还原—氧化两步处理法降解水中典型溴代阻燃剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
溴代阻燃剂作为合成高分子材料的重要助剂之一,主要被用于塑料、纺织品、电子/电器,运输包装、建材以及其他防火材料中。它们可以在生产、使用、废弃品处理等过程中通过各种途径进入环境,对大气、土壤、水体等介质产生污染。本论文以四溴双酚-A (TBBPA)和多溴联苯醚作为研究对象,建立了由纳米Fe-Ag双金属还原和后续类Fenton氧化所组成的两步连续处理的方法,实现了对具有抗氧化性的典型溴代阻燃剂的彻底、有效降解。
     采取液相化学沉淀法直接置换出金属银包覆在纳米铁颗粒外层,合成具有核壳型结构的纳米Fe-Ag双金属催化还原剂。表征结果显示,所制备的双金属颗粒为核壳型结构,外层金属银为不完全均匀分布态,颗粒粒径分布在20-100 nm之间,分散性较好;纳米粒子连接成链状,少数还呈现出团聚状态。纳米Fe-Ag粉末(Ag含量为1.048 Wt%)的比表面积为72 m2g-1,比纳米Fe0的比表面积大;纳米Fe-Ag双金属的XRD谱图在44.66和64.34°两处出现与Fe(110)和Fe(200)晶面相对应的衍射峰,而38.06°所对应的是Ag(111)晶面的衍射峰。
     利用所合成的纳米Fe-Ag双金属与超声波(US)协同催化降解目标化合物TBBPA。在常温常压、原始pH的条件下,银化率为1 wt%的Fe-Ag双金属能使初始浓度为2.0 mgL-1的TBBPA水溶液在20 min内完全脱溴,其转化反应遵循准一级动力学。沉积在纳米铁颗粒外层的金属Ag和超声波辅助在还原过程中发挥了重要作用,论文对其可能原因进行了推测分析。考察了纳米Fe-Ag双金属颗粒降解TBBPA的主要影响因素,包括纳米双金属颗粒的用量、TBBPA的初始浓度、溶液初始pH值、银化率以及温度等。比较适合的反应条件为:双金属投加量0.4 g L-1,银化率1 wt%,TBBPA初始浓度2 mg L-1,初始的pH值6.0+0.5,反应温度30℃。
     开展了纳米Fe-Ag双金属协同微波(MW)催化降解TBBPA、十溴联苯醚(BDE-209)和2,2’,4,4’-四溴联苯醚(BDE-47)的研究。Fe-Ag/MW体系具有很强的还原能力,微波的加入对还原脱溴反应产生了非常显著的促进作用,这主要归因于微波辐射所产生的热效应以及溶液沸腾时对纳米颗粒的分散作用。此外,还原剂金属用量的增大和微波功率的提高能够加速降解反应的进行,分子中溴原子个数对PBDEs的还原降解速率也具有一定影响。通过LC-MS/MS和GC-MS的检测分析,TBBPA的还原脱溴产物主要有:tri-BBPA, di-BBPA, mono-BBPA和BPA; BDE-209被催化还原后主要得到nano-BDEs-di-BDEs的产物,而BDE-47则被降解为DE~tri-BDEs。它们的还原脱溴过程都是以氢原子逐步取代溴原子,从n-bromo-BPA/DE依次转化为(n-1)-bromo-BPA/DE而实现的。
     由上述结果可以看出,TBBPA和BDE-47还原后的产物仍然具有一定的环境危害,有必要对其进行进一步的降解处理。论文对还原-氧化两步法去除典型溴代阻燃剂的可行性进行了探讨,即利用还原后剩余的双金属颗粒与加入的H202形成类Fenton体系,对目标污染物的完全脱溴产物进行后续的氧化分解。两步处理法实现了TBBPA (5.0 mgL-1)的完全脱溴,并使其脱溴产物双酚A(BPA)的去除效率达到99.2%;同样,BDE-47先被彻底脱溴为联苯醚(DPE),随后DPE得到快速彻底的氧化分解。而单独的类Fenton氧化对TBBPA和BDE-47的处理效果很不理想。类Fenton氧化过程还可以充分利用还原后体系中所剩余的纳米Fe-Ag颗粒。GC-MS和LC-MS/MS的分析结果表明,BPA和DPE的氧化产物包括羟基化产物、二芳基断裂反应产物以及开环产物,据此可以推断·OH自由基进攻是类Fenton氧化的主要作用途径。
     此外,发光菌的急性毒性实验结果表明:BDE-47的还原脱溴产物表现出更大的急性毒性,而随后的类Fenton氧化反应又使溶液几乎完全除毒。可见,还原-氧化两步处理法取得了理想的环境效果。
Brominated flame retardants (BFRs) have been used as important additives in synthetic polymers, such as plastics, textiles, electronics/electrical, transportation packaging, construction materials and other fire prevention materials. Due to leaks, spills, and releases from industrial sourses, they inevitably comtaminate the enviroment. A "two-stage reduction/subsequent oxidation" (T-SRO) process was employed to remove BFRs by the combination of first Fe-Ag debromination and succeeding Fenton-like decomposition.
     The Fe-Ag bimetallic nanoparticles with core-shell structure were successfully synthesized by the liquid phase reduction method, depositing of Ag onto nanoscale Fe surface. The characterization results revealed that the displacement plating produced a non-uniform overlayer of Ag additive on iron; the as-synthesized bimetallic nanoparticles were spherical with diameters of 20-100 nm aggregated in the form of chains and a surface area of 72 m2 g-1. The three characteristic peaks in XRD spectrum appeared at 44.66 (main peak),64.34 and 38.06°correspond to cubic a-Fe (110,200) and Ag (111) diffraction peaks, respectively.
     Batch studies demonstrated that the tetrabromobisphenol A (TBBPA,2 mg L-1) solution was completely degraded in 20 min over Fe-Ag nanoparticles under ultrasound (US). It indicated that both the deposition of Ag and US played important roles in the reduction of TBBPA. The effects of Fe-Ag bimetallic nanoparticles loading, initial TBBPA concentration, pH of the solution, Ag loading and temperature on the reduction efficiency of TBBPA were investigated. Reaction conditions were determined selectively as metal addition of 0.4 g L-1, Ag loading of 1 wt.%, initial TBBPA concentration of 2 mg L-1, pH=6.0±0.5, T=30℃.
     The enhanced debromination of TBBPA, decabromodiphenyl ether (BDE-209) and 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) with Fe-Ag nanoparticles under microwave (MW) radiation was studied. The rates of debromination revealed that MW irradiation could accelerate the reductive degradation obviously. Attempts were made to compare degradation efficiency under microwave and conventional heating condition, which demonstrated that the thermal effect of MW radiation is the main factor to promote the debromination of TBBPA or PBDEs. The effects of Fe-Ag dosage and MW energy level on the degradation efficiency were also investigated. Moreover, the number of bromines could have an effect on the stability against reduction of PBDEs. Major reduction products of TBBPA and PBDEs were identified by LC-MS/MS and GC-MS, respectively. TBBPA was transformed to tri-BBPA, di-BBPA, mono-BBPA and BPA; di-to nona-brominated congeners were formed during BDE-209 reduction; and DE to tri-BDEs were observed in BDE-47 reduction. The degradation possibly proceeds through stepwise debromination from n-bromo- to (n-1)-bromo-BPA/DE, with bromine being sequentially substituted by hydrogen.
     It can be seen that the partial or complete debrominated products still pose a threat to the environment and need to be treated further. In this study, the feasibility and effectiveness of the removal of BFRs by T-SRO process were investigated. TBBPA was transformed to bisphenol A (BPA) completely by Fe-Ag/US and then BPA was 99.2% oxidized by the homogeneous Fe-Ag/H2O2/US system. Meanwhile, the T-SRO process resulted in a efficient debromination of BDE-47 and a 99.2% decrease in diphenyl ether (DPE) concentration. However, TBBPA and BDE-47 were difficult to be degraded by Fenton-like processes alone. Fenton-like reactions could make full use of the remaining Fe-Ag nanoparticles after reduction stage. LC-MS/MS and GC/MS were employed to monitor the main intermediates and final products during BPA/DPE oxidation. On the basis of these analysis, reactions with·OH radical were identified as the major pathways in the Fenton-like system.
     In addition, luminescent bacteria test showed that the acute toxicity of the original solution (before reduction) was evidently lower than that of Fe-Ag/US reduction-treated solution, but no toxicity was detected after the Fenton-like oxidation processes. Evidence for the significance of a T-SRO treatment to decompose BDE-47 was presented.
引文
[1]联合国环境规划署,拟订一项关于对某些持久性有机污染物采取国际行动的具有法律约束力的国际文书政府间谈判委员会第五届会议工作报告(中文版),2000,约翰内斯堡。
    [2]de Wit C.A., An overview of brominated flame retardants in the environment, Chemosphere,2002,46: 583-624.
    [3]Alaee M., Arias P., Sjodin A., Bergman A., An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release, Environ. Int.,2003,29:683-689.
    [4]Directive 2002/95/EC of the European Parliament and the Council of 27 January 2003 on the restriction of the use of certain Hazardous Substances in electrical and electronic equipment, Official Journal L 37/19,13/02/2003.
    [5]Directive 2003/1 I/EC of the European Parliament and the Council of 6 February 2003 amending for the 24th time Council Directive 76/769/EEC relating to restriction on the marketing and use of certain dangerous substances and preparation (pentabromodiphenyl ether, octabromodiphenyl ether), Official Journal L 42/45,15/02/2003.
    [6]Lassen C., Lokke S., Hansen L.I., Brominated flame retardants:substance flow analysis and substitution feasibility study. Danish Environmental Protection Agency, Environmental Project No. 494, Copenhagen.
    [7]WHO/IPCS, Environmental Health Criteria 162:Brominated diphenyl ethers. International Programme on Chemical Safety, Geneva:World Health Organization.1994. (Acessed at http://www.who.int/ipcs/publications/ehc_numerical/en/print.html.2009-04-12)
    [8]Xia J., Wang L.J., Luo H.A., Present status and developing tendency of flame retardant, Appl. Chem. Ind.,2005,34:1-4.
    [9]Law R.J., Allchin C.R., de Boer J., Covaci A., Herzke D., Lepom P., Morris S., Tronczynski J., de Wit C.A., Levels and trends of brominated flame retardants in the European environment, Chemosphere, 2006,64:187-208.
    [10]Bromine Science Environmental Forum, http://www.bsef.com.
    [11]Hakk H., A Survey of Tetrabromobisphenol A. Second International Workshop on Brominated Flame Retardants, BFR 2001, Stockholm University, Sweden,2001.
    [12]de Wit C.A., Brominated flame retardants, report 5065, Swedish Environmental Protection Agency, 2000.
    [13]Jakobsson K., Thuresson K., Rylander L., Sjodin A., Hagmar L., Bergman A., Exposure to polybrominated diphenyl ethers and tetrabromobisphenol A among computer technicians, Chemosphere,2002,46:709-716.
    [14]Sellstrom U., Jansson B., Analysis of tetrabromobisphenol A in a product and environmental samples, Chemosphere,1995,31:3085-3092.
    [15]Oberg K., Warman K., Oberg T., Distribution and levels of brominated flame retardants in sewage sludge, Chemosphere,2002,48:805-809.
    [16]Akutsu K., Kitagawa M., Nakazawa H., Makino T., Iwazaki K., Oda H., Hori S., Time-trend (1973-2000) of polybrominated diphenyl ethers in Japanese mother's milk, Chemosphere,2003,53: 645-654.
    [17]WHO, Environmental Health Criteria 172, Tetrabromobisphenol A and derivatives, Geneva, Switzerland,1995.
    [18]Meerts I.A., Letcher R.J., Hoving S., Marsh G., Bergman A., Lemmen J.G., van der Burg B., Brouwer A., In vitro estrogenicity of polybrominated diphenyl ethers, hydroxylated PDBEs, and polybrominated bisphenol A compounds. Environ. Health Perspect,2001,109:399-407.
    [19]Crawford E.S., Guarasci D.T., Larson S.A., A survey of thyroid gland scintigraphy, J. Nucl. Med. Technol.,2009,37:173-178.
    [20]Reistad T., Mariussen E., Fonnum F., The effect of a brominated flame retardant, tetrabromobisphenol-A, on free radical formation in human neutrophil granulocytes:the involvement of the MAP kinase pathway and protein kinase C., Toxicol. Sci.,2005,83:89-100.
    [21]Lilienthal H., Verwer C.M., van der Ven L.T., Piersma A.H., Vos J.G., Exposure to tetrabromobisphenol A (TBBPA) in Wistar rats:Neurobehavioral effects in offspring from a one-generation reproduction study, Toxicology,2008,246:45-54.
    [22]Fukuda N., Ito Y., Yamaguchi M., Mitumori K., Koizumi M., Hasegawa R., Kamata E., Ema M., Unexpected nephrotoxicity induced by tetrabromobisphenol A in new born rats, Toxicol. Lett.,2004, 150:145-155.
    [23]Germer S., Piersma A.H., van der Ven L., Kamyschnikow A., Fery Y., Schmitz H.J., Schrenk D., Subacute effects of the brominated flame retardants hexabromocyclododecane and tetrabromobisphenol A on hepatic cytochrome P450 levels in rats, Toxicology,2006,218:229-236.
    [24]Han S.K., Bilski P., Karrier B., Sik R.H., Chignell C.F., Oxidation of flame retardant tetrabromobisphenol A by singlet oxygen, Environ. Sci. Technol.,2008,42:166-172.
    [25]Fackler P., Bioconcentration and elimination of 14C-residues by Eastern oysters (Crassostrea virginica) exposed to tetrabromobisphenol A, Springborn Life Sciences,1989.
    [26]Fackler P., Bioconcentration and elimination of 14C-residues by fathead minnows (Pimephales promelas) exposed to tetrabromobisphenol A, Springborn Life Sciences,1989.
    [27]Fackler P., Determination of the biodegradability of tetrabromobisphenol A in soil under aerobic conditions, Springborn Life Sciences,1989.
    [28]Institute C.I.T., Biodegradation and bionaccumulation date of existing chemicals based on the CSCL Japan, Tokyo Toxiclogy and Information Center, Japan chemical Industry Ecology,1992.
    [29]Voordeckers J.W., Fennelk D.E., Jones K., Haggblom M.M., Anaerobic biotransformation of tetrabromobisphenol A, tetrachlorobisphenol A, and bisphenol A in estuarine sediments. Environ. Sci. Technol.,2002,36:696-701.
    [30]Sellstrom U., Jansson B., Analysis of tetrabromobisphenol A in a product and environmental samples, Chemosphere,1995,31:3085-3092.
    [31]Watanabe I., Kashimoto T., Tatsukawa R., Identification of the flame retardant tetrabromobisphenol A in the river sediment and the mussel collected in Osaka, B. Environ. Contam. Tox.,1983,31:48-52.
    [32]Eriksson J., Decomposition of tetrabromobisphenol A in the presence of UV-light and hydroxyl radicals, Organohalogen Compounds,1998,35:419-422.
    [33]Han S.K., Sik R.H., Motten A.G., Chignell C.F., Bilski P.J., Photosensitized oxidation of tetrabromobisphenol A by humic acid in aqueous solution, Photochem. Photobiol,2009,5:1299-1305.
    [34]Horikoshi S., Miura T., Kajitani M., Horikoshi N., Serpone N., Photodegradation of tetrahalobisphenol-A (X= Cl, Br) flame retardants and delineation of factors affecting the process, Appl. Catal. B:Environ.,2008,84:797-802.
    [35]Eriksson J., Rahm S., Green N., Bergman A., Jakobsson E., Photochemical transformations of tetrabromobisphenol A and related phenols in water, Chemosphere,2004,54:117-126.
    [36]Hardy M.L., The toxicology of the three commercial polybrominated diphenyl oxide (ether) flame retardants, Chemosphere,2002,46:757-777.
    [37]de Wit C.T., Resource use efficiency in agriculture, Agricultural System,1992,40:125-151.
    [38]Arias P., Brnminated diphenyloxides as flame retardants; bromine based chemicals, Consultant report to the OECD Paris France,1992.
    [39]Legarreta J.A., Arias P.L., de Marco I., Chemical and petrographic characterization and liquefaction yields of Spanish coals, Fuel Process. Technol.,1986,15:293-305.
    [40]Klasson Wehler E., Jonsson J., Bergman A., Brandt I., Darnerud P.O.,3,3',4,4'-tetrachlorobiphenyl and 3,3',4,4',5-pentachlorobiphenyl-tissue-localization and metabolic fate in the mouse, Chemosphere, 1989,1:809-812.
    [41]McDonald T.A., A perspective on the potential health risk of PBDEs, Chemosphere,2002,46: 745-755.
    [42]Siddiqi M.A., Laessig R.H., Reed K.D., Polybrominated diphenyl ethers (PBDEs):new pollutants-old diseases, Clin. Med. Res.,2003,1:281-290.
    [43]OECD, Risk reduction monograph No.3:Selected brominated flame retardants, Monograph Series No. 97. In. Paris, France:Organization for Economic Cooperation and Development,1994.
    [44]Wang Y., Jiang G., Lam P.K., Li A., Polybrominated diphenyl ether in the East Asian environment:A critical review, Environ. Int.,2007,33:963-973.
    [45]Watanabe I., Sakai S., Environmental release and behavior of brominated flame retardants, Environ. Int.,2003,29:665-682.
    [46]de Wit C.A., Alaee M., Muir D.C.G., Levers and trends of brominated flame retardants in the Arctic, Chemosphere,2006,64:209-233.
    [47]Luo X.J., Mai B.X., Chen S.J., Advances on study of polybrominated diphenyl ethers, Prog. Chem., 2009,21:359-358.
    [48]Martin M., Lam P.K.S., Richardson B.J., An Asian quandary:where have all of the PBDEs gone? Mar. Pollut. Bull.,2004,49:375-382.
    [49]Specific hazards of e-Waste. RetroSystem, Calgary,2003. (Accessed at http://www.retrosystems.com/SPECHAZARD. asp.2007-05-01.)
    [50]UNEP, E-waste, the hidden side of IT equipment's manufacturing and use, Chapter 5-Early warning on emerging environmental thrests, United Nations of Environment Progamme,2005, (Accessed at http://www.grid.unep.ch/product/publication/EABs.php.2009-05-10.)
    [51]Hites R.A., Polybrominated diphenyl ethers in the environment and in people:A meta-analysis of concentrations, Environ. Sci. Technol.,2004,38:945-956.
    [52]Doucet J., Tague B., Arnold D.L., Cooke G.M., Hayward S., Goodyer C.G., Persistent organic pollutant residues in human fetal liver and placenta from Greater Montreal, Quebec:A longitudinal study from 1998 through 2006, Environ. Health Perspect,2009,117:605-610.
    [53]Mai B.X., Chen S.J., Luo X.J., Chen L.G., Yang, Q.S., Sheng, G.Y., Peng, P.G., Fu, J.M., Zeng, E.Y., Distribution of polybrominated diphenyl ethers in sediments of the Pearl River Delta and adjacent South China Sea, Environ. Sci. Technol,2005,39:3521-3527.
    [54]Ikonomou M.G., Rayne S., Addison R.F., Exponential increases of the brominated flame retardants, polybrominated diphenyl ethers, in the Canadian Arctic from 1981 to 2000, Environ. Sci. Technol., 2002,36:1886-1892.
    [55]Chen S.J., Luo X.J., Lin Z., Luo Y., Li K.C., Peng X.Z., Mai B.X., Ran Y., Zeng E.Y., Time trends of polybrominated diphenyl ethers in sediment cores from the Pearl river estuary, South China, Environ. Sci. Technol,2007,41:5595-5600.
    [56]Hites R.A., Polybrominated diphenyl ethers in the environment and in people:A meta-analysis of concentrations, Environ. Sci. Technol.,2004,38:945-956.
    [57]Darnerud P.O., Eriksen G.S., Johannesson T., Larsen P.B., Viluksela M., Polybrominated diphenyl ethers:Occurrence, dietary exposure, and toxicology, Environ. Health Perspect,2001,109:49-68.
    [58]Kierkegaard A., Balk L., Tjarnlund U., de Wit C.A., Jansson B. Dietary uptake and biological effects of decabromodiphenyl ether in rainbow trout (Oncorhynchus mykiss), Environ. Sci. Technol.,1999, 33:1612-1617.
    [59]Meerts I.A.T.M., van Zanden J.J., Luijks E.A.C., van Leewen Bol I., Marsh G., Jakobsson E., Bergman A., Brouwer A., Potent competitive interactions of some brominated flame retardants and related compounds with human transthyretin in vitro, Toxicol. Sci.,2000,56:95-104.
    [60]Sellstrom U.K., Kiekegaard A., de Wit W., Jansson B., Polybrominated diphenyl ethers and hexabromocycdodecane in sediment and fish from a Swedish river, Environ. Toxicol. Chem.,1998,17: 1065-1072.
    [61]Eriksson J., Green N., Marsh G., Bergman A., Photochemical decomposition of 15 polybrominated diphenyl ethers congeners in methanol/water, Environ. Sci. Technol.2004,38:3119-3125.
    [62]Sanchez-Prado L., Lores M., Llompart M, Garcia-Jares G., Bayona J.M., Cela R., Natural sunlight and sun simulator photolysis studies of tetra-to hexa-brominated diphenyl ethers in water using solid-phase microextraction, J. Chromatogr. A.,2006,1124:157-166.
    [63]Kajiwara N., Noma Y., Takigami H., Photolysis studies of technical decabromodiphenyl ether (DecaBDE) and ethane (DeBDethane) in plastics under natural sunlight, Environ. Sci. Technol.,2008, 42:4404-4409.
    [64]Mas S., de Juan A., Lacorte S., Tauler R., Photodegradation study of decabromodiphenyl ether by UV spectrophotometry and a hybrid hard-and soft-modelling approach, Anal. Chim. Acta.,2008, 618:18-28.
    [65]Fang L., Huang J., Yu G., Wang L., Photochemical degradation of six polybrominated diphenyl ether congeners under ultraviolet irradidation in hexane, Chemosphere,2008,71:258-267.
    [66]He J.Z., Robrock K.R., Alvarez-Cohen L., Microbial reductive debromination of polybrominated diphenyl ethers (PBDEs), Environ. Sci. Technol.,2006,40:4429-4434.
    [67]Robrock K.R., Korytar P., Alvarez-Cohen L., Pathways for the anaerobic microbial debromination of polybrominated diphenyl ethers, Environ. Sci. Technol.,2008,42:2845-2852.
    [68]Rayne S., Ikonomou M.G., Whale M.D., Anaerobic microbial and photochemical degradation of 4,4'-dibromodiphenyl ether, Water Res.,2003,37:551-560.
    [69]Tokarz J.A., Ahn M.Y., Leng J., Filley T.R., Nies L., Reductive debromination of polybrominated diphenyl ethers in anaerobic sediment and a biomimetic system, Environ. Sci. Technol.,2008,42: 1157-1164.
    [70]Kim Y.M., Nam I.H., Murugesan K., Schmidt S., Crowley D.E., Chang Y.S., Biodegradation of diphenyl ether and transformation of selected brominated congeners by Sphingomonas sp. PH-07, Appl. Microbiol Biot.,2007,77:187-194.
    [71]Gerecke A.C., Hartmann P.C., Heeb N.V., Kohler H.P.E., Giger W., Schmid P., Zennegg M., Kohler M., Anaerobic degradation of dacabromodiphenyl ethers, Environ. Sci. Technol.,2005,39: 1078-1083.
    [72]Hundt K., Jonas U., Hammer E., Schauer F., Transformation of diphenyl ethers by Trametes versicolor and charaterization of ring cleavage products, Biodegradation,1999,10:279-286.
    [73]Konstantinov A., Bejan D., Bunce N.J., Chittim B., McCrindle R., Potter D., Tashiro C., Electrolytic debromination of PBDEs in DE-83 TM technical decabromodiphenyl ether, Chemosphere,2008,72: 1159-1162.
    [74]Bonin P.M.L., Edwards P., Bejan D., Lo C.C., Bunce N.J., Konstantinov A.D., Catalytic and electro-catalytic hydrogenolysis of brominated diphenyl ethers, Chemosphere,2005,58:961-967.
    [75]Barontini F., Marsanich K., Petarca L., Cozzani V., The Thermal degradation process of tetrabromobisphenol A, Ind.Eng.Chem.Res.,2004,43:1952-1961.
    [76]Keum Y.S., Li Q.X. Reductive debromination of polybrominated diphenyl ethers by zerovalent iron, Environ. Sci. Technol.,2005,39:2280-2286.
    [77]Li A., Tai C., Zhao Z.S., Wang Y.W., Zhang Q.H., Jiang G.B., Hu J.T. Debromination of decabrominated diphenyl ether by resin-bound iron nanoparticle, Environ. Sci. Technol.,2007,41: 6841-6846.
    [78]Ronen Z., Abeliovich A. Anaerobic-aerobic process for microbial degradation of tetrabromobisphenol A, Appl. Environ. Microb.,2000,66:2372-2377.
    [79]An T.C., Chen J.X., Li G.Y., Ding X.J., Sheng G.Y., Fu J.M., Mai B.X., O'Shea K.E., Characterization and the photocatalytic activity of TiO2 immobilized hydrophobic montmorillonite photocatalysts: Degradation of decabromodiphenyl ether (BDE-209), Catal. Today,2008,139:69-76.
    [80]Sweeny K.H., American water works association research foundation. Denver, Water Reuse Symposium,1979,2:1487.
    [81]Chuang F.W., Larson R.A., Wessman M.S. Zero-valent iron-promoted dechlorination of polychlorinated biphenyls, Environ. Sci. Technol.,1995,29:2460-2463.
    [82]Orth W.S., Gillham R.W., Dechlorination of trichloroethene in aqueous solution using Fe0, Environ. Sci. Technol.,1996,30:66-71.
    [83]Sayles G.D., You G.R., Wang M.X., Kupferle M.J., DDT, DDD and DDE dechlorination by zero valent iron, Environ. Sci. Technol.,1997,31:3448-3454.
    [84]Lien H.L., Zhang W.X. Nanoscale iron particles for complete reduction of chlorinated ethenes, Colloid. Surface. A:Physicochemical and Engineering Aspects,2001,191:97-105.
    [85]刘志杰,赵斌,张宗涛,等,超细核壳铜-银双金属粉的制备,无机化学学报,1996,12(1):30-34.
    [86]冒爱琴,粉体表面化学镀的研究进展,应用化工,2006,35(6):458-469.
    [87]程志鹏,杨毅,刘小娣,等,核壳结构纳米双金属粒子的制备进展.现代化工,2006,26(7):18-21.
    [88]Roychowdhury C., Matsumoto F., Mutolo P.F., Abruna H.D., DiSalvo F.J., Synthesis, characterization and electrocatalytic activity of PtBi nanoparticles prepared bythe polyol process, Chem. Mater.,2005, 17(23):5871-5876.
    [89]Misumi Y., Ishii Y., Hidai M., Homogeneous multimetallic catalysts:Part 10-Formylation of aryl and alkenyl iodides by palladium-ruthenium bimetallic catalysts, J. Mol. Catal.,1993,78:1-8.
    [90]Toshima N., Harada M., Yonezawa T., Kushihashi K., Asakura K., Structural analysis of polymer-protected Pd/Pt bimetallic clusters as dispersed catalysts by using extended x-ray absorption fine structure spectroscopy, J. Phys. Chem,1991,95:7448-7453.
    [91]Li X.Q., Zhang W.X., Iron nanoparticles:the core-shell structure and unique properties for Ni(II) sequestration, Langmuir,2006,22:4638-4642.
    [92]黄园英,刘菲,汤鸣臬,等,纳米镍/铁和铜/铁双金属对四氯乙烯脱氯研究,环境科学学报,2007,27:80-85.
    [93]Senzaki T., Removal of chlorinated organic compounds from wastewaterby reduction proeess, III Treatment of trichloroethyene with iron powder Ⅱ, KogyoYosui,1991,391:29-35.
    [94]Muftikian R., Fernando Q., Korte N., A method for the rapid dechlorination of low molecular weight chlorinated hydrocarbons in water, Water Res.,1995,29:2434-2439.
    [95]徐新华,卫建军,汪大翚.Pd/Fe及纳米Pd/Fe对氯酚的脱氯研究,中国环境科学,2004,24(1):76-80.
    [96]Cheng I.F., Fernando Q., Korte N., Electrochemical dechlorination of 4-chlorophenol to phenol, Environ. Sci. Technol.,1997,31:1074-1078.
    [97]全燮,刘会娟,杨凤林,等,二元金属体系对水中多氯有机物的催化还原脱氯特性[J],中国环境科学,1998,18(4):333-336.
    [98]Wang X.Y., Chen C, Chang Y., Liu H.L., Dechlorination of chlorinated methanes by Pd/Fe bimetallic nanoparticles, J. Hazard. Mater.,2008,161:815-823.
    [99]Lien H.L., Zhang W.X., Transformation of chlorinated methanes by nanoscale iron particles, J. Environ. Eng.,1999,125:1042-1047.
    [100]Choe S., Lee S.H., Chang Y.Y., Hwang K.Y., Khim J., Rapid reductive destruction of hazardous organic compounds by nanoscale Fe0, Chemosphere,2001,42:367-372.
    [101]Golubina E.V., Lokteva E.S., Lazareva T.S., Kostyuk B.G. Lunin V.V., Simagina V.I., Stoyanova I.V., Hydrodechlorination of tetrachloromethane in the vapor phase in the presence of Pd-Fe/sibunit catalysts, Kinet. Catal.,2004,45:183-188.
    [102]Lien H.L., Zhang W.X. Nanoscale Pd/Fe bimetallic particles:Catalytic effects of palladium on hydrodechlorination, Appl. Catal. B-Environ.,2007,77:110-116.
    [103]Zhang W.X., Wang C.B., Lien H.L., Treatment of chlorinated organic contaminants with nanoscale bimetallic particles, Catal. Today,1998,40:387-395.
    [104]Li F., Vipulanandan C., Mohanty K.K., Microemulsion and solution approaches to nanoparticle iron production for degradation of trichloroethylene, Colloid. Surface. A,2003,223:103-112.
    [105]Schrick B., Blough J.L., Jones A.D., Mallouk T.E., Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles, Chem. Mater.,2002,14:5140-5147.
    [106]Wang C.B., Zhang W.X., Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs, Environ. Sci. Technol.,1997,31:2154-2156.
    [107]Elliott D., Zhang W.X., Field assessment of nanoparticles for groundwater treatment, Environ. Sci. Technol.,2001,35:4922-4926.
    [108]Lien H.L., Zhang W.X., Nanoscale iron particles for complete reduction of chlorinated ethenes, Colloid. Surface. A,2001,119:97-105.
    [109]Wei J.J., Xu X.H., Wang D.H.J., Environ. Sci.,2004,16:621-623.
    [110]Wei J.J., Xu X.H., Liu Y., Chem. Res. Chinese U.,2004,20:73-76.
    [111]卫建军,徐新华,刘永,等,纳米级钯/铁作用下2,4-二氯苯酚脱氯反应初探,化工学报,2004,55:163-165.
    [112]徐新华,刘永,卫建军,纳米级Pd/Fe双金属体系对水中2,4-二氯苯酚脱氯的催化作用,催化学报,2004,25(2):138-142.
    [113]徐新华,金剑,卫建军,等,纳米Pd/Fe双金属对2,4-二氯酚的脱氯机理及动力学,环境科学学报,2004,24(4):561-567.
    [114]Xu Y., Zhang W.X., Subcolloidal Fe/Ag particles for reductive dehalogenation of chlorinated benzenes, Ind. Eng. Chem. Res.,2000,39:2238-2244.
    [115]Ghauch A., Tuqan A., Reductive destruction and decontamination of aqueous solutions of chlorinated antimicrobial agent using bimetallic systems, J. Hazard. Mater.,2009,164:665-674.
    [116]Kim Y.H., Carraway E.R., Dechlorination of pentachlorophenol by zero valent iron and modified zero valent irons, Environ. Sci. Technol.,2000,34:2014-2017.
    [117]He F., Zhao D.Y., Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water, Environ. Sci. Technol.,2005,39: 3314-3320.
    [118]Chen L.H., Huang C.C., Lien H.L., Bimetallic iron-aluminum particles for dechlorination of carbon tetrachloride, Chemosphere,2008,73:692-697.
    [119]Schrick B., Blough J.L., Jones A.D., Mallouk T.E., Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-Iron nanoparticles, Chem. Mater.,2002,14:5140-5147.
    [120]Cwiertny D.M., Bransfield S.J., Roberts A.L., Influence of the oxidizing species on the reactivity of iron-based bimetallic reductants, Environ. Sci. Technol.,2007,41:3734-3740.
    [121]Bransfield S.J., Cwiertny D.M., Roberts A.L., Fairbrother D.H., Influence of copper loading and surface coverage on the reactivity of granular iron toward 1,1,1-trichloroethane, Environ. Sci. Technol.,2006,40:1485-1490.
    [122]Cwiertny D.M., Bransfield S.J., Livi K.J.T., Fairbrother D.H., Roberts A.L., Exploring the influence of granular iron additives on 1,1,1-trichloroethane reduction, Environ. Sci. Technol.,2006,40: 6837-6843.
    [123]Doktycz S.J., Suslick K.S., Interparticle collisions driven by ultrasound, Science,1990,247: 1067-1069.
    [124]Gompf B., Gunther R., Nick G., Pecha R., Eisenmenger W., Resolving sonoluminescence pulse width with time correlated single photons cattering, Phys.Rev.Lett.,1997,79:1405-1408.
    [125]Suslick K.S., Price G.J., Application of ultrasound to materials chemistry, Annu.Rev.Mater.Sci., 1999,29:295-326.
    [126]Liu H.N., Li G.T., Qu J.H., Liu H.J., Degradation of azo dye Acid Orange 7 in water by Fe0/granular activated carbon system in the presence of ultrasound, J. Hazard. Mater.,2007,144:180-186.
    [127]Hung H.M., Ling F.H., Hoffmann M.R., Kinetics and mechanism of the enhanced reductive degradation of nitrobenzene by elemental iron in the presence of ultrasound, Environ. Sci. Technol., 2000,34:1758-1763
    [128]Hung H.M., Hoffmann M.R., Kinetics and mechanism of the enhanced reductive degradation of CCl4 by elemental iron in the presence of ultrasound, Environ. Sci. Technol.,1998,32:3011-3016.
    [129]张选军,戴友芝,曹建平,等,纳米铁协同超声降解氯苯的研究,环境污染治理技术与设备,2004,5(8):32-34.
    [130]Abramovih R.A., Huang B.Z., Davis M., Peters L., Decomposition of PCB's and other polychlorinated aromatics in soil using microwave energy, Chemosphere,1998,37(8):1427-1436.
    [131]Chih G., Application of actived carbon in a microwave radiation field to treat trichloroethylene[J], Carbon,1998,36(11):1643-1648.
    [132]张国宇,王鹏,姜思朋,等,微波诱导氧化处理雅格素红BF-3B150%染料废水的研究[J].环境科学,2004,25(s):52-55.
    [133]王金成,薛大明,全燮,等,微波辐射处理活性艳蓝KN-R染料溶液的研究[J],环境科学学报,2001,21(5):628-630.
    [134]林莉,袁松虎,李泰平,等,微波技术处理焦化废水中的氨氮研究[J],环境科学与技术,2006,29(8):75-77.
    [135]蒋齐光,严莲荷,周申范,微波催化氧化法处理富马酸废水[J],化工环保,2005,25(3):217-220.
    [136]Jou C.J., Degradation of pentachlorophenol with zero-valence iron coupled with microwave energy, J. Hazard. Mater.,2008,152:699-702.
    [137]Oh S.Y., Chiu P.C., Kim B.J., Cha D.K., Zero-valent iron pretreatment for enhancing the biodegradability of RDX, Water Res.,2005,39:5027-5032.
    [138]Oh S.Y., Chiu P.C., Kim B.J., Cha D.K., Enhancing fenton oxidation of TNT and RDX through pretreatment with zero-valent iron, Water Res.,2003,37:4275-4283.
    [139]Shin K.H., Cha D.K., Microbial reduction of nitrate in the presence of nanoscale zero-valent iron, Chemosphere,2008,72:257-262.
    [140]Thomas J.M., Hernandez R., Kou C.H., Single-step treatment of 2,4-dinitrotoluene via zero-valent metal reduction and chemical oxidation, J. Hazard. Mater.,2008,155:193-198.
    [141]Rashid M.H., Mandal T.K., Synthesis and catalytic application of nanostructured silver dendrites, J. Phys. Chem. C,2007,111:16750-16760.
    [142]Wang X.Y., Chen C., Liu H.L., Ma J., Characterization and evaluation of catalytic dechlorination activity of Pd/Fe bimetallic nanoparticles, Ind. Eng. Chem. Res.,2008,47:8645-8651.
    [143]Bokare A.D., Chikate R.C., Rode C.V., Paknikar K.M., Iron-nickel bimetallic nanoparticles for reductive degradation of azo dye Orange G in aqueous solution, Appl. Catal. B-Environ.,2008,79: 270-278.
    [144]Matheson L.J., Tratnyek P.G., Reductive dehalogenation of chlorinated methanes by iron metal, Environ. Sci. Technol.,1994,28:2045-2053.
    [145]Graham L.J., Jovanovic G., Dechlorination of p-chlorophenol on a Pd/Fe catalyst in a magnetically stabilized fluidized bed, implications for sludge and liquid remediation, Chem. Eng. Sci.,1999,54: 3085-3093.
    [146]Goran N.J., Polona Z.P., Ploenpun S., Khaled A.K., Dechlorination of pchlorophenol in a microreactor with bimetallic Pd/Fe catalyst, Ind. Eng. Chem. Res.,2005,44:5099-5106.
    [147]吴德礼,马鲁铭,周荣丰,水溶液中氯代烷烃的催化还原脱氯研究,环境科学,2004,23(6):631-635.
    [148]Farrell J., Kason M., Melitas M., Li T., Investigation of the long-term performance of zero-valent iron for reductive dechlorination of trichloroethylene, Environ. Sci. Technol.,2000,34:514-521.
    [149]童少平,胡丽华,魏红,等,Ni/Fe二元金属脱氯降解对氯苯酚的研究,环境科学,2005,26(7):60-62.
    [150]Magee J.S., Dolbear G.E., Hydrotreating catalysts. In:Petroleum Catalysis in Nontechnical Language. PennWell Publishing Company, Tulsa, US,1998, Section Ⅱ, Chapter 7.
    [151]Jou C.J., Tai H.S., Application of granulated activated carbon packed-bed reactor in microwave radiation field to treat phenol, Chemosphere,1999,38:2667-2680.
    [152]Elsukov E.P., Rozanov K.N., Lomaeva S.F., Osipov A.V., Petrov D.A., Shuravin A.S., Chulkina A.A., Konygin G.N., Ul'yanov A.L., Microwave absorbing properties of Fe powders milled in various media, Phys. Met. Metallogr.,2008,106:465-471.
    [153]Pillai U.R., Sahle-Demessie E., Varma R.S., Hydrodechlorination of chlorinated benzenes in a continuous microwave reactor, Green Chem.,2004,6:295-298.
    [154]Hale R.C., Alaee M., Manchester-Neesvig J.B., Stapleton H.M., Ikonomu M.G. Polybrominated diphenyl ether flame retardants in the North American environment, Environ. Int.,2003,29:771-779.
    [155]Korytar P., Covaci A., Boer J., Gelbin A., Brinkman U.A.T., Retention-time database of 126 polybrominated diphenyl ether congeners and two bromkal technical mixtures on seven capillary gas chromatographic columns, J. Chromatogr. A,2005,1065:239-249.
    [156]Sun C.Y., Zhao D., Chen C.C., Ma W.H., Zhao J.C., TiO2-Mediated photocatalytic debromination of decabromodiphenyl ether:kinetics and ilntermediates, Environ. Sci. Technol.,2009,43:157-162.
    [157]Lag M., Omichinski J.G., Dybing E., Nelson S.D., Soderlund E.J., Mutagenic activity of halogenated propanes and propenes:effect of bromine and chlorine positioning, Chem.-Biol. Interact.,1994,93: 73-84.
    [158]DeWeese A.D., Schultz T.W., Structure-activity relationships for aquatic toxicity to Tetrahymena: halogen-substituted aliphatic esters, Environ. Toxicol.,2001,16:54-60.
    [159]Huang C.P., Wang Y.J., Chen C.Y., Toxicity and quantitative structure-activity relationships of nitriles based on Pseudokirchneriella subcapitata, Ecotox. Environ. Safe.,2007,67:439-446.
    [160]Szymanska J.A., Hepatotoxicity of brominated benzenes:relationship between chemical structure and hepatotoxic effects in acute intoxication of mice, Arch. Toxicol.,1998,72:97-103.
    [161]Bruchajzer E., Szymanska J.A., Piotrowski J.K., Acute and subacute nephrotoxicity of 2-bromophenol in rats, Toxicol. Lett.,2002,134:245-252.
    [162]Reineke N., Biselli S., Franke S., Francke W., Heinzel N., Hiihnerfuss H., Iznaguen H., Kammann U., Theobald N., Vobach M., Wosniok W., Brominated indoles and phenols in marine sediment and water extracts from the north and baltic seas-concentrations and effects, Arch. Environ. Con. Tox., 2006,51:186-196.
    [163]loan I., Wilson S., Lundanes E., Neculai A., Comparison of Fenton and sono-Fenton bisphenol A degradation, J. Hazard. Mater.,2007,142:559-563.
    [164]Namkung K.C., Burgess A.E., Bremner D.H., Staines H., Advanced Fenton processing of aqueous phenol solutions:A continuous system study including sonication effects, Ultrason. Sonochem.,2008, 15:171-176.
    [165]Guo Z.b., Feng R.. Ultrasonic irradiation-induced degradation of low-concentration bisphenol A in aqueous solution. J. Hazard. Mater..2009,163:855-860.
    [166]Tomlinson W.J.. Effect of ultrasonically induced cavitation on corrosion. In:Mason, T.J. (Ed.), Advances in Sonochemistry. Vol.1, Jai Press, London,1990, pp.173-195.
    [167]Zhou T., Li Y.Z., Ji J., Wong F.S., Lua X.H.. Oxidation of 4-chlorophenol in a heterogeneous zero valent iron/H2O2 Fenton-like system:Kinetic, pathway and effect factors. Sep. Purif. Technol..2008, 62:551-558.
    [168]Gozmen B., Oturan M.A., Oturan N., Erbatur O.. Indirect electrochemical treatment of bisphenol A in water via electrochemically generated Fenton's reagent. Environ. Sci. Technol..2003,37: 3716-3723.
    [169]Katsumata H., Kawabe S., Kaneco S., Suzuki T., Ohta K., Degradation of bisphenol A in water by the photo-Fenton reaction, J. Photoch. Photobio. A:Chemistry,2004,162:297-305.
    [170]Wu C.D., Liu X.H., Wei D.B., Fan J.C., Wang L.S., Photosonochemical degradation of phenol in water. Water Res.2001,35,3927-3933.
    [171]Schauer F., Henning K., Pscheidl H., Wittich R.M., Fortnagel P., Wilkes H., Sinnwell V., Francke W., Biotransformation of diphenyl ether by the yeast Trichosporon beigelii SBUG 752, Biodegradation, 1995,6:173-180.
    [172]Popov P., Getoff N., Grodkowski J., Zimek Z., Chmielewski A.G., Steady-state radiolysis and product analysis of aqueous diphenyloxide in the presence of air and N2O, Radiat. Phys. Chem.,2004, 69:39-44.
    [173]Bielski B.H.J., Cabelli D.E., Arudi R.L., Ross A.B., Reactivity of HO2/O2 radicals in aqueous solution, J. Phys. Chem. Ref. Data,1985,14:1041-1100.
    [174]Pijnenburg A.M.C.M., Evert J.W., de Boer J., Boon J.P., Polybrominated biphenyl and biphenyl ether flame retardants:analysis toxicity and environmental occurrence, Rev. Environ. Contain. Toxical., 1995,141:1-26.
    [175]Api A.M., Ford R.A., Evaluation of the dermal subchronic toxicity of diphenyl ether in the rat, Food Chem. Toxicol.,2003,41:259-264.
    [176]Lu G.H., Zhao Y.H., Yang S.G., Cheng X.J., Quantitative structure biodegradability relationships of substituted benzenes and their biodegradability in river water, B. Environ. Contain. Tox.,2002,69: 111-116.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700