A281.
    [122]H.C. Shin, J.A. Corno, J.L. Gole, M.L. Liu. Porous silicon negative electrodes for rechargeable lithium batteries. J. Power Sources,2005,139(1-2):314-320.
    [123]M. Thakur, R.B. Pernites, N. Nitta, M. Isaacson, S.L. Sinsabaugh, M.S. Wong, S.L. Biswal. Freestanding Macroporous Silicon and Pyrolyzed Polyacrylonitrile As a Composite Anode for Lithium Ion Batteries. Chemistry of Materials.2012,24(15):2998-3003.
    [124]M. Thakur, S.L. Sinsabaugh, M.J. Isaacson, M.S. Wong, S.L. Biswal. Inexpensive method for producing macroporous silicon particulates (MPSPs) with pyrolyzed polyacrylonitrile for lithium ion batteries. Sci. Rep.2012,2(1):795.
    [125]B.M. Bang, H. Kim, J.-P. Lee, J. Cho, S. Park. Mass production of uniform-sized nanoporous silicon nanowire anodes via block copolymer lithography. Energy Environ. Sci.,2011,4(9): 3395-3399.
    [126]B.M. Bang, H. Kim, H.-K. Song, J. Cho, S. Park. Scalable approach to multi-dimensional bulk Si anodes via metal-assisted chemical etching. Energy Environ. Sci.,2011,4(12):5013-5019.
    [127]H. Kim, B. Han, J. Choo, J. Cho. Three-Dimensional Porous Silicon Particles for Use in High-Performance Lithium Secondary Batteries. Angew. Chem. Int. Ed.,47(52):10151-10154.
    [128]Z. Bao, M.R. Weatherspoon, S. Shian, Y. Cai, P.D. Graham, S.M. Allan, G. Ahmad, M.B. Dickerson, B.C. Church, Z. Kang, H.W. Abernathy Iii, C.J. Summers, M. Liu, K.H. Sandhage. Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas. Nature,2007,446(7132):172-175.
    [129]H. Zhang, R.V. Braun. Three-Dimensional Metal Scaffold Supported Bicontinuous Silicon Battery Anodes. Nano Lett.,2012,12(6):2778-2783.
    [130]Z. Lu, J. Zhu, D. Sim, W. Zhou, W. Shi, H.H. Hng, Q. Yan. Synthesis of Ultrathin Silicon Nanosheets by Using Graphene Oxide as Template. Chem. Mater.,2011,23(24):5293-5295.
    [131]W. Chen, Z. Fan, A. Dhanabalan, C. Chen, C. Wang. Mesoporous Silicon Anodes Prepared by Magnesiothermic Reduction for Lithium Ion Batteries. J. Electrochem. Soc.,2011,158(9): A1055-A1059.
    [132]A. Xing, J. Zhang, Z. Bao, Y. Mei, A.S. Gordin, K.H. Sandhage. A magnesiothermic reaction process for the scalable production of mesoporous silicon for rechargeable lithium batteries. Chem. Commun.,2013,49(60):6743-6745.
    [133]Y. Zheng, J. Yang, L. Tao, Y.N. Nuli, J.L. Wang. Study of nano-porous Si/Graphite/C composite anode materials for Li-ion batteries. Ch. J. In. Chem.,2007,23(11):1882-1886.
    [134]A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala, G. Yushin. High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nature Mater.,2010,9(4): 353-358.
    [135]T. Zhang, J. Gao, L.J. Fu, L.C. Yang, Y.P. Wu, H.Q. Wu. Natural graphite coated by Si nanoparticles as anode materials for lithium ion batteries. J. Mater. Chem..2007,17(13): 1321-1325.
    [136]Y. Liu, Z.Y. Wen, X.Y. Wang, A. Hirano, N. Imanishi, Y. Takeda, Electrochemical behaviors of Si/C composite synthesized from F-containing precursors. J. Power Sources,2009,189(1): 733-737.
    [137]G.X. Wang, J.H. Ahn, J. Yao, S. Bewlay, H.K. Liu. Nanostructured Si-C composite anodes for lithium-ion batteries. Electrochem. Commun.,2004,6(7):689-692.
    [138]S.H. Ng, J. Wang, D. Wexler, S.Y. Chew, H.K. Liu. Amorphous carbon-coated silicon nanocomposites:A low-temperature synthesis via spray pyrolysis and their application as high-capacity anodes for lithium-ion batteries. J. Phy. Chem. C.2007,111(29):11131-11138.
    [139]Y. Park, N.-S. Choi, S. Park, S.H. Woo, S. Sim, B.Y. Jang, S.M. Oh, S. Park, J. Cho, K.T. Lee. Si-Encapsulating Hollow Carbon Electrodes via Electroless Etching for Lithium-Ion Batteries. Adv. Energy Mater.,2013,3(2):206-212.
    [140]D.S. Jung, T.H. Hwang, S.B. Park, J.W. Choi. Spray Drying Method for Large-Scale and High-Performance Silicon Negative Electrodes in Li-Ion Batteries. Nano Lett.,2013,13(5): 2092-2097.
    [141]H. Wu, G. Zheng, N. Liu, T.J. Carney, Y. Yang, Y. Cui. Engineering Empty Space between Si Nanoparticles for Lithium-Ion Battery Anodes. Nano Lett.,2012,12(2):904-909.
    [142]H.P. Liu, W.M. Qiao, L. Zhan, L.C. Ling. In situ growth of a carbon nanofiber/Si composite and its application in Li-ion storage. New Carbon Mater.,2009,24(2):124-130.
    [143]B. Lestriez, S. Desaever, J. Danet, P. Moreau, D. Plee, D. Guyomard. Hierarchical and Resilient Conductive Network of Bridged Carbon Nanotubes and Nanofibers for High-Energy Si Negative Electrodes. Electrochem. Solid-State Lett.,2009,12(4):A76-A80.
    [144]W. Wang, P.N. Kumta. Reversible high capacity nanocomposite anodes of Si/C/SWNTs for rechargeable Li-ion batteries. J. Power Sources,2007,172(2):650-658.
    [145]K. Evanoff, J. Benson, M. Schauer, I. Kovalenko, D. Lashmore, W.J. Ready, G. Yushin. Ultra Strong Silicon-Coated Carbon Nanotube Nonwoven Fabric as a Multifunctional Lithium-Ion Battery Anode. Acs Nano,2012,6(11):9837-9845.
    [146]H. Wolf, Z. Pajkic, T. Gerdes, M. Willert-Porada. Carbon-fiber-silicon-nanocomposites for lithium-ion battery anodes by microwave plasma chemical vapor deposition. J. Power Sources, 2009,190(1):157-161.
    [147]J. Shu, H. Li, R.Z. Yang, Y. Shi, X.J. Huang. Cage-like carbon nanotubes/Si composite as anode material for lithium ion batteries. Electrochem. Commun.,2006,8(1):51-54.
    [148]L.W. Ji, X.W. Zhang. Electrospun carbon nanofibers containing silicon particles as an energy-storage medium. Carbon,2009,47(14):3219-3226.
    [149]T.H. Hwang, Y.M. Lee, B.-S. Kong, J.-S. Seo, J.W. Choi. Electrospun Core-Shell Fibers for Robust Silicon Nanoparticle-Based Lithium Ion Battery Anodes. Nano Lett.,2011,12(2): 802-807.
    [150]X. Zhou, Y.-X. Yin, L.-J. Wan, Y.-G. Guo. Self-Assembled Nanocomposite of Silicon Nanoparticles Encapsulated in Graphene through Electrostatic Attraction for Lithium-Ion Batteries. Adv. Energy Mater.,2012,2(9):1086-1090.
    [151]B. Wang, X. Li, X. Zhang, B. Luo, M. Jin, M. Liang, S.A. Dayeh, S.T. Picraux, L. Zhi. Adaptable Silicon-Carbon Nanocables Sandwiched between Reduced Graphene Oxide Sheets as Lithium Ion Battery Anodes. Acs Nano,2013,7(2):1437-1445.
    [152]K. Evanoff, A. Magasinski, J.B. Yang, G. Yushin. Nanosilicon-Coated Graphene Granules as Anodes for Li-Ion Batteries. Adv. Energy Mater.,2011,1(4):495-498.
    [153]Z.-S. Wu, L. Xue, W. Ren, F. Li, L. Wen, H.-M. Cheng. A LiF Nanoparticle-Modified Graphene Electrode for High-Power and High-Energy Lithium Ion Batteries. Adv. Funct. Mater.,2012, 22(15):3290-3297.
    [154]S.Y. Chew, Z.P. Guo, J.Z. Wang, J. Chen, P. Munroe, S.H. Ng, L. Zhao, H.K. Liu. Novel nano-silicon/polypyrrole composites for lithium storage. Electrochem. Commun.,2007,9(5): 941-946.
    [155]Z.P. Guo, J.Z. Wang, H.K. Liu, S.X. Dou. Study of silicon/polypyrrole composite as anode materials for Li-ion batteries. J. Power Sources,2005,146(1-2):448-451.
    [156]Y. Liu, T. Matsumura, N. Imanishi, A. Hirano, T. Ichikawa, Y. Takeda. Preparation and characterization of Si/C composite coated with polyaniline as novel anodes for Li-ion batteries. Electrochem. Solid-State Lett.,2005,8(11):A599-A602.
    [157]Y. Yao, N. Liu, M.T. McDowell, M. Pasta, Y. Cui. Improving the cycling stability of silicon nanowire anodes with conducting polymer coatings. Energy Environ. Sci.,2012,5(7): 7927-7930.
    [158]K. Karki, Y. Zhu, Y. Liu, C.-F. Sun, L. Hu, Y.H.Wang, C. Wang, J. Cumings.Hoop-Strong Nanotubes for Battery Electrodes. ACS NANO,2013,7(9):8295-8302.
    [159]X.L. Yang, Z.Y. Wen, S.H. Huang, X.J. Zhu, X.F. Zhang. Electrochemical performances of silicon electrode with silver additives. Solid State Ionics,2006,177(26-32):2807-2810.
    [160]Y.M. Kang, M.S. Park, J.Y. Lee, H.K. Liu. Si-Cu/carbon composites with a core-shell structure for Li-ion secondary battery. Carbon,2007,45(10):1928-1933.
    [161]S. Murugesan, J.T. Harris, B.A. Korgel, K.J. Stevenson. Copper-Coated Amorphous Silicon Particles as an Anode Material for Lithium-Ion Batteries. Chem. Mater.,2012,24(7): 1306-1315.
    [162]M.S. Park, Y.J. Lee, Y.S. Han, J.Y. Lee. Effects of mechanical milling and arc-melting processes on the electrochemical performance of Si-based composite materials. Mater. Lett.,2006, 60(25-26):3079-3083.
    [163]H. Kim, J. Choi, H.J. Sohn, T. Kang. The insertion mechanism of lithium into Mg2Si anode material for Li-ion batteries. J. Electrochem, Soc.,1999,146(12):4401-4405.
    [164]M.D. Fleischauer, M.N. Obrovac, J.R. Dahn. Al-Si thin-film negative electrodes for Li-ion batteries. J. Electrochem. Soc.,2008,155(11):A851-A854.
    [165]Y.-S.Lee, K.-M. Lee, Y.-W. Kim, Y.-K. Sun, S.-M. Lee. Electrochemical characterization of Ti-Si and Ti-Si-Al alloy anodes for Li-ion batteries produced by mechanical ball milling. J. Alloy Compd.,2009,472 (1-2):461-465.
    [166]M.S. Park, YJ. Lee, S. Rajendran, M.S. Song, H.S. Kim, J.Y. Lee. Electrochemical properties of Si/Ni alloy-graphite composite as an anode material for Li-ion batteries. Electrochim. Acta, 2005,50(28):5561-5567.
    [167]C.M. Hwang, C.H. Lim, J.H. Yang, J.W. Park. Electrochemical properties of negative SiMox electrodes deposited on a roughened substrate for rechargeable lithium batteries. J. Power Sources,2009,194(2):1061-1067.
    [168]M.K. Datta, P.N. Kumta. In situ electrochemical synthesis of lithiated silicon-carbon based composites anode materials for lithium ion batteries. J. Power Sources,2009,194(2): 1043-1052.
    [169]J. Wolfenstine. CaSi2 as an anode for lithium-ion batteries. J. Power Sources,2003,124(1): 241-245.
    [170]H.Y. Lee, S.M. Lee. Graphite-FeSi alloy composites as anode materials for rechargeable lithium batteries. J. Power Sources,2002,112(2):649-654.
    [171]Y.-S.L. Kyoung-Muk Lee, Yeon-Wook Kim, Yang-Kook Sun, Sung-Man Lee,. Electrochemical characterization of Ti-Si and Ti-Si-Al alloy anodes for Li-ion batteries produced by mechanical ball milling. J. Alloy Compd.,2009,472 (2009):461-465.
    [172]Z.B. Sun, X.D. Wang, X.P. Li, M.S. Zhao, Y. Li, Y.M. Zhu, X.P. Song. Electrochemical properties of melt-spun Al-Si-Mn alloy anodes for lithium-ion batteries. J. Power Sources,2008, 182(1):353-358.
    [173]N. Jayaprakash, N. Kalaiselvi, C.H. Doh. A new class of tailor-made Fe0.92Mn0.08Si2 lithium battery anodes:Effect of composite and carbon coated Fe0.92Mn0.08Si2 anodes. Intermetallics, 2007,15(3):442-450.
    [174]H. Dong, X.P. Ai, H.X. Yang. Carbon/Ba-Fe-Si alloy composite as high capacity anode materials for Li-ion batteries. Electrochem. Commun.,2003,5(11):952-957.
    [175]J.M. Yan, H.Z. Huang, J. Zhang, Y. Yang. The study of Mg2Si/carbon composites as anode materials for lithium ion batteries. J. Power Sources,2008,175(1):547-552.
    [176]Y. Liu, Y. He, R. Ma, M. Gao, H. Pan. Improved lithium storage properties of Mg2Si anode material synthesized by hydrogen-driven chemical reaction. Electrochem. Commun.,2012, 25(0):15-18.
    [177]Y. Chen, J. Qian, Y. Cao, H. Yang, X. Ai. Green Synthesis and Stable Li-Storage Performance of FeSi2/Si@C Nanocomposite for Lithium-Ion Batteries. ACS Appl. Mater. Inter.,2012,4(7): 3753-3758.
    [178]Z. Wang, W.H. Tian, X.H. Liu, F.H. Liao, Y. Liu, X.G. Li. Synthesis and electrochemical study of Si-Ni nanoparticles by hydrogen plasma-metal reaction. Ch. J. In. Chem.,2006,22(4): 661-665.
    [179]W.R. Liu, N.L. Wu, D.T. Shieh, H.C. Wu, M.H. Yang, C. Korepp, J.O. Besenhard, M. Winter. Synthesis and characterization of nanoporous NiSi-Si composite anode for lithium-ion batteries. J. Electrochem. Soc.,2007,154(2):A97-A102.
    [180]H. Kim, D. Im, S.G. Doo. Electrochemical properties of Ni-based inert phases incorporated Si/graphite composite anode. J. Power Sources,2007,174(2):588-591.
    [181]T. Kim, S. Park, S.M. Oh. Preparation of core-shell Si/NiSi2/carbon composite and its application to lithium secondary batteries. Electrochem. Commun.,2006,8(9):1461-1467.
    [182]P.J. Zuo, G.P. Yin, X.F. Hao, Z.L. Yang, Y.L. Ma, Z.G. Gao. Synthesis and electrochemical performance of Si/Cu and Si/Cu/graphite composite anode. Mater. Chem. Phys.,2007,104(2-3): 444-447.
    [183]Y. NuLi, B.F. Wang, J. Yang, X.X. Yuan, Z.F. Ma. Cu5Si-Si/C composites for lithium-ion battery anodes. J. Power Sources,2006,153(2):371-374.
    [184]S. Yoon, S.I. Lee, H. Kim, H.J. Sohn. Enhancement of capacity of carbon-coated Si-Cu3Si composite anode using metal-organic compound for lithium-ion batteries. J. Power Sources, 2006,161(2):1319-1323.
    [185]Y. Kwon, J. Cho. High capacity carbon-coated Si70Sn30 nanoalloys for lithium battery anode material. Chem. Commun.,2008,9(1):1109-1111.
    [186]J.R. Dahn, R.E. Mar, M.D. Fleischauer, M.N. Obrovac. The impact of the addition of rare earth elements to Sil-xSnx negative electrode materials for Li-ion batteries. J. Electrochem. Soc., 2006,153(6):A1211-A1220.
    [187]J.S. Zhao, L. Wang, X.M. He, C.R. Wan, C.Y. Jiang. A Si-SnSb/pyrolytic PAN composite anode for lithium-ion batteries. Electrochim. Acta,2008,53(24):7048-7053.
    [188]I. Kim, P.N. Kumta, G.E. Blomgren. Si/TiN nanocomposites-Novel anode materials for Li-ion batteries. Electrochem. Solid-State Lett.,2000,3(11):493-496.
    [189]Z.Y. Zeng, J.P. Tu, X.H. Huang, X.L. Wang, X.B. Zhao, K.F. Li. Electrochemical properties of a mesoporous Si/TiO2 nanocomposite film anode for lithium-ion batteries. Electrochem. Solid-State Lett.,2008,11(6):A105-A107.
    [190]D.Q. Shi, J.P. Tu, Y.F. Yuan, H.M. Wu, Y. Li, X.B. Zhao. Preparation and electrochemical properties of mesoporous Si/ZrO2 nanocomposite film as anode material for lithium ion battery. Electrochem. Commun.,2006,8(10):1610-1614.
    [191]Z.Y. Zeng, J.P. Tu, X.L. Wang, X.B. Zhao. Electrochemical properties of Si/LiTi2O2 nanocomposite as anode materials for Li-ion secondary batteries. J. Electroanal. Chem.,2008, 616(1-2):7-13.
    [192]Z.Y. Zeng, J.P. Tu, X.H. Huang, X.L. Wang, J.Y. Xiang. Electrochemical investigation on silicon/titanium carbide nanocomposite film anode for Li-ion batteries. Thin Solid Films,2009, 517(17):4767-4771.
    [193]S.E. Park, B.E. Kim, S.W. Lee, J.K. Lee. Employment of encapsulated Si with mesoporous TiO2 layer as anode material for lithium secondary batteries. T. Nonferr. Met. Soc. Ch.,2009, 19(4):1023-1026.
    [194]M.Q. Li, M.Z. Qu, X.Y. He, Z.L. Yu. Electrochemical properties of Li2ZrO3-coated silicon/graphite/carbon composite as anode material for lithium ion batteries. J. Power Sources, 2009,188(2):546-551.
    [195]Z.W. Lu, G. Wang, X.P. Gao, X.J. Liu, J.Q. Wang. Electrochemical performance of Si-CeMgi2 composites as anode materials for Li-ion batteries. J. Power Sources,2009,189(1):832-836.
    [196]T. Iida, T. Hirono, N. Shibamura, H. Sakaguchi. Mg2Ge/Si composite electrodes prepared by gas-deposition as anodes for lithium rechargeable battery. Electrochem.,2008,76(9):644-648.
    [197]Y.S. Wu, Y.H. Lee, Y.L. Tsai. The improvement on capacity retention of silicon/graphite composites with TiN additive as anode materials for Li-ion battery. J. Mater. Process. Tech., 2008,208(1-3):35-41.
    [198]X. Chen, X. Li, F. Ding, W. Xu, J. Xiao, Y. Cao, P. Meduri, J. Liu, G.L. Graff, J.-G. Zhang. Conductive Rigid Skeleton Supported Silicon as High-Performance Li-Ion Battery Anodes. Nano Lett.,2012,12(8):4124-4130.
    [199]M. Holzapfel, H. Buqa, L.J. Hardwick, M. Hahn, A. Wursig, W. Scheifele, P. Novak, R. Kotz, C. Veit, F.M. Petrat. Nano silicon for lithium-ion batteries. Electrochim. Acta,2006,52(3): 973-978.
    [200]T. Kim, S. Park, S.M. Oh. Solid-state NMR and electrochemical dilatometry study on Li+ uptake/extraction mechanism in SiO electrode. J. Electrochem. Soc.,2007,154(12): A1112-A1117.
    [201]Y. Nagao, H. Sakaguchi, H. Honda, T. Fukunaga, T. Esaka. Structural analysis of pure and electrochemically lithiated SiO using neutron elastic scattering. J. Electrochem. Soc.,2004, 151(10):A1572-A1575.
    [202]K. Schulmeister, W. Mader. TEM investigation on the structure of amorphous silicon monoxide. J. Non-Cryst. Solids,2003,320(1-3):143-150.
    [203]M. Miyachi, H. Yamamoto, H. Kawai, T. Ohta, M. Shirakata. Analysis of SiO anodes for lithium-ion batteries. J. Electrochem. Soc.,2005,152(10):A2089-A2091.
    [204]Y. Yamada, Y. Iriyama, T. Abe, Z. Ogumi. Kinetics of Electrochemical Insertion and Extraction of Lithium Ion at SiO. J. Electrochem. Soc.,2010,157(1):A26-A30.
    [205]W.R. Liu, Y.C. Yen, H.C. Wu, M. Winter, N.L. Wu. Nano-porous SiO/carbon composite anode for lithium-ion batteries. J. Appl. Electrochem.,2009,39(9):1643-1649.
    [206]S. II Won, K. Ki Tae, Y. Woo Young. Electrochemical behavior of a lithium-pre-doped carbon-coated silicon monoxide anode cell. J. Power Sources,2009,189(1):511-514.
    [207]A. Veluchamy, C.H. Doh, D.H. Kim, J.H. Lee, D.J. Lee, Y.H. Ha, H.M. Shin, B.S. Jin, H.S. Kim, S.I. Moon, C.W. Park. Improvement of cycle behaviour of SiO/C anode composite by thermochemically generated Li4Si04 inert phase for lithium batteries. J. Power Sources,2009, 188(2):574-577.
    [208]S. Park, J. Lee, N.-S. Choi. Highly stable Si-based multicomponent anodes for practical use in lithium-ion batteries. Energy Environ. Sci.,2012,5(7):7878-7882.
    [209]T. Zhang, J. Gao, H.P. Zhang, L.C. Yang, Y.P. Wu, H.Q. Wu. Preparation and electrochemical properties of core-shell Si/SiO nanocomposite as anode material for lithium ion batteries. Electrochem. Commun.,2007,9(5):886-890.
    [210]Y.R. Ren, M.Z. Qu, Z.L. Yu. SiO/CNTs:A new anode composition for lithium-ion battery. Sci. Ch. B-Chem,2009,52(12):2047-2050.
    [211]X.Y. Wang, Z.Y. Wen, Y. Liu, X.G. Xu., J. Lin. Preparation and characterization of a new nanosized silicon-nickel-graphite composite as anode material for lithium ion batteries. J. Power Sources,2009:121-126.
    [212]J.H. Kim, H.J. Sohn, H. Kim, G. Jeong, W. Choi. Enhanced cycle performance of SiO-C composite anode for lithium-ion batteries. J. Power Sources,2007,170(2):456-459.
    [213]X.L. Yang, Z.Y. Wen, X.X. Xu, B. Lin, S.H. Huang. Nanosized silicon-based composite derived by in situ mechanochemical reduction for lithium ion batteries. J. Power Sources,2007,164(2): 880-884.
    [214]Y. Liu, Z.Y. Wen, X.Y. Wang, X.L. Yang, A. Hirano, N. Imanishi, Y. Takeda. Improvement of cycling stability of Si anode by mechanochemcial reduction and carbon coating. J. Power Sources,2009,189(1):480-484.
    [215]X.Y. Wang, Z.Y. Wen, Y. Liu, X.W. Wu. A novel composite containing nanosized silicon and tin as anode material for lithium ion batteries. Electrochim. Acta,2009,54(20):4662-4667.
    [216]J. Zhang, L.B. Chen, C.C. Li, T.H. Wang. Amorphous SnO2-SiO2 thin films with reticular porous morphology for lithium-ion batteries. Appl. Phy. Lett.,2008,93(26).
    [217]Q. Sun, B. Zhang, Z.W. Fu. Lithium Electrochem. of SiO2 thin film electrode for lithium-ion batteries. Appl. Sur. Sci.,2008,254(13):3774-3779.
    [218]B.K. Guo, J. Shu, Z.X. Wang, H. Yang, L.H. Shi, Y.N. Liu, L.Q. Chen. Electrochemical reduction of nano-SiO2 in hard carbon as anode material for lithium ion batteries. Electrochem. Commun.,2008,10(12):1876-1878.
    [219]W.-S. Chang, C.-M. Park, J.-H. Kim, Y.-U. Kim, G. Jeong, H.-J. Sohn. Quartz (SiO2):a new energy storage anode material for Li-ion batteries. Energy Environ. Sci.,2012,5(5):6895-6899.
    [220]S. Sim, P. Oh, S. Park, J. Cho. Critical Thickness of SiO2 Coating Layer on Core@Shell Bulk@Nanowire Si Anode Materials for Li-Ion Batteries. Adv. Mater.,2013,25(32): 4498-4503.
    [221]H. Wu, G. Chan, J.W. Choi, I. Ryu, Y. Yao, M.T. McDowell, S.W. Lee, A. Jackson, Y. Yang, L. Hu, Y. Cui. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nano,2012,7:310-315.
    [222]G. Liu, S. Xun, N. Vukmirovic, X. Song, P. Olalde-Velasco, H. Zheng, V.S. Battaglia, L. Wang, W. Yang. Polymers with Tailored Electronic Structure for High Capacity Lithium Battery Electrodes. Adv. Mater.,2011,23(40):4679-4683.
    [223]B. Koo, H. Kim, Y. Cho, K.T. Lee, N.-S. Choi, J. Cho. A Highly Cross-Linked Polymeric Binder for High-Performance Silicon Negative Electrodes in Lithium Ion Batteries. Angew. Chem. Int. Ed.,2012,51(39):8762-8767.
    [224]I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev, R. Burtovyy, I. Luzinov, G. Yushin. A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries. Science,2011, 334(6052):75-79.
    [225]M. Ge, J. Rong, X. Fang, C. Zhou. Porous Doped Silicon Nanowires for Lithium Ion Battery Anode with Long Cycle Life. Nano Lett.,2012,12(5):2318-2323.
    [226]B. Liu, P. Soares, C. Checkles, Y. Zhao, G. Yu. Three-Dimensional Hierarchical Ternary Nanostructures for High-Performance Li-Ion Battery Anodes. Nano Lett.,2013,13(7): 3414-3419.
    [227]Y.-M. Lin, K.C. Klavetter, P.R. Abel, N.C. Davy, J.L. Snider, A. Heller, C.B. Mullins. High Performance Silicon Nanoparticle Anode in Fluoroethylene Carbonate-Based Electrolyte for Li-ion Batteries. Chem. Commun.,2012,48:7268-7270.
    [228]A.M. Chockla, K.C. Klavetter, C.B. Mullins, B.A. Korgel. Tin-Seeded Silicon Nanowires for High Capacity Li-Ion Batteries. Chemi. Mater.,2012,24(19):3738-3745.
    [229]M. Gauthier, D. Mazouzi, D. Reyter, B. Lestriez, P. Moreau, D. Guyomard, L. Roue. A low-cost and high performance ball milled Si-based negative electrode for high energy Li-ion batteries. Energy Environ. Sci.,2013,6(2013):2145-2155.
    [230]J. Yu, H. Zhan, Y. Wang, Z. Zhang, H. Chen, H. Li, Z. Zhong, F. Su. Graphite microspheres decorated with Si particles derived from waste solid of organosilane industry as high capacity anodes for Li-ion batteries. J. Power Sources,2013,228(0):112-119.
    [231]J. shu, R. Ma, M. Shui, Y. Wang, N. Long, D. Wang, Y. Ren, R. Zhang, W. Zheng, S. Gao. Facile Fabrication of Conducting Hollow Carbon Nanofibers/Si Composites for Copper Phthalocyanine-Based Field Effect Transistors and High Performance Lithium-Ion Batteries. RSC Adv.,2012,2(22):8323-8331.
    [232]Y. Hwa, C.-M. Park, H.-J. Sohn. Modified SiO as a high performance anode for Li-ion batteries. J. Power Sources,2013,222(0):129-134.
    [233]X. Feng, J. Yang, Q. Lu, J. Wang, Y. NuLi. Facile approach to SiOx/Si/C composite anode material from bulk SiO for lithium ion batteries. Phy. Chem. Chem. Phy.,2013,15(34): 14420-14426.
    [234]J. Wang, Y. Tong, Z. Xu, W. Li, P. Yan, Y.-W. Chung. Amorphous silicon/carbon multilayer thin films as the anode for high rate rechargeable Li-ion batteries. Mater. Lett.,2013,97 (1):37-39.
    [235]S. Ohara, J. Suzuki, K. Sekine, T. Takamura. Li insertion/extraction reaction at a Si film evaporated on a Ni foil. J. Power Sources,2003,119(1):591-596.
    [236]S. Murugesan, J.T. Harris, B.A. Korgel, K.J. Stevenson. Copper-Coated Amorphous Silicon Particles as an Anode Material for Lithium-Ion Batteries. C. Mater.,2012,24(7):1306-1315.
    [237]Z. Zhang, M. Zhang, Y. Wang, Q. Tan, X. Lv, Z. Zhong, H. Li, F. Su. Amorphous silicon-carbon nanospheres synthesized by chemical vapor deposition using cheap methyltrichlorosilane as improved anode materials for Li-ion batteries. Nanoscale,2013,5(12): 5384-5389.
    [238]G.B. Cho, S.Y. Choi, J.P. Noh, Y.M. Jeon, K.T. Jung, T.H. Nam. Dependence of Milling Time on Electrochemical Properties of Nano Si Electrodes Prepared by Ball-Milling. J. Nanosci. Nanotech.,2011,11(7):6262-6265.
    [239]Y. Yang, J.G. Ren, X. Wang, Y.S. Chui, Q.H. Wu, X.F. Chen, W.J. Zhang. Graphene encapsulated and SiC reinforced silicon nanowires as an anode material for lithium ion batteries. Nanoscale,2013,5(18):8689-8694.
    [240]S.B. Son, S.C. Kim, C.S. Kang, T.A. Yersak, Y.-C. Kim, C.-G. Lee, S.-H. Moon, J.S. Cho, J.-T. Moon, K.H. Oh, S.-H. Lee. A Highly Reversible Nano-Si Anode Enabled by Mechanical Confinement in an Electrochemically Activated LixTi4Ni4Si7 Matrix. Adv. Energy Mater., 2012,2(10):1226-1231.
    [241]H. Jung, Y.-U. Kim, M.-S. Sung, Y. Hwa, G. Jeong, G.-B. Kim, H.-J. Sohn. Nanosize Si anode embedded in super-elastic nitinol (Ni-Ti) shape memory alloy matrix for Li rechargeable batteries. J. Mater. Chem.,2011,21:11213-11216.
    [242]K.A. Perrine, J.-M. Lin, A.V. Teplyakov. Controlling the Formation of Metallic Nanoparticles on Functionalized Silicon Surfaces. J. Phy. Chem. C.,2012,116(27):14431-14444.
    [243]F. Dai, R. Yi, M.L. Gordin, S. Chen, D. Wang. Amorphous Si/SiOx/SiO2 nanocomposites via facile scalable synthesis as anode materials for Li-ion batteries with long cycling life. RSC Adv., 2012,2(33):12710-12713.
    [244]V. Chirvon y, A. Chyrvonaya, J. Ovejero, E. Matveeva, B. Goller, D. Kovalev, A. Huygens, P. de Witte. Surfactant-Modified Hydrophilic Nanostructured Porous Silicon for the Photosensitized Formation of Singlet Oxygen in Water. Adv. Mater.,2007,19(19):2967-2972.
    [245]B.-C. Yu, Y. Hwa, C.-M. Park, H.-J. Sohn. Reaction mechanism and enhancement of cyclability of SiO anodes by surface etching with NaOH for Li-ion batteries. J. Mater. Chem. A,2013, 1(15):4820-4825.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700