冷轧工业纯铝退火强化性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用室温单轴拉伸、纳米压痕以及TEM等试验手段,对冷轧大变形状态下的纯度为99.7 %的工业纯铝,在退火前后力学性能和微观结构的变化,进行了较系统的研究。
     拉伸试验结果显示,大变形量(轧制量)的冷轧铝材在150℃退火30分钟后表现出了明显的退火强化现象,即退火后铝材的屈服强度比退火前(冷轧态)有显著提高,而延伸率下降。退火后铝材屈服强度的增量随轧制量的增加而增大,而较小的轧制量则可能导致传统的退火软化现象。若随后对退火试样再次进行冷轧变形,则屈服强度下降,延伸率上升。同时,利用循环弛豫试验测量了铝材具有典型意义的变形参数-表观激活体积和物理激活体积。试验结果表明,激活体积随轧制变形量的增加而减小,随退火温度的升高和退火时间的增加而增大。纳米压痕蠕变试验同样证实了退火强化现象的存在,即在相同的加载速率下,退火后的铝材总蠕变量小于未退火的铝材,而在相同的载荷与保载时间下,退火后的铝材压入深度要小于未退火的铝材。
     基于一系列实验结果,晶界位错源抑制强化被推测为细晶铝材出现退火强化的主要机理。TEM显微组织观察表明,退火后,细晶铝材的晶粒尺度没有明显长大,但可动位错密度显著减少,导致了铝材强度的增加和延伸率的降低。再次冷轧后,铝材中的可动位错密度增加,屈服强度降低。另外,试验测出细晶铝材的激活体积要比粗晶铝材小两个数量级,这表明细晶铝材位错运动的主要的热激活机理不同于粗晶铝材中通常的林位错切割机理。
In this paper, the mechanical properties and micro-structural of commercial pure aluminum (99.7%) processed by Cold Rolling before and after the annealing were studied by uniaxial tensile testing, nanoindentation instrument and transmission electron microscopy.
     From the tensile testing experiments, the large equivalent strain aluminum appears obvious hardening after heat treatment and softening when subsequently deformation, which is in contrast to the typical behavior of coarse aluminum. Micro-structural investigation indicates that slight coarsening occurred during annealing and reduced the dislocation density, leading to an increasing in strength and a reduction in ductility. A subsequent cold rolling deformation may restore the dislocation structural and facilitate the yielding process when the aluminum is stressed. As a result, the strength decreases and the ductility increase. We predict that dislocation source-limited strengthening may play a key role in annealing hardening.
     A repeated stress relaxation test has been carried out to obtain the strain rate sensitivity, the apparent and physical activation volume of fine grain aluminum. The magnitude observed for these characteristic deformation parameters is very different from those of coarse-grained aluminum. This suggests that the thermally activated process in fine grain aluminum is different from the conventional forest dislocation cutting mechanism. From the very experiments, the heat treatment has impact on activation volumes, which implies the alteration of a microstructure in fine grain aluminum.
     Constant loading rate/load creep experiments were conducted on fine grain aluminum using nanoindentation instrument. The results indicated that the loading mode has an obvious effect on the nanoindentation creep properties. With increasing loading rate/load, total creep was increased.
引文
[1] Hall E O. The Deformation and Ageing of Mild Steel. Proceedings of the Physical Society of London: B, 1951. 63: p. 724.
    [2] Petch N J, Journal of Iron Steel Institute London, 1953. 174: p. 25.
    [3]曹乃光.金属塑性加工原理.北京:冶金工业出版社,1983
    [4]万愉如,许昌淦.高强度及超高强度钢.北京:机械工业出版社,1988
    [5] [美]约翰?D?费豪文[著],卢光熙,赵子伟[译].物理冶金学基础;上海科学技术出版社, 1980
    [6]张树松,全爱莲.钢的强韧化机理与技术途径.北京:兵器工业出版社,1995.
    [7]陈志源,林江.高强材料学.上海:同济大学出版社,1993.
    [8]陈进化.位错基础.上海:上海科学技术出版社, 1984.
    [9] Hall O E. Proc. Phys. Soc. London. 1951,B64: 747753.
    [10] Sanders P G, Eastman J A. Weertman J R. Elastic and tensile behavior of nanocrystalline copper and palladium. Acta Metallurgica, 1997. 45(10): p. 4019-4025.
    [11] Schuh C A, Nieha T G, Iwasaki H. The effect of solid solution W additions on the mechanical properties of nanocrystalline Ni. Acta Materialia, 2003. 51: p. 431-443.
    [12] Schi?tz, J, Jacobsen K W. A Maximum in the Strength of Nanocrystalline Copper. Science, 2003. 301: p. 1357-1359.
    [13] Valiev R Z, Islamgaliev R K, Alexandrov IV. Bulk nanostructured materials from severe plastic deformation. Progress in Materials Science, 2000, 45(2):103-189.
    [14] Sevillano J Gil, Houtte P Van, Aernoudt E. Large strain work hardening and textures. Progress in Materials Science. 1980, 25(2-4): 69412
    [15]田荣璋,王祝堂.铜合金及其加工手册.长沙:中南大学出版社,2002
    [16] Lu K. Nanocrystalline metals crystallized from amorphous solids: nano-crystallization, structure and properties. Mater Sci Eng, 1996, 16(4): 161-221.
    [17] [美]约翰J.伯克.超细晶粒金属.北京:国防工业出版社,1982
    [18]訾炳涛,王辉,块体纳米材料的制备技术概况.天津冶金, 2003. 118: p. 3-7.
    [19] (苏)渥·阿·巴尔费诺夫.铝和铝合金.民智书店出版社,1953
    [20] Musalimova R S. Dilatometric analysis of aluminium alloy with submicrometre
    [21]刘英,李元元,张大童,金属材料的等通道转角挤压研究进展.材料科学与工程, 2002. 80(20): p. 613-617.
    [22] Iwahashi Y, Wang J T, Horita Z, etc. Principle of equal-channel angular pressing for the processing of ultra-fine grained materials. Scripta Materialia, 1996. 35(2): p. 143-146.
    [23] Iwahashi Y, Horita Z, Nemoto M et al. An investigation during equal-channel angular pressing. Acta Mater. 1997 of microstructural evolution 45(11): 4733-4741
    [23] SaitoY, Utsunomiya H, Tsuji N, Sakai T. Novel ultra-highstraining process for bulk materials development of the accumulative roll-bonding(ARB) process. Acta Materialia, 1999, 47(2): 579?583.
    [24] Tsuji N, Shiotuki K, Saito Y, et al. Superplasticity of ultra-fine grained Al-Mg alloy produced by accumulative roll-bonding. Mater Trans, 1999,40(12):1422.
    [25] Bridgman P W. Studies in large plastic flow and fracture. New York: McGraw-Hill 1952.
    [26] Valiev R Z, Islamgaliev R K, Alexadrow I V. Progr Mater Sci, 2000, 45:103
    [27]陆济民.轧制原理.北京:冶金工业出版社,1993
    [28] Ma E. Instabilities and ductility of nanocrystalline and ultrafine-grained metals. Scripta Mater. 2003, 49: 663-668
    [29] Wang Y M, Cheng S, Wei QM ,E.Ma, Nieh T G A. Hamza.Effects of annealing and impurities on tensile properties of electrodeposited nanocrystalline Ni. Scripta materialia, 2004, 51(11):1023-1028.
    [30] Zhang X Y, Liu Q, Wu X L, Zhu A W. Work softening and annealing hardening of deformed nanocrystalline nickel. Applied Physics Letters, 2008, 93, 261907:1-3.
    [31] Valiev R Z, Sergueeva A V, Mukherjee A K. The effect of annealing on tensile deformation behavior of nanostructured SPD titanium. Scripta Materialia, 2003, 49(7):669-674.
    [32] Huang X,Kamikawa N, Hansen N. Strengthening mechanisms in nanostructured aluminum. Materials Science & Engineering A, 2008, 483-484:102-104.
    [33] Yu C Y, Sun P L, Kao P W, Chang C P. Mechanical properties of submicron-grained aluminum. Scripta Materialia, 2005, 52(5):359-363.
    [34] Huang Xiaoxu, Hansen Niels, Tsuji Nobuhiro. Hardening by annealing and softening by deformation in nanostructured metals. Science, 2006, 312(5771):249-251.
    [35] Tsuzaki K, Huang Xiaoxu. Mechanism of dynamic continuous recrystallization during superplastic deformation in a microduplex stainless steel. Acta Materialia, 1996, 44:4491-4499.
    [36] Yu C Y, Sun P L, Kao PW, Chang C P. Mechanical properties of submicron-grained aluminum. Scripta Materialia, 2005, 52(5):359-363.
    [37] Lee N S, Chen J H, Kao P W, Chang L W, Tseng T Y, Su J R. Anisotropic tensile ductility of cold-rolled and annealed aluminum alloy sheet and the beneficial effect of post-anneal rolling. Scripta Materialia, 2009, 60(5):340-343.
    [38] Kamikawa Naoya, Huang Xiaoxu, Tsuji Nobuhiro, Hansen Niels. Strengthening mechanisms in nanostructured high-purity aluminium deformed to high strain and annealed. Acta Materialia, 2009, 57(14):4198-4208.
    [1]王从曾,刘会亭.材料性能学.北京:北京工业大学出版社,2007.
    [2] Dieter, G E.金属力学(Mechanical Metallurgy)(第三版),清华大学出版社,2006.
    [3]束德林.工程材料力学性能.北京:机械工业出版社,2003.
    [4]孙茂才.金属力学性能.哈尔滨:哈尔滨工业大学出版社,2003.
    [5]石德珂,金志浩.材料力学性能.西安:西安交通大学出版社,1998.
    [6]胡赓祥,蔡珣,戎咏华,材料科学基础(第二版),上海交通大学出版社.
    [7]戴雅康.金属材料常用力学性能试验方法.北京:科学普及出版社,1990.
    [8]黄明志.金属力学性能.西安:西安交通大学出版社,1986.
    [9] Oliver W C, Pharr G M. Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiment. Journal of Materials Research, 1992, 7: 1564-1583.
    [10] Mayo M J, Siegel R W, Narayanasamy A, Mix W D. Mechanical properties of nanophase TiO2 as determined by nanoindentation.Journal of Materials Research, 1990, 5: 1073.
    [11] Field J S, Swain M V. A simple predictive model for spherical indentation. Journal of Materials Research, 1993, 8: 297.
    [12] Loubet J L, Lucas B N, Oliver WC. Some measurements of viscoelastic properties with the help of nanoindentation.NIST Special Publication, 1995, 31: 297.
    [13] Lucas B N, Rosenmayer C T, Oliver W C. Mechanical characterization of sub-micron polytetrafluoroethylene (PTFE) thin films.MRS Symp, 1998, 97: 505.
    [14] Lucas B N, Oliver W C. Indentation power-law creep of high-purity indium. Metall Mater Trans A, 1999, 30: 601.
    [15] Pharr G M. Measurement of mechanical properties by ultra-low load indentation. Mater Sci Eng A, 1998, 253: 151.
    [16] Harding D S, Oliver W C, Pharr G M. Thin films: stresses and mechanical properties V.MRS Symp, 1995, 356: 663.
    [17] Suresh S, Giannakopoulos A E. A new method for estimating residual stresses by instrumented sharp indentation.Acta Mater, 1998, 46: 5755.
    [18] Carlsson S, Larsson P L. On the determination of residual stress and strain fields by sharp indentation testing: Part II: experimental investigation. Acta Mater,2001, 49:2193.
    [19] Bulychev S I, Alekhin V P, Shorshorov M K H, Temovskii A P, Shnyrev G D. Determining Young's Modulus from the Indenter Penetration Diagram. Zavod Lab, 41, 1975:1137-1140.
    [20] Love A E H. Boussinesq's Problem for a Rigid Cone. Q. J. Math. Vol 10:161-175.
    [21] Bolshakov A and Pharr G M. Influences of Pile-Up on the Measurement of Mechanical Properties by Load and Depth Sensing Indentation Techniques, Mater Res, Vol 13, 1998:1049-1058.
    [22] Pharr G M, Oliver W C. Measurement of thin film mechanical properties using nanoindentation. MRS Bulletin, July 1992: 28-33.
    [23]张泰华.微/纳米力学测试技术及其应用.北京:机械工业出版社.2004, 10:20-28.
    [24] Valiev R Z, Mukherjee A K. Advanced mechanical properties of pure titanium with ultrafine grained structure. Scripta Materialia, 2001, 45(7):747-752.
    [25] Huang J Y, Zhu Y T, et al. Microstructures and dislocation configurations in nanostructured Cu processed by repetitive corrugation and straightening. Acta Mater, 2001, 49(9):1497-1505.
    [26] Valiev R Z, Mukherjee A K. Nanostructures and unique properties in intermetallics, subjected to severe plastic deformation. Scripta Materialia, 2001, 44(8-9):1747-1750.
    [27] Wang Y, Chen M, Zhou F, Ma E. High tensile ductility in a nanostructured metal. Nature, 2002, 419:912-915.
    [28] Zhu Y T,Huang J Y,Gubicza J,Ungár T,Wang Y M,Ma E.Nanostructures in Ti processed by severe plastic deformation. Journal of Materials Research.2003;18:1908.
    [29] Nakashima, K, Horita, Z, Nemoto, M, etc. Influence of channel angel on the development of ultrafine grains in Equal-Channel Angular Pressing. Acta Materialia, 1998, 46(5): 1589-1599.
    [30]波卢欣.塑性变形的物理性能.北京:冶金工业出版社,1989.
    [31] Wang Yinmin, Chen Mingwei, Zhou Fenghua, Ma En.High tensile ductility in a nanostructured metal. Letters to Nature, 2002, 419:912-914.
    [32] Hughes D A, Hansen N. High angle boundaries formed by grain subdivision mechanisms.Acta Materialia, 1997, 45:3871-3886.
    [33] Wang Y M, Ma E, Chen M W. Enhanced tensile ductility and toughness innanostructured Cu.Applied physics letters, 2002, 80:2395-2397.
    [34] Xiaoxu Huang, Niels Hansen, Nobuhiro Tsuji. Hardening by annealing and softening by deformation in nanostructured metals. Science, 2006, 312:249-251.
    [35] Xiaoxu Huang, Naoya Kamikawa, Niels Hansen. Increasing the ductility of nanostructured Al and Fe by deformation. Materials Science & Engineering A, 2008, 493:184-189.
    [36] Xiaoxu Huang. Tailoring dislocation structures and mechanical properties of nanostructured metals produced by plastic deformation. Scripta Materialia, 2009, 60:1078-1082.
    [37] Huang X, Kamikawa N,Hansen N. Strengthening mechanisms in nanostructured aluminum. Materials Science & Engineering A, 2008, 483-484:102-104.
    [38] Huang X, Kamikawa N, Hansen N. Property optimization of nanostructured ARB-processed Al by post-process deformation. Journal of Materials Science, 2008, 43:7397-7402.
    [39] Tsuzaki K, Huang Xiaoxu. Mechanism of dynamic continuous recrystallization during superplastic deformation in a microduplex stainless steel. Acta Materialia, 1996, 44:4491-4499.
    [40] Kamikawa Naoya, Huang Xiaoxu, Tsuji Nobuhiro, Hansen Niels. Strengthening mechanisms in nanostructured high-purity aluminium deformed to high strain and annealed. Acta Materialia, 2009, 57:4198-4208.
    [41] Ueji R, Huang X, Hansen Niels, Tsuji Nobuhiro, Minamino Yoritoshi. Quantitative Analysis of Structure-Strength Relation of Commercial Purity Aluminium Deformed by Accumulative Roll Bonding and Annealed at Low Temperature. Materials Science Forum, 2003, 426:405-432.
    [42] Valiev R Z, Islamgaliev R K, Alexandrov I V. Bulk nanostructured materials from severe plastic deformatio.Progress in materials science, 45(2000)103-189.
    [43] Jia D,Wang Y M,Ramesh K T,Ma E,Zhu Y T,Valiev R Z. Deformation behavior and plastic instabilities of ultrafine-grained titanium. Applied Physics Letters. 79(2001)611.
    [44] Valiev R Z, Kozlov E V, Ivanov Y F, Lian J, AA. Nazarov, B. Baudelet. Deformation behaviour of ultra-fine-grained copper. Acta Metallurgica et Materialia. 42(1994)2475.
    [45] Li W B, Warren R. A model for nano-indentation creep. Acta Metall, 1993, 41:3065.
    [46] Valiev R Z, Sergueeva A V, Mukherjee A K. The effect of annealing on tensile deformation behavior of nanostructured SPD titanium. Scripta Materialia, 2003, 49(7):669-674.
    [47] Wang Y M, Cheng S, Wei QM, Ma E, Nieh T G, Hamza A. Effects of annealing and impurities on tensile properties of electrodeposited nanocrystalline Ni. Scripta materialia, 2004, 51(11):1023-1028.
    [48] Huang X, Kamikawa N, Hansen N. Strengthening mechanisms in nanostructured aluminum. Materials Science & Engineering A, 2008, 483-484:102-104.
    [49] Hasnaoui A, Van H, Swygenhoven, Derlet P M. On non-equilibrium grain boundaries and their effect on thermal and mechanical behaviour:a molecular dynamics computer simulation. Acta Materialia, 2002, 50(15):3927-3939.
    [50] James C M Li. Petch Relation and Grain Boundary Sources. Metall Trans, 1963,227:239-247.
    [51] Liu Q, Huang X, Lloyd DJ, Hansen N. Microstructure and strength of commercial purity aluminium (AA 1200) cold-rolled to large strains. Acta materialia, 2002, 50(15):3789-3802.
    [52] Hughes D A, Hansen N. Microstructure and strength of nickel at large strains. Acta Materialia, 2000,48(11):2985-3004.
    [53] Cheng S, Spencer J A, Milligan W W. Strength and tension/compression asymmetry in nanostructured and ultrafine-grain metals. Acta Materialia, 2003, 51(15):4505-4518.
    [54] Geng L, Shen Y, Wagoner R H. Anisotropic hardening equations derived from reverse-bend testing .International Journal of Plasticity, 2002,18(5-6):743-767.
    [55] YU C Y, Kao P W, Chang C P. Transition of tensile deformation behaviors in ultrafine-grained aluminum. Acta Materialia, 2005, 53(15):4019-4028.
    [1] Caillard D, Martin J L. Thermally activated mechanisms in crystal plasticity. Amsterdam:Pergamon;2003.p.13.
    [2] Conrad H. Grain size dependence of the plastic deformation kinetics in Cu. Materials Science & Engineering A.2003;341:216.
    [3] Dieter G E. Mechanical metallurgy.Edition,3rd ed. Boston(MA):McGraw Hill; 1986. p.173.
    [4] Wang Y M, Hamza A V, Ma E. Temperature-dependent strain rate sensitivity and activation volume of nanocrystalline Ni. Acta Materialia, 2006, 54:2715-2726.
    [5] Wang Y M, Ma E. Strain hardening, strain rate sensitivity, and ductility of nanostructured metals. Materials Science & Engineering A, 2004, 375-377:46-52.
    [6] Gray G T,Lowe T C,Cady C M,Valiev R Z,IV. Aleksandrov,Influence of strain rate & temperature on the mechanical response of ultrafine-grained Cu, Ni, and Al-4Cu-5Zr. Nanostructured Materials, 9(1997)477.
    [7] Malow T R,Koch C C,Miraglia P Q,Murty K L. Compressive mechanical behavior of nanocrystalline Fe investigated with an automated ball indentation technique. Materials science & engineering(A), 252(1998)36.
    [8] Meyers M A, Mishra A, Benson D J. Mechanical properties of nanocrystalline materials. Progress in Materials Science, 2006, 51:427-556.
    [9] Wang Yinmin, Chen Mingwei, Zhou Fenghua, Ma En. High tensile ductility in a nanostructured mata. Letters to Nature, 2002, 419:912-914.
    [10] Hughes D A, Hansen N. High angle boundaries formed by grain subdivision mechanisms. Acta Materialia, 1997, 45:3871-3886.
    [11] Wang Y M, Ma E, Chen M W. Enhanced tensile ductility and toughness in nanostructured Cu. Applied physics letters, 2002, 80:2395-2397.
    [12] Xiaoxu Huang, Niels Hansen, Nobuhiro Tsuji. Hardening by annealing and softening by deformation in nanostructured metals. Science, 2006, 312(5771):249-251.
    [13] Huang X, Kamikawa N, Hansen N. Strengthening mechanisms in nanostructured aluminum. Materials Science & Engineering A, 2008, 483-484:102-104.
    [14] Huang Xiaoxu, Naoya Kamikawa, Niels Hansen. Increasing the ductility of nanostructured Al and Fe by deformation. Materials Science & Engineering A,2008, 493(1-2):184-189.
    [15] Huang Xiaoxu. Tailoring dislocation structures and mechanical properties of nanostructured metals produced by plastic deformation. Scripta Materialia, 2009, 60(12):1078-1082.
    [16] Huang Xiaoxu. Characterization of nanostructured metals produced by plastic deformation. Journal of Materials Science, 2007, 42(5):1577-1583.
    [17] Huang X, Kamikawa N, Hansen N. Property optimization of nanostructured ARB-processed Al by post-process deformation. Journal of Materials Science, 2008, 43(23-24):7397-7402.
    [18] Wang Y M,Hamza A V. Activation volume and density of mobile dislocations in plastically deforming nanocrystalline Ni. Applied Physics Letters , 2005, 86(241917).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700