若干金属纳米多层膜界面结构及力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,新型功能材料及器件向小型化,集成化和复合化发展的趋势,使得尺寸在纳米尺度的层状材料和柔性多层器件在使用过程中的服役行为成为其发展的关键科学问题。本文采用超高真空电子束蒸发镀膜工艺制备了fcc/fcc体系Cu/Ni和Cu/Co纳米多层膜及fcc/bcc体系Cu/Nb和Ag/Fe纳米多层膜,研究了纳米多层膜力学性能与其微结构,尤其是界面结构之间的关系,探讨了纳米多层膜在不同尺度范围的塑性变形机制。
     研究结果表明,具有完全共格界面的Cu/Ni和Cu/Co纳米多层膜的强度值与其共格界面上的共格应力相等,在实验上证实了共格应力是决定fcc/fcc超晶格结构纳米多层膜强度最大值的关键因素。Cu/Nb纳米多层膜的强度最大值为3.27GPa,是Cu/Nb纳米多层膜强度平均值的2.1倍,表现出很大的强化效应。此外,变加载应变率硬度实验证明Cu/Nb纳米多层膜的超高强度与大的应变硬化有关。论文中所研究的金属纳米多层膜的强度(或硬度)在周期变化范围内均随周期的减小而增大,表现出强化效应。Cu/Ni、Cu/Co和Cu/Nb纳米多层膜在大周期时的塑性变形机制为单个位错在层内滑移机制;在小周期时,塑性变形机制转变为位错穿越界面机制。Ag/Fe纳米多层膜的硬度随周期的变化符合类Hall-Petch关系。
     论文中所研究的金属纳米多层膜的弹性模量在周期变化范围内均超过了弹性模量平均值,表现出弹性模量增强。Cu/Nb纳米多层膜的弹性模量比弹性模量平均值最大增加38%,不对称的界面结构是导致Cu/Nb纳米多层膜出现异常弹性模量增大的主要原因。对fcc/fcc超晶格结构Cu/Ni和Cu/Co纳米多层膜来说,弹性模量增强与半共格界面的界面压应力以及共格界面的共格应力相关。界面压应力是Ag/Fe纳米多层膜的弹性模量在小周期增大的主要原因。
     本论文所研究的金属纳米多层膜的室温蠕变机制都是位错滑移-攀移机制。非共格界面为位错的攀移运动提供了有效的扩散通道,Cu/Nb和Ag/Fe多层膜的蠕变抗力随周期减小而减小。相反,共格界面的形成不利于位错的攀移运动,Cu/Ni和Cu/Co多层膜的蠕变抗力随周期减小而增大。提出的基于位错在半共格界面上增殖和回复的动态平衡位错模型能合理地解释在大周期具有半共格界面的Cu/Ni和Cu/Co纳米多层膜的稳态室温蠕变过程。
Recently, the tendency of new functional materials and devices to being miniature, integrated and laminated makes the mechanical behavior of those materials in nano scale a key scientific issue for the development of the multilayers and devices. In the dissertation, the fcc/fcc system of Cu/Ni and Cu/Co multilayers and fcc/bcc system of Cu/Nb and Ag/Fe multilayers were prepared via electron beam evaporation deposition in high cacuum and the relationship between mechanical properties and microstructure, specially for the detailed structure of the interfaces, are discussed, and the plastic deformation mechanism in different length-scale regime is explored.
     The results show that for fcc/fcc Cu/Ni and Cu/Co metallic multilayers with fully coherent interfaces, the peak strength equals to coherent stress. It verifies in experiment that the peak strength that can be achieved in fcc/fcc superlattice is mainly determined by conherent stress. The peak strength of the fcc/bcc Cu/Nb metallic multilayers is 3.27GPa, which is consistent with the theoretical value predicted by atomic modeling based on dislocation transmission through interfaces. Meanwhile, varying loading strain rate hardness measurement confirms that the ultrahigh strength of nanoscale Cu/Nb multilayers is partly due to large strain strengthening.
     The strength (or hardness) of all the investigated multilayers increases with decreasing periodicity. For Cu/Ni, Cu/Co and Cu/Nb multilayers, the plastic deformation follows the confined layer slip model at large periodicity, while it changes to the mechanism of dislocation transmission through interfaces at small periodicity. For Ag/Fe multilayers, the variation in hardness with decreasing periodicity obeys the Hall-Petch-like relationship.
     There is modulus enhancement of all the investigated multilayers compared with the rule of mixing value. For Cu/Nb multilayers, solid solution of Cu in Nb interfaces caused by asymmetrical growth dynamics leads to 38% modulus enhancement. For fcc/fcc superlattice of Cu/Ni and Cu/Co multilayers, the modulus enhancement is related to compressive interface stress in semi-coherent interfaces or coherent stress in coherent interfaces. While for fcc/bcc Ag/Fe multilayers, the slight modulus enhancement at small periodicity is ascribed to compressive interface stress.
     The creep process of all the investigated multilayers is dominated by dislocation glide-climb mechanism. For fcc/bcc Cu/Nb and Ag/Fe multilayers, the incoherent interfaces can provide effective climb diffusion paths and thus the creep resistance decreases with decreasing periodicity. On the other hand, the formation of coherent interfaces is disadvantageous to the dislocation climb process and creep resistance of Cu/Ni and Cu/Co multilayers increases with decreasing periodicity. A dislocation model based on dislocation generation and annihilation at semi-coherent interfaces is presented to predict the steady-state deformation of Cu/Ni and Cu/Co multilayers with large periodicity and model predictons agree well with experimental observation.
引文
[1]朱静. ZnO纳米线杨氏模量尺寸效应研究.中国基础科学, 2007, 2: 9-9.
    [2]许俊华,顾明元,李戈扬.纳米多层膜力学性能研究进展.宇航材料工艺, 1999, (03): 9-13+56.
    [3] Misra A, Kung H, Embury J D. Preface to the viewpoint set on: deformation and stability of nanoscale metallic multilayers. Scripta Materialia, 2004, 50(6): 707-710.
    [4] Sanders P G, Eastman J A, Weertman J R. Elastic and tensile behavior of nanocrystalline copper and palladium. Acta Materialia, 1997, 45(10): 4019-4025.
    [5] Chokshi A H, Rosen A, Karch J, et al. On the Validity of the Hall-Petch Relationship in Nanocrystalline Materials. Scripta Metallurgica, 1989, 23(10): 1679-1683.
    [6] Sanders P G, Fougere G E, Thompson L J, et al. Improvements in the synthesis and compaction of nanocrystalline materials. Nanostructured Materials, 1997, 8(3): 243-252.
    [7] Schuh C A, Nieh T G, Iwasaki H. The effect of solid solution W additions on the mechanical properties of nanocrystalline Ni. Acta Materialia, 2003, 51(2): 431-443.
    [8] Meyers M A, Mishra A, Benson D J. Mechanical properties of nanocrystalline materials. Progress in Materials Science, 2006, 51(4): 427-556.
    [9] Conrad H, Narayan J. On the grain size softening in nanocrystalline materials. Scripta Materialia, 2000, 42(11): 1025-1030.
    [10] Kim H S, Estrin Y, Bush M B. Plastic deformation behaviour of fine-grained materials. Acta Materialia, 2000, 48(2): 493-504.
    [11] Meyers M A, Benson D J, Fu H H. Grain-size-yield stress relationship: Analysis and computation. Advanced Materials for the 21st Century: The 1999 Julia R Weertman Symposium, 1999: 499-512.
    [12] Andrade U, Meyers M A, Vecchio K S, et al. Dynamic Recrystallization in High-Strain, High-Strain-Rate Plastic-Deformation of Copper. Acta Metallurgica Et Materialia, 1994, 42(9): 3183-3195.
    [13] Fu H H, Benson D J, Meyers M A. Analytical and computational description of effect of grain size on yield stress of metals. Acta Materialia, 2001, 49(13): 2567-2582.
    [14] Meyers M A, Ashworth E. A Model for the Effect of Grain-Size on the Yield Stress of Metals. Philosophical Magazine a-Physics of Condensed Matter Structure Defects and Mechanical Properties, 1982, 46(5): 737-759.
    [15] Koch C C, Morris D G, Lu K, et al. Ductility of nanostructured materials. Mrs Bulletin, 1999, 24(2): 54-58.
    [16] Koch C C. Optimization of strength and ductility in nanocrystalline and ultrafine grained metals. Scripta Materialia, 2003, 49(7): 657-662.
    [17] Koch C C, Scattergood R O. Grain size distribution and mechanical properties of nanostructure materials. Processing and Properties of Structural Nanomaterials, 2003: 45-52.
    [18]姚可夫,翟桂东.纳米晶材料的力学性能与研究进展.机械工程材料, 2004, (01): 26-28+37.
    [19] Cammarata R C, Sieradzki K. Surface and Interface Stresses. Annual Review of Materials Science, 1994, 24: 215-234.
    [20] Cammarata R C, Sieradzki K. Effects of Surface Stress on the Elastic-Moduli of Thin-Films and Superlattices. Physical Review Letters, 1989, 62(17): 2005-2008.
    [21] Nix W D, Gao H J. Indentation size effects in crystalline materials: A law for strain gradient plasticity. Journal of the Mechanics and Physics of Solids, 1998, 46(3): 411-425.
    [22] Schiotz J, Di Tolla F D, Jacobsen K W. Softening of nanocrystalline metals at very small grain sizes. Nature, 1998, 391(6667): 561-563.
    [23] Gurtin M E, Weissmuller J, Larche F. A general theory of curved deformable interfaces in solids at equilibrium. Philosophical Magazine a-Physics of Condensed Matter Structure Defects and Mechanical Properties, 1998, 78(5): 1093-1109.
    [24] Sharma P, Ganti S. Interfacial elasticity corrections to size-dependent strain-state of embedded quantum dots. Physica Status Solidi B-Basic Research, 2002, 234(3): R10-R12.
    [25] Lim C W, Li Z R, He L H. Size dependent, non-uniform elastic field inside a nano-scale spherical inclusion due to interface stress. International Journal of Solids and Structures, 2006, 43(17): 5055-5065.
    [26] Zhu L L, Zheng X J. Influence of interface energy and grain boundary on the elastic modulus of nanocrystalline materials. Acta Mechanica, 2010, 213(3-4): 223-234.
    [27] Courtney T H. Mechanical Behavior of Materials. Beijing: China Machine Press, 2004.
    [28] Wang D L, Kong Q P, Shui J P. Creep of Nanocrystalline Ni-P Alloy. Scripta Metallurgica Et Materialia, 1994, 31(1): 47-51.
    [29] Deng J, Wang D L, Kong Q P, et al. Stress Dependence of Creep in Nanocrystalline Ni-P Alloy. Scripta Metallurgica Et Materialia, 1995, 32(3): 349-352.
    [30] Nieman G W, Weertman J R, Siegel R W. Tensile-Strength and Creep-Properties of Nanocrystalline Palladium. Scripta Metallurgica Et Materialia, 1990, 24(1): 145-150.
    [31] Hahn H, Averback R S. Low-Temperature Creep of Nanocrystalline Titanium(Iv) Oxide. Journal of the American Ceramic Society, 1991, 74(11): 2918-2921.
    [32] Sanders P G, Rittner M, Kiedaisch E, et al. Creep of nanocrystalline Cu, Pd, and Al-Zr. Nanostructured Materials, 1997, 9(1-8): 433-440.
    [33] Grabovetskaya G P, Ivanov K V, Kolobov Y R. Creep features of nanostructured materials produced by severe plastic deformation. Annales De Chimie-Science Des Materiaux, 2002, 27(3): 89-98.
    [34] Ma Z S, Long S G, Zhou Y C, et al. Indentation scale dependence of tip-in creep behavior in Ni thin films. Scripta Materialia, 2008, 59(2): 195-198.
    [35] Cao Z H, Li P Y, Meng X K. Nanoindentation creep behaviors of amorphous, tetragonal, and bcc Ta films. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2009, 516(1-2): 253-258.
    [36] Blum W, Zeng X H. A simple dislocation model of deformation resistance of ultrafine-grained materials explaining Hall-Petch strengthening and enhanced strain rate sensitivity. Acta Materialia, 2009, 57(6): 1966-1974.
    [37] Urazhdin S, Loloee R, Pratt W P. Spin transport at interfaces in magnetic multilayers. Journal of Applied Physics, 2006, 99(8): 08G504.
    [38] Zhang S, Sun D, Fu Y Q, et al. Recent advances of superhard nanocomposite coatings: a review. Surface & Coatings Technology, 2003, 167(2-3): 113-119.
    [39]文胜平.若干金属多层膜的微结构及力学性能研究:[博士学位论文].北京:清华大学, 2007.
    [40] Yang W M C, Tsakalakos T, Hilliard J E. Enhanced Elastic-Modulus in Composition-Modulated Gold-Nickel and Copper-Palladium Foils. Journal of Applied Physics, 1977, 48(3): 876-879.
    [41] Henein G E, Hilliard J E. Elastic-Modulus in Composition-Modulated Silver-Palladium and Copper-Gold Foils. Journal of Applied Physics, 1983, 54(2): 728-733.
    [42] Tsakalakos T, Hilliard J E. Elastic-Modulus in Composition-Modulated Copper-Nickel Foils. Journal of Applied Physics, 1983, 54(2): 734-737.
    [43] Markworth A J, Saunders J H. A Model of Structure Optimization for a Functionally Graded Material. Materials Letters, 1995, 22(1-2): 103-107.
    [44] Wang N, Wang Z R, Aust K T, et al. Effect of Grain-Size on Mechanical-Properties of Nanocrystalline Materials. Acta Metallurgica Et Materialia, 1995, 43(2): 519-528.
    [45] Xu J H, Kamiko M, Sawada H, et al. Structure, hardness, and elastic modulus of Pd/Ti nanostructured multilayer films. Journal of Vacuum Science & Technology B, 2003, 21(6): 2584-2589.
    [46] Xu J H, Kamiko M, Zhou Y M, et al. Structure transformations and superhardness effects in V/Ti nanostructured multilayers. Applied Physics Letters, 2002, 81(7): 1189-1191.
    [47] Hultman L, Engstrom C, Oden M. Mechanical and thermal stability of TiN/NbN superlattice thin films. Surface & Coatings Technology, 2000, 133: 227-233.
    [48] Schweitz K O, Chevallier J, Bottiger J, et al. Hardness in Ag/Ni, Au/Ni and Cu/Ni multilayers. Philosophical Magazine a-Physics of Condensed Matter Structure Defects and Mechanical Properties, 2001, 81(8): 2021-2032.
    [49] Li G Y, Xu J H, Zhang L Q, et al. Growth, microstructure, and microhardness of W/Mo nanostructured multilayers. Journal of Vacuum Science & Technology B, 2001, 19(1): 94-97.
    [50] Ben Daia M, Aubert P, Labdi S, et al. Nanoindentation investigation of Ti/TiN multilayers films. Journal of Applied Physics, 2000, 87(11): 7753-7757.
    [51] Lai W S, Yang M J. Observation of largely enhanced hardness in nanomultilayers of the Ag-Nb system with positive enthalpy of formation. Applied Physics Letters, 2007, 90(18): 181917.
    [52] Daniels B J, Nix W D, Clemens B M. Effect of Coherency Stresses on the Hardness of Epitaxial Fe(001)/Pt(001) Multilayers. Applied Physics Letters, 1995, 66(22): 2969-2971.
    [53] Geisler H, Schweitz K O, Chevallier J, et al. Hardness enhancement and elastic modulus behaviour in sputtered Ag/Ni multilayers with different modulation wavelengths. Philosophical Magazine a-Physics of Condensed Matter Structure Defects and Mechanical Properties, 1999, 79(2): 485-500.
    [54] Misra A, Hirth J P, Hoagland R G. Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Materialia, 2005, 53(18): 4817-4824.
    [55] Ashby M F. Criteria for Selecting the Components of Composites. Acta Metallurgica Et Materialia, 1993, 41(5): 1313-1335.
    [56] Pickett W E. Relationship between the Electronic-Structure of Coherent Composition Modulated Alloys and the Supermodulus Effect. Journal of Physics F-Metal Physics, 1982, 12(10): 2195-2204.
    [57] Jankowski A F, Tsakalakos T. The Effect of Strain on the Elastic-Constants of Noble-Metals. Journal of Physics F-Metal Physics, 1985, 15(6): 1279-1292.
    [58] Spaepen F. Interfaces and stresses in thin films. Acta Materialia, 2000, 48(1): 31-42.
    [59] Cammarata R C, Sieradzki K, Spaepen F. Simple model for interface stresses with application to misfit dislocation generation in epitaxial thin films. Journal of Applied Physics, 2000, 87(3): 1227-1234.
    [60] Clemens B M, Eesley G L. Relationship between Interfacial Strain and the Elastic Response of Multilayer Metal-Films. Physical Review Letters, 1988, 61(20): 2356-2359.
    [61] Harms U, Schwarz R B. Anomalous modulus and work function at the interfaces of thin films. Physical Review B, 2002, 65(8): 085409.
    [62] Wen S P, Zong R L, Zeng F, et al. Evaluating modulus and hardness enhancement in evaporated Cu/W multilayers. Acta Materialia, 2007, 55(1): 345-351.
    [63] Lewis A C, van Heerden D, Eberl C, et al. Creep deformation mechanisms in fine-grained niobium. Acta Materialia, 2008, 56(13): 3044-3052.
    [64] Kang B C, Kim H Y, Kwon O Y, et al. Bilayer thickness effects on nanoindentation behavior of Ag/Ni multilayers. Scripta Materialia, 2007, 57(8): 703-706.
    [65] Wen S P, Zeng F, Gao Y, et al. Indentation creep behavior of nano-scale Ag/Co multilayers. Scripta Materialia, 2006, 55(2): 187-190.
    [66] Misra A, Kung H. Deformation behavior of nanostructured metallic multilayers. Advanced Engineering Materials, 2001, 3(4): 217-222.
    [67] Misra A, Hirth J P, Kung H. Single-dislocation-based strengthening mechanisms in nanoscale metallic multilayers. Philosophical Magazine a-Physics of Condensed Matter Structure Defects and Mechanical Properties, 2002, 82(16): 2935-2951.
    [68] Shinn M, Hultman L, Barnett S A. Growth, Structure, and Microhardness of Epitaxial Tin/Nbn Superlattices. Journal of Materials Research, 1992, 7(4): 901-911.
    [69] Wang W C, Singh R N. Influence of the microstructure on the mechanical properties of Ni/Sn multilayered composites. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 1999, 271(1-2): 306-314.
    [70] Wang J, Li W Z, Li H D, et al. Nano-indentation study on the mechanical properties of TiC/Mo multilayers deposited by ion beam assisted deposition. Surface & Coatings Technology, 2000, 128: 161-165.
    [71] Farhat Z N, Ding Y, Northwood D O, et al. Nanoindentation and friction studies on Ti-based nanolaminated films. Surface & Coatings Technology, 1997, 89(1-2): 24-30.
    [72] Misra A, Verdier M, Lu Y C, et al. Structure and mechanical properties of Cu-X (X = Nb,Cr,Ni) nanolayered composites. Scripta Materialia, 1998, 39(4-5): 555-560.
    [73] McKeown J, Misra A, Kung H, et al. Microstructures and strength of nanoscale Cu-Ag multilayers. Scripta Materialia, 2002, 46(8): 593-598.
    [74] Koehler J S. Attempt to Design a Strong Solid. Physical Review B, 1970, 2(2): 547-551.
    [75] Lehoczky S L. Retardation of Dislocation Generation and Motion in Thin-Layered Metal Laminates. Physical Review Letters, 1978, 41(26): 1814-1818.
    [76] Lehoczky S L. Strength Enhancement in Thin-Layered Al-Cu Laminates. Journal of Applied Physics, 1978, 49(11): 5479-5485.
    [77] Hoagland R G, Kurtz R J, Henager C H. Slip resistance of interfaces and the strength of metallic multilayer composites. Scripta Materialia, 2004, 50(6): 775-779.
    [78] Rao S I, Hazzledine P M. Atomistic simulations of dislocation-interface interactions in the Cu-Ni multilayer system. Philosophical Magazine a-Physics of Condensed Matter Structure Defects and Mechanical Properties, 2000, 80(9): 2011-2040.
    [79] Hoagland R G, Mitchell T E, Hirth J P, et al. On the strengthening effects of interfaces in multilayer fcc metallic composites. Philosophical Magazine a-Physics of Condensed Matter Structure Defects and Mechanical Properties, 2002, 82(4): 643-664.
    [80] Nix W D. Mechanical-Properties of Thin-Films. Metallurgical Transactions a-Physical Metallurgy and Materials Science, 1989, 20(11): 2217-2245.
    [81] Zhang X, Misra A, Wang H, et al. Strengthening mechanisms in nanostructured copper/304 stainless steel multilayers. Journal of Materials Research, 2003, 18(7): 1600-1606.
    [82] Bauer E, Vandermerwe J H. Structure and Growth of Crystalline Superlattices - from Monolayer to Superlattice. Physical Review B, 1986, 33(6): 3657-3671.
    [83] Wang J, Hoagland R G, Hirth J P, et al. Atomistic simulations of the shear strength and sliding mechanisms of copper-niobium interfaces. Acta Materialia, 2008, 56(13): 3109-3119.
    [84] Wang J, Hoagland R G, Hirth J P, et al. Atomistic modeling of the interaction of glide dislocations with "weak" interfaces. Acta Materialia, 2008, 56(19): 5685-5693.
    [85] Wang J, Hoagland R G, Misra A. Room-temperature dislocation climb in metallic interfaces. Applied Physics Letters, 2009, 94(13): 131910.
    [86] Bhattacharyya D, Mara N A, Dickerson P, et al. Transmission electron microscopy study of the deformation behavior of Cu/Nb and Cu/Ni nanoscale multilayers during nanoindentation. Journal of Materials Research, 2009, 24(3): 1291-1302.
    [87] Verdier M, Fivel M, Gilles B. Some investigations on the effect of layer thickness in multilayer metal composites on mechanical properties. Advanced Engineering Materials, 2001, 3(8): 597-601.
    [88] Barshilia H C, Rajam K S. Characterization of Cu/Ni multilayer coatings by nanoindentation and atomic force microscopy. Surface & Coatings Technology, 2002, 155(2-3): 195-202.
    [89] Mara N A, Bhattacharyya D, Dickerson P, et al. Deformability of ultrahigh strength 5 nm Cu/Nb nanolayered composites. Applied Physics Letters, 2008, 92(23): 231901.
    [90] Tambwe M F, Stone D S, Griffin A J, et al. Haasen plot analysis of the Hall-Petch effect in Cu/Nb nanolayer composites. Journal of Materials Research, 1999, 14(2): 407-417.
    [91]郑伟涛.薄膜材料与薄膜技术.北京:化学工业出版社, 2004.
    [92] Schuller I K. New Class of Layered Materials. Physical Review Letters, 1980, 44(24): 1597-1600.
    [93]马德军.材料力学性能仪器化压入测试原理.北京:国防工业出版社, 2010.
    [94] International Standard. Metallic Materials-Instrumented Indentation Test for Hardness and Materials Parameters. ISO 14577: 2002.
    [95] Oliver W C, Pharr G M. An Improved Technique for Determining Hardness and Elastic-Modulus Using Load and Displacement Sensing Indentation Experiments. Journal of Materials Research, 1992, 7(6): 1564-1583.
    [96]张泰华.微/纳米力学测试技术及其应用.北京:机械工业出版社, 2004.
    [97] Pethica J B, Oliver W C. Tip Surface Interactions in Stm and Afm. Physica Scripta, 1987, T19a: 61-66.
    [98] Pharr G M, Oliver W C, Brotzen F R. On the Generality of the Relationship among Contact Stiffness, Contact Area, and Elastic-Modulus during Indentation. Journal of Materials Research, 1992, 7(3): 613-617.
    [99] Li X D, Bhushan B. A review of nanoindentation continuous stiffness measurement technique and its applications. Materials Characterization, 2002, 48(1): 11-36.
    [100]高阳,文胜平,王晓慧,等.纳米压痕法测试压痕蠕变的应用研究.航空材料学报, 2006, (03): 148-151.
    [101] Mayo M J, Nix W D. A Micro-Indentation Study of Superplasticity in Pb, Sn, and Sn-38 Wt-Percent-Pb. Acta Metallurgica, 1988, 36(8): 2183-2192.
    [102] Wu T W, Moshref M, Alexopoulos P S. The Effect of the Interfacial Strength on the Mechanical-Properties of Aluminum Films. Thin Solid Films, 1990, 187(2): 295-307.
    [103] Raman V, Berriche R. An Investigation of the Creep Processes in Tin and Aluminum Using a Depth-Sensing Indentation Technique. Journal of Materials Research, 1992, 7(3): 627-638.
    [104] Feng G, Ngan A H W. Creep and strain burst in indium and aluminium during nanoindentation. Scripta Materialia, 2001, 45(8): 971-976.
    [105] Wang F, Xu K W. An investigation of nanoindentation creep in polycrystalline Cu thin film. Materials Letters, 2004, 58(19): 2345-2349.
    [106] Lucas B N, Oliver W C. Indentation power-law creep of high-purity indium. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 1999, 30(3): 601-610.
    [107] Prakash O, Jones D R H. Creep of metal-type organic compounds-Ⅱ. Indentation creep. Acta Materialia, 1996, 44(3): 891-897.
    [108] Roumina R, Raeisinia B, Mahmudi R. Room temperature indentation creep of cast Pb-Sb alloys. Scripta Materialia, 2004, 51(6): 497-502.
    [109] Li Y P, Zhu X F, Tan J, et al. Comparative investigation of strength and plastic instability in Cu/Au and Cu/Cr multilayers by indentation. Journal of Materials Research, 2009, 24(3): 728-735.
    [110] Mahmudi R, Roumina R, Raeisinia B. Investigation of stress exponent in the power-law creep of Pb-Sb alloys. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2004, 382(1-2): 15-22.
    [111] Liu H M, Chen Y G, Tang Y B, et al. The microstructure, tensile properties, and creep behavior of as-cast Mg-(1-10)% Sn alloys. Journal of Alloys and Compounds, 2007, 440(1-2): 122-126.
    [112] Liu Y C, Teo J W R, Tung S K, et al. High-temperature creep and hardness of eutectic 80Au/20Sn solder. Journal of Alloys and Compounds, 2008, 448(1-2): 340-343.
    [113] Mahmudi R, Geranmayeh A R, Rezaee-Bazzaz A. Impression creep behavior of cast Pb-Sb alloys. Journal of Alloys and Compounds, 2007, 427(1-2): 124-129.
    [114] Mahmudi R, Rezaee-Bazzaz A, Banaie-Fard H R. Investigation of stress exponent in the room-temperature creep of Sn-40Pb-2.5Sb solder alloy. Journal of Alloys and Compounds, 2007, 429(1-2): 192-197.
    [115] Sargent P M, Ashby M F. Indentation Creep. Materials Science and Technology, 1992, 8(7): 594-601.
    [116] Poisl W H, Oliver W C, Fabes B D. The Relationship between Indentation and Uniaxial Creep in Amorphous Selenium. Journal of Materials Research, 1995, 10(8): 2024-2032.
    [117] Butera A, Klemmer T J, Minor K, et al. High coercivity in heterogeneous Co-rich CoAg very thin films. Ieee Transactions on Magnetics, 1998, 34(4): 1114-1116.
    [118] Degronckel H A M, Kopinga K, Dejonge W J M, et al. Nanostructure of Co/Cu Multilayers. Physical Review B, 1991, 44(16): 9100-9103.
    [119] Lamelas F J, Lee C H, He H, et al. Coherent Fcc Stacking in Epitaxial Co/Cu Superlattices. Physical Review B, 1989, 40(8): 5837-5840.
    [120] Saha R, Nix W D. Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Materialia, 2002, 50(1): 23-38.
    [121] Han S M, Shah R, Banerjee R, et al. Combinatorial studies of mechanical properties of Ti-Al thin films using nanoindentation. Acta Materialia, 2005, 53(7): 2059-2067.
    [122] Joslin D L, Oliver W C. A New Method for Analyzing Data from Continuous Depth-Sensing Microindentation Tests. Journal of Materials Research, 1990, 5(1): 123-126.
    [123] Huang H B, Spaepen F. Tensile testing of free-standing Cu, Ag and Al thin films and Ag/Cu multilayers. Acta Materialia, 2000, 48(12): 3261-3269.
    [124] Mara N, Sergueeva A, Misra A, et al. Structure and high-temperature mechanical behavior relationship in nano-scaled multilayered materials. Scripta Materialia, 2004, 50(6): 803-806.
    [125] Mara N A, Bhattacharyya D, Hoagland R G, et al. Tensile behavior of 40 nm Cu/Nb nanoscale multilayers. Scripta Materialia, 2008, 58(10): 874-877.
    [126] Henager C H, Kurtz R J, Hoagland R G. Interactions of dislocations with disconnections in fcc metallic nanolayered materials. Philosophical Magazine, 2004, 84(22): 2277-2303.
    [127] Cammarata R C, Bilello J C, Greer A L, et al. Stresses in multilayered thin films. Mrs Bulletin, 1999, 24(2): 34-38.
    [128] Li W B, Henshall J L, Hooper R M, et al. The Mechanisms of Indentation Creep. Acta Metallurgica Et Materialia, 1991, 39(12): 3099-3110.
    [129] Mahmudi R, Geranmayeh A R, Bakherad M, et al. Indentation creep study of lead-free Sn-5%Sb solder alloy. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2007, 457(1-2): 173-179.
    [130] Mitlin D, Misra A, Mitchell T E, et al. Interface dislocation structures at the onset of coherency loss in nanoscale Ni-Cu bilayer films. Philosophical Magazine, 2005, 85(28): 3379-3392.
    [131] Mitlin D, Misra A, Radmilovic V, et al. Formation of misfit dislocations in nanoscale Ni-Cu bilayer films. Philosophical Magazine, 2004, 84(7): 719-736.
    [132] Silveyra J M, Coisson M, Celegato F, et al. High-frequency magnetoimpedance properties in Finemet-type ribbons with a Cu-Co electrodeposited layer. Journal of Alloys and Compounds, 2010, 495(2): 412-416.
    [133] Akasheh F, Zbib H M, Hirth J P, et al. Interactions between glide dislocations and parallel interfacial dislocations in nanoscale strained layers. Journal of Applied Physics, 2007, 102(3): 034314.
    [134] Sevillano J G, Arizcorreta I O, Kubin L P. Intrinsic size effects in plasticity by dislocation glide. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2001, 309: 393-405.
    [135] Huang M, Rivera-Diaz-del-Castillo P E J, Bouaziz O, et al. Modelling the strength of ultrafine-grained and nanocrystalline fcc metals. Scripta Materialia, 2009, 61(12): 1113-1116.
    [136] Kocks U F, Mecking H. Physics and phenomenology of strain hardening: the FCC case. Progress in Materials Science, 2003, 48(3): 171-273.
    [137] Wang Y C, Misra A, Hoagland R G. Fatigue properties of nanoscale Cu/Nb multilayers. Scripta Materialia, 2006, 54(9): 1593-1598.
    [138] Misra A, Hoagland R G. Effects of elevated temperature annealing on the structure and hardness of copper/niobium nanolayered films. Journal of Materials Research, 2005, 20(8): 2046-2054.
    [139] Hattar K, Demkowicz M J, Misra A, et al. Arrest of He bubble growth in Cu-Nb multilayer nanocomposites. Scripta Materialia, 2008, 58(7): 541-544.
    [140] Hochbauer T, Misra A, Hattar K, et al. Influence of interfaces on the storage of ion-implanted He in multilayered metallic composites. Journal of Applied Physics, 2005, 98(12): 123516.
    [141] Zhang X, Li N, Anderoglu O, et al. Nanostructured Cu/Nb multilayers subjected to helium ion-irradiation. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 2007, 261(1-2): 1129-1132.
    [142] Anderson P M, Bingert J F, Misra A, et al. Rolling textures in nanoscale Cu/Nb multilayers. Acta Materialia, 2003, 51(20): 6059-6075.
    [143] Feldman C, Ordway F, Bernstein J. Distinguishing Thin-Film and Substrate Contributions in Microindentation Hardness Measurements. Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, 1990, 8(1): 117-122.
    [144]陈有兴.热处理导致的Cu/Ni多层膜扩散和微观结构结构变化:[硕士学位论文].上海:上海交通大学, 2010.
    [145] Sinclair C W, Embury J D, Weatherly G C. Basic aspects of the co-deformation of bcc/fcc materials. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 1999, 272(1): 90-98.
    [146] Fleischer R L. The strengthening of Metals. New Yord: Reinhold, 1964.
    [147] Chen J, Lu L, Lu K. Hardness and strain rate sensitivity of nanocrystalline Cu. Scripta Materialia, 2006, 54(11): 1913-1918.
    [148] Huang P, Wang F , Xu M , et al. Dependence of strain rate sensitivity upon deformed microstructures in nanocrystalline Cu. Acta Materialia, 2010, 58: 5196-5205.
    [149]王国勇.电沉积纳米晶铜微观组织与变形机制研究:[博士学位论文].吉林:吉林大学, 2009.
    [150] Tsoukatos A, Wan H, Hadjipanayis G C, et al. Giant Magnetoresistance Studies in (Fe,Co)-Ag Films. Journal of Applied Physics, 1993, 73(10): 5509-5511.
    [151] Ikezawa K, Maruyama T. Sharp tip geometry and its effect on hardness in nanoindentation experiments. Journal of Applied Physics, 2002, 91(12): 9689-9695.
    [152] Wen S P, Zeng F, Pan F, et al. The influence of grain morphology on indentation deformation characteristic of metallic nano-multilayers. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2009, 526(1-2): 166-170.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700