功能化核壳型复合纳米颗粒的制备及其在生物医学研究中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复合纳米颗粒,尤其是核壳型复合纳米颗粒,克服了普通单组分纳米颗粒物质组成单一的不足,将不同物质所拥有的多种功能有机地结合在一起,显示出普通单组分纳米颗粒无可比拟的优越的理化性能,成为目前研究的热点。而且核壳型复合纳米颗粒在生化检测、医学成像、生物物质分离等生物医学领域显示出了广阔的应用前景。本论文瞄准这一重要的研究方向,在对当前迅速发展的复合纳米颗粒进行简要综述的基础上,以几种复合纳米颗粒的制备、性能表征及其在生物医学领域中的应用为主线,主要开展了以下几个方面的研究工作:
     一、生物功能化硅壳复合纳米颗粒结合PCR技术用于SARS病毒基因检测。在本研究小组硅壳复合纳米颗粒技术平台的基础上,发展了一种将生物功能化硅壳磁性复合纳米颗粒(SMNPs)和硅壳荧光复合纳米颗粒(SFNPs)与PCR技术相结合来检测SARS病毒基因的新方法。我们首先利用修饰了捕获探针的硅壳磁性复合纳米颗粒对目标cDNA进行纯化和富集,然后对纯化的目标进行对称PCR扩增,接着再次利用修饰了捕获探针的硅壳磁性复合纳米颗粒将PCR扩增中产生的目标cDNA的互补链除去,最后以修饰了报告探针的硅壳荧光复合纳米颗粒通过三明治核酸杂交方式对扩增的目标cDNA进行定量检测。研究结果表明,该方法能成功地检测到目标cDNA,检测限达到2×103 copy/ mL,整个检测程序可以在6个小时内完成。该方法利用硅壳磁性复合纳米颗粒来纯化和富集DNA目标链,降低了普通PCR方法在检测SARS病毒基因时所存在的假阳性和假阴性问题;同时,这种以硅壳荧光复合纳米颗粒为检测信号采用三明治杂交方式检测PCR产物的方法同时具备荧光纳米颗粒的高灵敏度和核酸杂交技术的特异性,有效解决了电泳和同位素标记等方法带来的安全隐患问题,结果直观、特异性强、灵敏度高,是一种具有潜力的核酸检测方法。
     二、Fe3O4@SiO2@Au核壳型复合纳米颗粒的制备及其在基因转染和细胞识别中的应用。
     在硅壳磁性纳米颗粒的基础上,以Fe3O4@SiO2纳米颗粒为内核材料,采用自组装和化学还原法进一步对其进行包壳,构建了一种新型的Fe3O4@SiO2@Au核壳型复合纳米颗粒。对这种新型的核壳型复合纳米颗粒进行透射电镜、动态光散射、能谱表征的结果表明,该颗粒兼具磁性和金的表面特性及光谱特性,粒径为120±11 nm,并且具有较好的分散性。细胞毒性测定的研究结果也表明这种纳米颗粒具有很好的生物亲和性。在进一步探讨Fe3O4@SiO2@Au核壳型复合纳米颗粒在基因转染和细胞识别方面的应用中发现,该种纳米颗粒在多聚赖氨酸的协助下可以成功介导基因转染,并且偶联上RGD肽后还可以对乳腺癌细胞进行很好的识别。这种金包覆的核壳型复合磁性纳米颗粒可望在生物医药、细胞分离、DNA检测等领域具有较好的应用前景。
     三、Fe3O4@Ag复合纳米颗粒的制备及其抑菌效果研究。
     利用反相微乳液法制备了一种既具有磁性又具有抑菌效果的双功能Fe3O4@Ag复合纳米颗粒。这种纳米颗粒由具有超顺磁性的Fe3O4内核和单质银外壳组成,大小均匀,尺寸在60 nm左右,分散性好,在pH中性的溶液中Zata电势为20.5 mV。Fe3O4@Ag复合纳米颗粒的抑菌性能测定结果表明,该种纳米颗粒对大肠杆菌、葡萄球菌、枯草杆菌等革兰氏阴性菌、革兰氏阳性菌和孢子菌的代表性细菌都具有很好的抑菌功能。同时,利用其超顺磁性,可以非常容易地将发挥杀菌作用后的纳米颗粒从水溶液中回收,使处理水达到银残留标准。而且这种已经发挥过杀菌功能的回收颗粒依旧具有一定的抑菌功能,可以回收再利用。这种Fe3O4@Ag复合纳米颗粒制备方法相对简单、理化性能稳定,抑菌效果好,有望发展成为一种水的抑菌剂。
     四、紫杉醇脂质体复合纳米颗粒的制备及其细胞靶向药效研究。
     通过超声薄膜法制备了一种可连接靶向配体的紫杉醇脂质体复合纳米颗粒。这种载药脂质体纳米颗粒主体是由磷脂双层膜构成的大单室中空小球,不溶于水的紫杉醇药物被包裹在磷脂双分子疏水层中间,其中脂双层中参杂有PEG化的磷脂和二棕榈酰磷脂酰乙醇胺-聚乙二醇-对硝基苯碳酸酯(DPPE-PEG-pNP)。部分磷脂的PEG化使得脂质体在体内将具有长循环特性,增加了药物的肿瘤内选择性滞留(EPR)效应。DPPE-PEG-pNP在相对温和的条件下进行水解将生物配体分子修饰到纳米颗粒表面从而使脂质体具有生物靶向功能。该脂质体纳米颗粒的粒径均一,分散性和稳定性都比较好,对药物的包封率也比较高。对体外细胞的靶向识别和靶向药效试验证实连接了靶向配体的紫杉醇复合脂质体纳米颗粒能对目标细胞进行靶向识别并具有一定的靶向药效。这种靶向的紫杉醇脂质体复合纳米颗粒有望发展成为一种优良的靶向纳米药物。
Composite nanoparticles, especially core-shell composite nanoparticles, have more unique chemical and physical properties due to the combination of binary or multi-component nanocomposites, compared with conventional single component nanoparticles. In recent years, various forms of core-shell composite nanoparticles have been synthesized and studied, and their applications in the fields of biology and medicine have gained increasing attention and shown broad prospect in medical imaging, molecular diagnosis, biomaterial separation, and so on. Aiming at this important research direction, this thesis mainly focused on the synthesis and biomedical applications of several core-shell composite nanoparticles. 1. The method combinated functionalized silica composite nanoparticles with PCR for SARS associated coronavirus gene detection.
     Rapid and sensitive detection of SARS associated coronavirus is critical for early diagnosis and control of severe acute respiratory syndrome. This study describes a method for the detection of SARS associated coronavirus gene by the combination of functionalized silica composite nanoparticles and PCR-based assay.
     In this method, the target cDNA of SARS associated coronavirus was firstly captured and enriched from the mixture of target cDNA and non-target cDNA by the use of the functionalized superparamagnetic silica composite nanoparticles. Additionally, the enriched target cDNA was amplified through a general symmetry PCR and then was selectively isolated from the double strands PCR products by applying the superparamagnetic silica composite nanoparticles again. Finally, we detected the amplified target cDNA by employing the functionalized silica coated fluorescent dyes composite nanoparticles as signal probes with a sandwich hybridization format. The results show that the target cDNA can be assayed successfully with a detection limit of 2×103 copy/mL and the nonspecific amplification can be inhibited. In addition, the detection procedure is rapid and can be completed in less than 6 h. Our results suggest that the approache would provide promising prospects for other pathogen detection.
     2. Preparation of Fe3O4@SiO2@Au core-shell composite nanoparticles and their potential applications in gene delivery and cells labeling.
     Bifunctional Fe3O4@SiO2@Au composite nanoparticles with core-shell structures were prepared by self-assembling and reducing Au nanoparticles onto the surface of Fe3O4@SiO2 nanoparticles. Transmission electron microscopy (TEM), energy dispersive X-ray spectrometer (EDS), dynamic light scattering (DLS), UV-vis spectrophotometer and vibrating sample magnetometer were employed to investigate the physical and chemical properties of Fe3O4@SiO2@Au core-shell composite nanoparticles. The characterization results demonstrated that the nanoparticles with average diameter of 120±11 nm showed both the magnetic properties come from Fe3O4 nanoparticles and the optical properties due to the introduce of Au nanoparticles, and could be well dispersed in aqueous solution. Experimental data about the toxicity of Fe3O4@SiO2@Au core-shell composite nanoparticles to cells have also confirmed that the nanocomposites have good biocompatibility for cells. These novol nanoparticles were used as vehicles for gene delivery or label for cells. The results suggested that the Fe3O4@SiO2@Au core-shell composite nanoparticles could mediate gene transfection and the cells labeled by the nanoparticles could be detected by flow cytometer (FCM).
     3. Preparation and antibacterial activity of Fe3O4@Ag composite nanoparticles.
     Bifunctional Fe3O4@Ag composite nanoparticles with both superparamagnetic and antibacterial properties were prepared by reducing silver nitrate on the surface of Fe3O4 nanoparticles using water-in-oil microemulsion method. Formation of well-dispersed nanoparticles with size of 60±20 nm was confirmed by transmission electron microscopy and dynamic light scattering. X-ray diffraction patterns and UV-visible spectroscopy indicated that both Fe3O4 and silver were present in the same particle. The superparamagnetism of Fe3O4@Ag composite nanoparticles was confirmed by vibrating sample magnetometer. Their antibacterial activity was evaluated by means of minimum inhibitory concentration value, flow cytometry, and antibacterial rate assays. The results showed that Fe3O4@Ag composite nanoparticles presented good antibacterial performance against Escherichia coli (gram-negative bacteria), Staphylcococcus epidermidis (gram-positive bacteria) and Bacillus subtilis (spore bacteria). Furthermore, Fe3O4@Ag composite nanoparticles can be easily removed from water by using magnetic field to avoid contamination of surroundings. Reclaimed Fe3O4@Ag composite nanoparticles can still hold antibacterial capability and be reused.
     4. Preparation and study on the effect of targeted drug delivery for paclitaxel-containing liposome composite nanoparticles.
     Paclitaxel-containing liposome composite nanoparticles were prepared by using film-ultrasonic method. The main body of paclitaxel-containing liposome composite nanoparticles was single hollow globules that were composed of soy bean phospholipids, cholesterol and hydrophobic paclitaxel that was entrapped in the interspace of a phospholipid bilayer. Additionally, some of dipalmitoyl phosphatidyl ethanolamine-polyethylene glycol (DPPE-PEG) and a small fraction of dipalmitoyl phosphatidyl ethanolamine-polyethylene glycol-p-Nitrophenylcarbonyl (DPPE-PEG-pNP) were contained in phospholipid bilayer, DPPE-PEG could increase the circulation time of drug in blood and pNP groups in DPPE-PEG-pNP allowed for the fast and efficient attachment of amino group-containing ligands on the surface of nanoparticles via the formation of the ethyl urethane (carbamate) bond, in which ligands could be bound to the surface of liposome composite nanoparticles and formed immunoliposomes. This kind of paclitaxel-containing liposomes has good dispersion morphology as well as physical stability, and the entrapment efficiency of the liposomes for paclitaxel is high. Based on the above work, applications of liposomes in targeted drug delivery were further studied; the results showed that the target paclitaxel-containing immunoliposomes could selectively recognized the target cells and were significantly more effective for the growth inhibition of tumor cell compared with non-target paclitaxel-containing liposome. These results indicated that the paclitaxel-containing liposome composite nanoparticles could be developing into a kind of good nanocomposite drug carriers.
引文
[1] Crandall B C. Nanotechnology: Molecular Speculations on Global Abundance. Cambridge: The MIT Press, 1996: 58-70
    [2] Crandall B C. Nanotechnology: Molecular Speculations on Global Abundance. Cambridge: The MIT Press, 1996: 58-70
    [3] Crandall B C, Lewis J. Nanotechnology: Research and Perspectives. Cambridge: The MIT Press, 1992: 40-42
    [4] 白春礼. 纳米科技及发展前景. 微纳电子技术, 北京: 化工工业出版社, 2002, 1(1): 2-5
    [5] 赖珍筌, 周斌, 王钰. 介观体系及其新进展, 自然杂志, 1998, 20(5): 259- 263
    [6] 李民乾. 纳米科学技术——面向 21 世纪的新科技. 物理, 1996, 21(2): 65-69
    [7] 解思深. 国际纳米科技发展动态. 北京: 科学技术部基础研究司, 2002: 15-47
    [8] Kelly K L. Nanotechnology grows up. Science, 2004, 304(5678): 1732-1734
    [9] 胡延义. 纳米技术及其应用. 天津通讯技术, 2000, 4(1): 11-13
    [10] 张立德. 纳米材料研究及其发展趋势和展望. 高科技与产业化, 1994, 5(4): 17-20
    [11] Leveque G, Martin O J F. Tunable composite nanoparticle for plasmonics. Opt. Lett., 2006, 31 (18): 2750-2752
    [12] Lin Y S, Wu S H, Hung Y, et al. Multifunctional composite nanoparticles: Magnetic, luminescent, and mesoporous. Chem. Mater., 2006, 18 (22): 5170-5172
    [13] Wang L, Chen H Q, Wang L Y, et al. Preparation and application of a novel composite nanoparticle as a protein fluorescence probe. Analyt. Lett., 2004, 37 (2): 213-223
    [14] Rawat J, Rana S, Srivastava R, et al. Antimicrobial activity of composite nanoparticles consisting of titania photocatalytic shell and nickel ferrite magnetic core. Mater. Sci. Eng. C: Biomim. Supramol. Syst., 2007, 27 (3): 540-545
    [15] Sun L, Sung K B, Dentinger C, et al. Composite organic-inorganic nanoparticles as Raman labels for tissue analysis. Nano. Lett., 2007, 7 (2): 351-356
    [16] 陈东煌. 复合奈米粒子. 科学发展, 2006, 408(12): 40-45
    [17] Leong K W, Mao H Q, Truong-Le V L, et al. DNA-polycation nanospheres as non-viral gene delivery vehicles. J. Control. Rel., 1998 , 53(1): 183-18
    [18] 闫仕农, 王永昌, 魏天杰等. 金/银合金纳米颗粒的制备及光学吸收特性. 功能材料与器件学报, 2005, 11(3): 269-272
    [19] 张世远. 新型纳米晶软磁合金及其应用. 磁性材料及器件, 2004, 35(2): 1-5
    [20] Hyeon T, Lee S S, Park J, et al. Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J. Am. Chem. Soc., 2001, 123(51): 12798-12801
    [21] Chen D H, Wu S H. Synthesis of nickel nanoparticles in water-in-oil microemulsions. Chem. Mater., 2000, 12(5): 1354-1360
    [22] 冶银平, 李建功, 陈建敏等. Y-TZP 纳米陶瓷的制备、结构及力学性能. 兰州理工大学学报, 2007, 33 (5): 6-10
    [23] 徐辉碧, 杨祥良, 谢长生等. 纳米技术在中药研究中的应用. 中国药科大学学报, 2001, 32 (3): 161-165
    [24] 杨孟君. 纳米牛黄上清制剂药物及其制备方法. 中国专利: CN1365774, 专利申请日: 20010119
    [25] 徐辉碧, 杨祥良,黄开勋.雄黄抑制小鼠肉瘤 S180 的尺寸散应的初步研究. 武汉大学学报, 2000, 1(1): 288-289
    [26] 边可君 , 杨祥良 , 徐辉碧等 . 纳米石决明的研究 . 中成药 , 2003, 25(4): 296-299
    [27] 杨文胜, 高明远, 白玉白等. 纳米材料与生物技术. 北京: 化学工业出版社, 2005: 154-166
    [28] 喻发全. 核-壳型复合结构纳米粒子研究进展. 现代化工, 2004, 24(2): 12-15
    [29] 刘世荣, 黄伟其, 秦朝建等. 氧化硅层中的锗纳米晶体团簇量子点. 物理学报, 2006, 55(5): 2488-2491
    [30] Santra S, Tapec R, Theodoropoulou N. Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: The Effect of Nonionic Surfactants. Langmuir, 2001, 17(10): 2900-2906
    [31] 刘海弟, 赵璇, 陈运法. 纳米磁性 Fe3O4-SiO2 复合材料的制备和表征. 化学研究, 2007, 18(2): 21-23
    [32] 崔爱莉, 王亭杰, 金涌等. 二氧化钛表面包覆氧化硅纳米膜的热力学研究. 高等学校化学学报, 2001, 22(9): 1543-1545
    [33] 何晓晓, 陈基耘, 王柯敏等. 吲哚类菁染料 Cy3 嵌入的核壳荧光纳米颗粒的制备及其性质研究. 高等学校化学学报, 2006, 26(10): 1835-1839
    [34] 原茵, 何晓晓, 王柯敏等. 嵌合异硫氰酸罗丹明 B 核壳荧光纳米颗粒制备的新方法研究. 高等学校化学学报, 2005, 26 (3): 446-448
    [35] 何晓晓, 王柯敏, 谭蔚泓等. 基于生物荧光纳米颗粒的新型荧光标记方法及其在细胞识别中的应用. 科学通报, 2001, 46 (16): 1353-1356
    [36] 段菁华, 王柯敏, 何晓晓等. 基于核壳荧光纳米颗粒的一种新型纳米 pH 传感器. 湖南大学学报:自然科学版, 2003, 30 (2): 1-5
    [37] Ohulchanskyy T Y, Roy I, Goswami L N, et al. Organically modified silica nanoparticles with covalently incorporated photosensitizer for photodynamic therapy of cancer. Nano. Lett., 2007, 7(9): 2835-2842
    [38] Bell A T. The Impact of nanoscience on heterogeneous catalysis. Science, 2003, 299(5613): 1688-1691
    [39] Aiken III J D, Finke R G. A review of modern transition-metal nanoclusters: their synthesis, characterization, and applications in catalysis. J. Mol. Catal. A., 1999, 145(2): 1-44
    [40] Caruso F. Nanoengineering of particle surfaces. Adv. Mater., 2001, 13(1): 11-22
    [41] Lu P, Teranishi T, Toshima N, et al. Polymer-protected Ni/Pd bimetallic nano-clusters: preparation, characterization and catalysis for hydrogenation of nitrobenzene. J. Phys. Chem. B., 1999, 103(44): 9673-9682
    [42] Henglein A. Preparation and optical absorption spectra of AucorePtshell and PtcoreAushell colloidal nanoparticles in aqueous solution. J. Phys. Chem. B, 2000, 104(10): 2201-2203
    [43] Jin Y D, Shen Y, Dong S, et al. Electrochemical design of ultrathin Platinum-coated gold nanoparticle monolayer films as a novel nanostructured electrocatalyst for oxygen reduction. J. Phys. Chem. B., 2004, 108(24): 8142-8147
    [44] 王然, 何宝林, 刘光荣等. 铂钯双金属纳米催化剂的催化活性. 中南民族大学学报, 2006, 25(1): 1-4
    [45] Saikat M, Anandrao B M, Murali S, et al. Keggin ion-mediated synthesis of aqueous phase-pure Au@Pd and Au@Pt core-shell nanoparticles. J. Mater. Chem., 2004, 14(1): 2868-2872
    [46] Hodak J H, Henglein A, Hartland G V. Tuning the spectral and temporal response in PtAu core-shell nanoparticles. J. Chem. Phys., 2001, 114(6): 2760-2765
    [47] 端木云, 张宇, 马明等. Fe/Au 核壳复合纳米粒子的制备及表征. 东南大学学报, 2004, 34(3): 340-343
    [48] Selvakannan P R, Swami A ,Srisathiyanarayanan D, et al. Synthesis of aqueous Au core-Ag shell nanoparticles using tyrosine as a pH-dependent reducing agent and assembling phase transferred silver nanoparticles at the air water interface. Langmuir, 2004, 20 (18): 7825-7836
    [49] 端木云, 张宇, 马明等. Fe/Au 核壳复合纳米粒子的制备及表征. 东南大学学报, 2004, 34(3): 340-343
    [50] 周学永, 陈守文, 喻子牛. 医药和农药纳米剂型研究和应用. 化学与生物工程, 2004, 21(1): 4-6
    [51] 师少军 李忠芳, 曾繁典. 载药纳米微粒的研究进展. 中国临床药理学杂志, 2004,20(5): 395-398
    [52] 谭忠华. 载药纳米微粒靶向输送和控释系统的研究进展. 国外医学放射医——核医学分册, 2003, 27(5) : 204-207
    [53] 邹江, 孙慧. 纳米控释紫杉醇对小鼠乳癌的凋亡诱导研究. 中国肿瘤临床, 2007, 34(7): 407-410
    [54] 陈江浩, 李郁, 凌瑞等. 阿霉素纳米脂质体不同途径给药治疗晚期兔 VX2乳腺移植癌模型. 中华医学杂志, 2005, 85(43): 3039-3042
    [55] Stoeva S, Huo F, Lee J, et al. Three-layer composite magnetic nanoparticle probes for DNA. J. Am. Chem. Soc., 2005, 127 (44): 15362-15363
    [56] Parak W J, Gerion D, Pellegrino T, et al. Biological applications of colloidal nanocrystals. Nanotechnology, 2003, 14(7): 15–27
    [57] Quaroni L, Chumanov G. Preparation of polymer-coated functionalized silver nanoparticles. J. Am. Chem. Soc., 1999, 121(45): 10642-10643
    [58] 于乃森, 李玲, 郝霄鹏等. 核壳型复合半导体纳米粒子的研究. 材料科学与工程学报, 2004, 22(3): 432-435
    [59] 崔铮.微纳米加工技术及其应用. 北京: 高教出版社, 2005: 43-79
    [60] 王鸣阳 郭成言 葛璜等 纳米技术手册. 北京: 高教出版社, 2005: 16-59
    [61] 刘吉平, 郝向阳. 纳米科学与技术. 北京: 科学出版社, 2002: 16-73
    [62] Link S, Wang Z L, EI-Sayed M A. Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition. J. Phys. Chem. B., 1999, 103(18): 3529 -3533
    [63] Chen J, McLellan J M, Siekkinen A., et al. Facile synthesis of gold-silver nanocages with controllable pores on the surface. J. Am. Chem. Soc., 2006, 128 (46):14776-14777
    [64] Mallin M P, Murphy C J. Solution-phase synthesis of sub-10 nm Au-Ag alloynanoparticles. Nano. Lett., 2002, 2 (11): 1235-1237
    [65] Toshima N, Yonezawa T. Bimetallic nanoparticles-novel materials for chemical and physical applications .New J. Chem.,1998, 22(11): 1179-1201
    [66] 邹翠娥, 华南平, 甘玉琴等. Pt@Ag/Pt 复合型纳米颗粒的合成与表征. 化学研究与应用, 2005, 17(6):796-798
    [67] 刘大勇, 任山, 闻立时. 液相制备纳米金属粉的粒度及形貌控制研究进展. 材料导报, 2006, 20(1): 135-137
    [68] 刘惠玉, 陈东, 高继宁. 贵金属纳米材料的液相合成及其表面等离子体共振性质应用. 化学进展, 2006, 18 (8): 889-896
    [69] Fan J L, Huang B Y, Qu X H. W2Ni2Fe nanostructure materials synthesized by high energy ball milling. Trans. Nonferrous Met. Soc. China, 2000, 10(1): 57-59
    [70] 张阳德. 纳米药物学. 北京: 化学工业出版社, 2005: 43-66
    [71] Pileni M P. The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nature Mater., 2003, 2(3): 145-150
    [72] Lisiecki I, Pileni M P. Synthesis of well-defined and low size distribution cobalt nanocrystals: the limited influence of reverse micelles. Langmuir, 2003, 19(22): 9486-9489
    [73] Zhang J, Liu Z, Han B, et al. Preparation of polystyrene-encapsulated silver nanorods and nanofibers by combination of reverse micelles, gas antisolvent, and ultrasound techniques. J. Phys. Chem. B., 2004, 108(7): 2200-2204
    [74] Piletic I R, Moilanen D E, Spry D B, et al. Testing the Core/Shell model of nanoconfined water in reverse micelles using linear and nonlinear IR spectroscopy. J. Phys. Chem. A., 2006, 110(34): 10369-10369
    [75] Klymchenko A S, Demchenko A P. Probing AOT reverse micelles with two-color fluorescence dyes based on 3-hydroxychromone. Langmuir, 2002, 18(15): 5637-5639
    [76] Pastoriza-Santos I, Koktysh D S, Mamedov A A, et al. One-pot synthesis of Ag@TiO2 core-shell nanoparticles and their layer-by-layer assembly. Langmuir, 2000, 16(6): 2731-2735
    [77] Tom R T, Nair A S, Singh N, et al. Freely dispersible Au@TiO2, Au@ZrO2, Ag@TiO2, and Ag@ZrO2 core-shell nanoparticles: one-step synthesis, characterization, spectroscopy, and optical limiting properties. Langmuir, 2003, 19(8): 3439-3445
    [78] Liz-Marzan L M, Giersig M, Mulvaney P. Synthesis of nanosized gold-silicacore-shell particles. Langmuir, 1996, 12(18): 4329-4335
    [79] Lyon J L, Fleming D A, Stone M B. Synthesis of Fe oxide core/Au shell nanoparticles by iterative hydroxylamine seeding. Nano. Lett., 2004, 4(4): 719-723
    [80] 聂波, 张建成, 沈悦等. 反相微乳液法制备 CdS/ZnS 纳米晶及其表征. 人工晶体学报, 2006, 35 (3): 588-593
    [81] 何晓晓, 王柯敏, 谭蔚泓等. 超顺磁性 DNA 纳米富集器应用于痕量寡聚核苷酸的富集. 高等学校化学学报, 2003, 24(1): 40-42
    [82] Yang Y, Jing L, Yu X, et al. Coating aqueous quantum dots with silica via reverse microemulsion method: toward size-controllable and robust fluorescent nanoparticles. Chem. Mater., 2007, 19(17): 4123-4128
    [83] Lu X. 纳米壳层的光学特征. 激光与光电子学进展, 2003, 40 (11): 17-21
    [84] Dubertret B, Skourides P, Norris D J, et al. In Vivo Imaging of quantum dots encapsulated in phospholipid micelles. Science, 2002, 298(5599):1759-1762
    [85] 程志鹏, 杨毅, 刘小娣等. 核壳结构纳米双金属粒子的制备进展. 现代化工, 2006, 26 (17): 18-21
    [86] Huang C C, Yang Z, Chang H T. Synthesis of dumbbell-shaped Au-Ag core-shell nanorods by seed-mediated growth under alkaline conditions. Langmuir, 2004, 20 (15): 6089-6092
    [87] Cao L Y, Tong L M, Diao P, et al. Kinetically controlled Pt deposition onto self-assembled Au colloids: Preparation of Au (Core)-Pt (Shell) nanoparticle assemblies. Chem. Mater., 2004, 16(17): 3239 - 3245
    [88] Xu Z Z, Wang C C. Yang W et al. Encapsulation of nanosized magnetic iron oxide by polyacrylamide via inverse miniemulsion polymerization. J. Mag. Mag. Mater., 2004, 277(1): 136-143
    [89] Angel P D ,Dominguez J M, Angel G D, et al. Aggregation state of Pt-Au/C bimetallic catalysts prepared by surface redox reactions. Langmuir, 2000, 16(18): 7210-7217
    [90] Gao X, Cui Y, Levenson R M, et al. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol., 2004, 22(8): 969-976
    [91] Schüler D, Frankel R B. Formation of magnetosomes in magnetotactic bacteria. J. Molec. Microbiol. Biotechnol., 1999, 1(1): 79-86
    [92] 李文兵, 余龙江, 周蓬蓬等. 趋磁细菌的磁小体. 中国生物工程杂志, 2005, 25(7): 21-27
    [93] Dameron C T, Reese R N, Mehra R K, et al. Biosynthesis of cadmium sulphidequantum semiconductor crystallites. Nature, 1989, 338 (6216): 596-597
    [94] 张昊然,李清彪,孙道华等. 纳米级银颗粒的制备方法. 贵金属, 2005, 26(2): 51-56
    [95] 张阳德. 纳米生物技术学. 北京: 科学出版社, 2005 : 12-65
    [96] Clark H A, Kopelman R, Tjalkens R, et al. Optical nanosensor for chemical analysis inside single living cells. 2. Sensors for pH and calcium and the intracellular application of PEBBLE sensors. Anal. Chem., 1999, 71(21): 4837-4843
    [97] Clark H A, Hoyer M, Parus S, et al. Optochemical nanosensors and subcellular applications in living cells. Mikrochim. Acta., 1999, 131(1): 121-128
    [98] Clark H A, Hoyer M, Philbert M A, et al. Optical nanosensor for chemical analysis inside single living cells.1. Fabrication, characterization, and methods for intracellular delivery of PEBBLE sensors. Anal. Chem., 1999, 71(21): 4831-4836
    [99] Xu H, Aylott J W, Kopelman R, et al. A real-time ratiometric method for the determination of molecular oxygen inside living cells using sol-gel-based spherical optical nanosensors with applications to rat C6 glioma. Anal. Chem., 2001, 73(17): 4124-4133
    [100] Park E J, Brasuel M, Behrend C, et al. Ratiometric optical PEBBLE nanosensors for real-time magnesium ion concentrations inside viable cells. Anal. Chem., 2003, 75(15): 3784-3791
    [101] Brasuel M, Kopelman R, Miller T J, et al. Fluorescent nanosensors for intracellular chemical analysis: Decyl methacrylate liquid polymer matrix and ion-exchange-based potassium PEBBLE sensors with real-time application to viable rat C6 glioma cells. Anal. Chem., 2001, 73 (10): 2221-2228
    [102] Ji J, Rosenzweig N, Jones I, et al. Molecular oxygen-sensitive fluorescent lipobeads for intracellular oxygen measurements in murine macrophages. Anal. Chem., 2001, 73(15): 3521-3527
    [103] Tanton T A, Mirkin C A, Letsinger R L, et al. Scanometric DNA array detection with nanoparticle probes. Science, 2000, 289(8):1757-1759
    [104] Elghanian R, Storhoff J J, Mucic R C, et al. Selective colormetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science, 1997, 277(5329): 1078-1081
    [105] Storhoff J J, Lucas A D, GarimellaV, et al. Homogeneous detection of unamplified genomic DNA sequences based on colorimetric scatter of goldnanoparticle probes. Nature Biotech., 2004, 22(7): 883-887
    [106] Mitchell G P, Mirkin, C A, Letsinger R L. Programmed assembly of DNA functionalized quantum dots. J. Am. Chem. Soc., 1999, 121(35): 8122-8123
    [107] Pathak S, Choi S K, Arnheim N, et al. Hydroxylated quantum dots as luminescent probes for in situ hybridization. J. Am. Chem. Soc., 2001, 123(17): 4103-4104
    [108] Mahtab R, Rogers J P, Murphy C J. Protein-Sized quantum dot luminescence can distinguish between "straight", "bent", and "kinked" oligonucleotides. J. Am. Chem. Soc., 1995, 117(35): 9099-9100
    [109] Zhao X, Tapec-Dytioco R, Tan W. Ultrasensitive DNA detection using highly fluorescent bioconjugated nanoparticles. J. Am. Chem. Soc., 2003, 125(38): 11474-11475
    [110] Taylor J R, Fang M M, Nie S. Probing specific sequences on single DNA molecules with bioconjugated fluorescent nanoparticles. Anal. Chem., 2000, 72(9): 1979-1986
    [111] Schultz S, Smith D R, Mock J J, et al. Single-target molecule detection with nonbleaching multicolor optical immunolabels. Proc. Natl. Acad. Sci. USA, 2000, 97(3): 996-1001
    [112] H?rm? H, Soukka T, L?vgren T. Europium nanoparticles and time-resolved fluorescence for ultrasensitive detection of prostate-specific antigen. Clinic. Chem., 2001, 47(3): 561–568
    [113] Soukka T, Paukkunen J, H?rm? H, et al. Supersensitive time-resolved immunofluorometric assay of free prostate-specific antigen with nanoparticle label technology. Clinic. Chem., 2001, 47(7): 1269-1278
    [114] Sun B Q, Xie W Z, Yi G S, et al. Microminiaturized immunoassays using quantum dots as fluorescent label by laser confocal scanning fluorescence detection. J. Immunol. Methods, 2001, 24(1): 85-89
    [115] Grecco H E, Lidke K A, Heintzmann R, et al. Ensemble and single particle photophysical properties (two-photon excitation, anisotropy, fret, lifetime, spectral conversion) of commercial quantum dots in solution and in live cells. Microsc. Res. Tech., 2004, 65(4): 169-179
    [116] Brus L. Electronic Wave functions in semiconductor clusters: experiment and theory. J. Phys. Chem., 1986, 90(112): 2555-2560
    [117] Levy M, Cater S F, Ellington A D. Quantum-dot aptamer beacons for the detection of proteins. Chem. Bio. Chem., 2005, 6(1):1-4
    [118] Zhao X, Hilliard L R, Mechery S J, et al. A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles. Proc. Natl. Acad. Sci. USA, 2004,101(42): 15027-15032
    [119] 谭蔚泓, 王柯敏, 秦迪岚等. 采用荧光纳米颗粒检测结核杆菌的方法. 中国专利: CN2004100468060, 申请日期: 20040928
    [120] 爱玲, 张悦, 李爱霞. ELISA 法与胶体金法检测健康人群抗-HCV 的实验研究. 中国卫生检验杂志, 2004, 14 (1): 21-21
    [121] Perez J M, Simeone F J, Saeki Y, et al. Viral-induced self-assembly of magnetic nanoparticles allows the detection of viral particles in biological media. J. Am. Chem. Soc., 2003, 125(34): 10192-10193
    [122] Wu X, Liu H, Liu J, et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nature Biotech., 2003, 21(1): 41-46
    [123] Chen H, Titushkin I, Stroscio M, et al. Altered membrane dynamics of quantum dot-conjugated integrins during osteogenic differentiation of human bone marrow derived progenitor cells. Biophys. J., 2007, 92(4):1399-1408
    [124] Dahan M, Lévi S, Luccardini C, et al. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science, 2003, 302(5644): 442-445
    [125] Kriete A, Papazoglou E, Edrissi B, et al. Automated quantification of quantum-dot-labelled epidermal growth factor receptor internalization via multiscale image segmentation. J. Micros., 2006, 222(1): 22-27
    [126] Akerman M E, Chan W C W, Laakkonen P, et al. Nanocrystal targeting in vivo. Proc. Natl. Acad. Sci. USA, 2002, 99 (20): 12617-12621
    [127] Daniel R L, Warren R Z, Rebecca M W, et al. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science, 2003, 300(5624): 1434-1436
    [128] Lim Y T. Selection of quantum dot wavelengths for biomedical assays and imaging. Mol. Imag., 2003, 2 (1): 50-64
    [129] Santra S, Zhang P, Wang K M, et al. Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers. Anal. Chem., 2001, 73(20): 4988-4993
    [130] Tapec R, Zhao J, Tan W H, et al. Development of organic dye-doped silica nanoparticles for bioanalysis and biosensors. J. Nanotech. and Nanosci., 2002, 2(3): 405-409
    [131] Shi H, He X, Wang K, et al. Rhodamine B isothiocyanate doped silica-coatedfluorescent nanoparticles (RBITC-DSFNPs)-based bioprobes conjugated to Annexin V for apoptosis detection and imaging. Nanomedicine-NBM., 2007, 1-7
    [132] Peng J, He X, Wang K, et al. Noninvasive monitoring of intracellular pH change induced by drug stimulation using silica nanoparticle sensors. Anal. Bioanal. Chem., 2007, 388(3): 645–654
    [133] Cognet L, Tardin C, Boyer D, et al. Single metallic nanoparticle imaging for protein detection in cells. Proc. Natl. Acad. Sci. USA, 2003, 100(20): 11350-11355
    [134] 赵喜平. 磁共振成像原理及其应用. 北京: 科学出版社, 2005: 4-10
    [135] 朱青峰, 耿左军, 赵丹妮等. 28 例低颅压综合征磁共振成像表现的研究. 临床荟萃, 2007, 22 (14): 1030-1031
    [136] 杨华, 赵建农, 张小明. 超顺磁性氧化铁微粒在分子影像学中的研究现状. 国外医学: 临床放射学分册, 2007, 30 (4): 221-223
    [137] Mathias H, Ekkehard K S, James B, et al. Monitoring of implanted stem cell migration in vivo: A highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat. Proc. Natl. Acad. Sci. USA, 2002, 99(25): 16267-16272
    [138] Reynolds C H, Annan N, Beshah K, et al. Gadolinium-loaded nanoparticles: new contrast agents for magnetic resonance imaging. J. Am. Chem. Soc., 2000, 122(37): 8940-8945
    [139] Choi H, Choi S R, Zhou R, et al. Iron oxide nanoparticles as magnetic resonance contrast agent for tumor imaging via folate receptor-targeted delivery. Acad. Radiol., 2004, 11(9): 996-1004
    [140] Dodd C H, Hsu H C, Chu W J, et al. Normal T-cell response and in vivo magnetic resonance imaging of T cells loaded with HIV transactivator-peptide-derived superparamagnetic nanoparticles. J. Immunol. Methods, 2001, 256(1): 89-105
    [141] 汤庆超, 王锡山. 纳米药物应用于肿瘤治疗的研究进展. 实用肿瘤学杂志, 2006, 20(5): 441-443
    [142] Karel U, Vladimir S. Polymeric anticancer drugs with pH-controlled activation. Adv. Drug Deliv. Rev., 2004, 56(7): 1023-1050
    [143] Roy I, Ohulchanskyy T Y, Pudavar H E. Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy. J. Am. Chem. Soc., 2003, 125(26): 7860-7865
    [144] Farokhzad O C, Cheng J, Teply B A, et al. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc. Natl. Acad. Sci. USA, 2006, 103 (16): 6315–6320
    [145] Farokhzad O C, Jon S, Khademhosseini A, et al. Nanoparticle-aptamer bioconjugates: A new approach for targeting prostate cancer cells. Cancer Rese., 2004, 64(1): 7668–7672
    [146] 孙燕. 肿瘤内科治疗的回顾和展望. 国外医学肿瘤学分册, 2000, 27(1): 5-11
    [147] Lubbe AS, Bergemann C, Riess H, et al. Clinical experiences with magnetic drug targeting-A phase I study with 4’-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res., 1996, 56(20): 4686-4693
    [148] 顾健人, 曹雪涛. 基因治疗. 北京: 科学出版社, 2001: 1-3
    [149] Anderson W F. Human gene-therapy. Science, 1992, 256(5058): 808-813
    [150] 孙树汉. 基因工程原理与方法. 北京: 人民军医出版社, 2001: 245-252
    [151] Felgner P L, Gadek T R, Holm M, et al. Lipofection-a highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl. Acad. Sci. USA, 1987, 84 (21): 7413-7417
    [152] Nakanishi M, Noguchi A. Confocal and probe microscopy to study gene transfection mediated by cationic liposomes with a cationic cholesterol derivative. Adv. Drug Deliv. Rev., 2001, 52(3): 197–207
    [153] Noh C H, Uhm T, Oh S M, et al. Treatment of prostate cancer by systemic delivery of p53 and importin genes by using liposome. Eur. Urol. Suppl., 2003, 2(1): 35
    [154] Aoyama Y, Kanamori T, Nakai T, et al. Artificial viruses and their application to gene delivery: size-controlled gene coating with glycocluster nanoparticles. J. Am. Chem. Soc. , 2003, 125(12): 3455-3457
    [155] Roy I, Mitra S, Maitra A, et al. Calcium phosphate nanoparticles as novel non-viral vectors for targeted gene delivery. Int. J. Pharm., 2003, 250(1): 25-33
    [156] Zhu S H, Huang B Y, Zhou K C, et al. Hydroxyapatite nanoparticles as a novel gene carrier. J. Nano Res., 2004, 6(1): 307-311
    [157] Sandhu K K, McIntosh C M, Simard J M, et al. Gold nanoparticles mediated transfection of mammalian cells. Bioconjug. Chem., 2002, 13(1): 3-6
    [158] 向娟娟, 阮建明, 李桂源等. 用氧化铁磁性纳米颗粒作为基因载体的研究. 癌症, 2001, 20(10): 1009-1014
    [159] Kneuer C, Sameti M, Haltner E, et al. Silica nanoparticles modified withamino- silanes as carriers for plasmid DNA. Int. J. pharm., 2000, 196(2): 257-261
    [160] Kneuer C, Sameti M, Bakowsky U, et al. A nonviral DNA delivery system based on surface modified silica-nanoparticles can efficiently transfect cells in vitro. Bioconjug. Chem., 2000, 11(6): 926-932
    [161] Roy I, Ohulchanskyy T, Bharali D, et al. Optical tracking of organically modified silica nanoparticles as DNA carriers: A nonviral nanomedicine approach for gene delivery. Proc. Natl. Acad. Sci. USA, 2005, 102(2): 279-284
    [162] He X X, Wang K M, Tan W H, et al. Bioconjugated nanoparticles for DNA Protection from Cleavage. J. Am. Chem. Soc., 2003, 125(24): 7168-7169
    [163] Peng J, He X, Wang K, et al. An antisense oligonucleotide carrier based on amino silica nanoparticles for antisense inhibition of cancer cells. Nanomedicine: NBM., 2006, 2(2):113-120
    [164] 孙彦. 生物分离工程. 北京: 化学工业出版社, 1998: 45-80
    [165] Maier M, Fritz H, Gerster M, et al. Quantitation of phosphorothioate oligonucleotides in human blood plasma using a nanoparticle-based method for solid-phase extraction. Anal. Chem.,1998, 70(11): 2197-2204
    [166] Zhao X, Tapec-Dytioco R, Wang K, et al. Collection of trace amounts of DNA/mRNA molecules using genomagnetic nanocapturers. Anal. Chem., 2003, 75(14): 3476-3483
    [167] Xu C J, Xu K M, Gu H W, et al. Nitrilotriacetic acid-modified magnetic nanoparticles as a general agent to bind histidine-tagged proteins. J. Am. Chem. Soc., 2004, 126 (11): 3392-3393
    [168] Chen C, Chen Y. Fe3O4/TiO2 Core/Shell nanoparticles as affinity probes for the analysis of phosphopeptides using TiO2 surface-assisted laser desorption/ionization mass spectrometry. Anal. Chem., 2005, 77 (18): 5912 -5919
    [169] Bucak S, Jones D A, Laibinis P E, et al. Protein separations using colloidal magnetic nanoparticles. Biotechnol. Prog., 2003, 19(2): 477-484
    [170] Safarik I, Safarikova M. Use of magnetic techniques for the isolation of cells. J Chromatogr. B, 1999, 722(1): 33-53
    [171] Sonti S V, Bose A. Cell separation using protein-A-coated magnetic nanoclusters. J. Colloid Interf. Sci., 1995, 170(2): 575-585
    [172] 张立德, 牟季美. 纳米材料学. 辽宁: 辽宁科学技术出版社, 1994: 101-167
    [173] Gu H W, Ho P L, Tsang K W T, et al. Using biofunctional magneticnanoparticles to capture vancomycin-resistant enterococci and other gram-postive bacterial at ultralow concentration. J. Am. Chem. Soc., 2003, 125 (51): 15702-15703
    [174] Xie H, Zuo C, Liu Y, et al. Cell-targeting multifunctional nanospheres with both fluorescence and magnetism. Small, 2005, 1(5): 506-509
    [175] Wang G, Song E, Xie H, et al. Biofunctionalization of fluorescent- magnetic- bifunctional nanospheres and their applications. Chem. Commun., 2005, 34 (1): 4276-4278
    [176] Herr J K, Smith J E, Medley C D, et al. Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells. Anal. Chem., 2006, 78 (9): 2918-2924
    [177] Ksiazek T G, Erdman D, Goldsmith C S, et al. A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med., 2003, 348(20): 1953-1966
    [178] Drosten C, Gunther S, Preiser, et al. Identification of a novel coronavirus in patientswith severe acute respiratory syndrome. N. Engl. J. Med., 2003, 348(20): 1967-1976.
    [179] Rosling L, Rosling M. Pneumonia causes panic in Guangdong province. B.M.J., 2003, 326(7386): 416-416
    [180] Leung C W, Chiu W K. Clinical picture, diagnosis, treatment and outcome of severe acute respiratory syndrome (SARS) in children. Paediatr. Respir. Rev., 2004, 5(4): 275-288.
    [181] Wu H S, Chiu S C, Tseng T C, et al. Serologic and molecular biologic methods for SARS-associated coronavirus infection. Taiwan. Emerg. Infect. Dis., 2004, 10(12): 304–310.
    [182] Wang Y D, Li Y, Xu G B, X. et al. Detection of antibodies against SARS-CoV in serum from SARS-infected donors with ELISA and Western blot. Clin. Immunol., 2004, 113(2): 145-150
    [183] He Q, Chong K H, Chong H H, et al. Development of a Western blot assay for detection of antibodies against coronavirus causing severe acute respiratory syndrome. Clin. Diagn. Lab. Immunol., 2004, 11(2): 417–422
    [184] White T J, Madej R, Persing D H. The polymerase chain reaction: clinical applications. Adv. Clin. Chem., 1992, 29(7): 161–196
    [185] Ivnitski D, O’Neil D J, Gattuso A, et al. Nucleic acid approaches for detection and identification of biological warfare and infectious disease agents.Biotechniques, 2003, 35(4): 862-869
    [186] Simon T. PCR and the detection of microbial pathogens in water and wastewater. Wat. Res., 1999, 33(17): 3545-3556
    [187] Mcintosh K. The SARS coronavirus: rapid diagnostics in the limelight. Clin. Chem., 2003, 49(6): 845-846
    [188] Poon L L, Wong O K, Luk W. Rapid diagnosis of a coronavirus associated with severe acute respiratory syndrome.Clin. Chem., 2003, 49(6): 953-955
    [189] Lin J S, Tsen H Y. Development and use of polymerase chain reaction for the specific detection of Salmonella Typhimurium in stool and food samples. J. Food Prot., 1999, 62(10): 1103-1110
    [190] Alvarez J, Sota M, Vivanco A B, et al. Development of a multiplex PCR technique for detection and epidemiological typing of Salmonella in human clinical samples. J. Clin. Microbiol., 2004, 42(4):1734-1738
    [191] Knoll S, Vogel R F, Niessen L. Identification of Fusarium graminearum in cereal samples by DNA detection test stripsTM. Lett. Appl. Microbiol., 2002, 34(2): 144-148
    [192] Zhou Y M, Yang R Q, Tao S C, et al. The design and application of DNA chips for early detection of SARS-CoV from clinical samples. J. Clin. Virol., 2005, 33(2): 123-131
    [193] Kido C, Murano S, Tsuruoka M. Rapid and simple detection of PCR product DNA:A comparison between southern hybridization and fluorescence polarization analysis.Gene, 2000, 259(1): 123-127
    [194] Tombelli S, Mascini M, Braccini L, et al. Coupling of a DNA piezoelectric biosensor and polymerase chain reaction to detect apolipoprotein E Polymorphisms. Biosens. Bioelectron., 2000,15(7): 363-370
    [195] Marrazza G, Chiti G, Mascini M, et al. Detection of human apolipoprotein e genotypes by DNA electrochemical biosensor coupled with PCR. Clin. Chem., 2000, 46(1): 31-37
    [196] Giakoumaki E, Minunni M, Tombelli S, et al. Combination of amplification and post-amplification strategies to improve optical DNA sensing. Biosens. Bioelectron., 2003, 19 (4): 337-344
    [197] Gorelov V N, Roher H D, Goretzki P E. A method to increase the sensitivity of mutation specific oligonucleotide hybridization. using asymmetric polymerase-chain reaction (PCR). Biochem. Biophys. Res. Commun., 1994, 200 (1): 365-369
    [198] Poddar S K. Symmetric vs asymmetric PCR and molecular beacon probe in the detection of a target gene of adenovirus. Mol. Cell. Probes., 2000, 14 (1): 25-32
    [199] Salk J J, Sanchez J A, Pierce K E, et al. Direct amplification of single-stranded DNA for pyrosequencing using linear-after-the-exponential (LATE)-PCR. Anal. Biochem., 2006, 353(1): 124-132.
    [200] Wu Q, Xu Z, Wei T, et al. Development of Taqman RT-nested PCR system for clinical SARS-CoV detection. J. Virol. Methods, 2004, 119(1): 17-23
    [201] Morata P, Queipo-Ortuno M I, Reguera J M, et al. Development and evaluation of a PCR-enzyme-linked immunosorbent assay for diagnosis of human brucellosis. J. Clin. Microbiol., 2003, 41 (1): 144-148
    [202] Makarovskiy A N, Ackerley W, Wojcik L, et al. Application of immunomagnetic beads in combinnation with RT-PCR for the detection of circulating prostate cancer cells. J. Clin. Lab. Anal., 1997, 11 (6): 346-350
    [203] Shen H B, Hu M, Wang Y B, et al. Polymerase chain reaction of nanoparticle-bound primers. Biophys. Chem., 2005, 115(1): 63-66
    [204] Isacsson J, Cao H, Ohlsson L, et al. Rapid and specific detection of PCR products using light-up probes. Mol. Cell. Probes., 2000,14 (6): 321-328
    [205] Mao X, Yang L, Su X L, et al. A nanoparticle amplification based quartz crystal microbalance DNA sensor for detection of Escherichia coli O157:H7. Biosens. Bioelectron., 2006, 21(7): 1178-1185
    [206] Fuentes M, Mateo C, Rodriguez A, et al. Detecting minimal traces of DNA using DNA covalently attached to superparamagnetic nanoparticles and direct PCR-ELISA. Biosens. Bioelectron., 2006, 21 (8): 1574–1580
    [207] Li H, Huang J, Lv J, et al. Nanoparticle PCR: nanogoldassisted PCR with enhanced specificity. Angew. Chem. Int. Ed. Engl., 2005, 44 (32): 5100-5103
    [208] Wang J, Liu G, Merkoci A. Electrochemical coding technology for simultaneous detection of multiple DNA targets. J. Am. Chem. Soc., 2003, 125(11): 3214-3215
    [209] Zhou X, Zhou J. Improving the signal sensitivity and photostability of DNA hybridizations on microarrays by using dye-doped core-shell silica nanoparticles. Anal. Chem., 2004, 76(18): 5302-5312
    [210] Ozsoz M, Erdem A, Kerman K, et al. Electrochemical genosensor based on colloidal Gold nanoparticles for the detection of factor V Leiden mutation using disposable pencil graphite electrodes. Anal. Chem., 2003, 75(9):2181-2187
    [211] Swadeshmukul S, Zhang P, Wang K M, et al. Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers. Anal. Chem., 2001, 73(20): 4988-4993
    [212] 吴兴海, 陈长法, 张云霞等. 应用分子生物学方法快速检测烟草环斑病毒. 江苏农业科学, 2007, 3 (1): 66-68
    [213] 李其松, 王金玉, 沈华等. DNA 聚丙烯酰胺凝胶电泳及银染方法的探讨. 黑龙江畜牧兽医, 2006, 10 (1): 79-80
    [214] Bagwe R P, Yang C, Hilliard L R, et al. Optimization of dye doped silica nanoparticles prepared using a reverse microemulsion method. Langmuir, 2004, 20 (19): 8336–8342
    [215] Nam J-M, Stoeva S. I, Mirkin C A. Bio-bar-code-based DNA detection with PCR-like sensitivity. J. Am. Chem. Soc., 2004, 126(19): 5932-5933
    [216] 陈英杰, 何晓晓, 王柯敏等. 基于氨基化 SiO2磁性纳米颗粒分离蛋白质的研究. 南昌大学学报, 2006, 30(Suppl): 1238-1239
    [217] Sonvico F, Mornet S, Vasseur S, et al. Folate-conjugated iron oxide nanoparticles for solid tumor targeting as potential specific magnetic hyperthermia mediators: synthesis, physicochemical characterization, and in vitro experiments. Bioconj. Chem., 2005, 16(5): 1181-1188
    [218] Sun S, Anders S, Thomson T. et al. Controlled Synthesis and Assembly of FePt Nanoparticles , J. Phys. Chem. B., 2003, 107(23): 5419-5425
    [219] Shevchenko E V, Talapin D V, Rogach A L, et al. Colloidal Synthesis and Self-Assembly of CoPt3 Nanocrystals. J. Am. Chem. Soc., 2002, 124(38): 11480-11485
    [220] Feng J, Zeng H C. Size-controlled growth of Co3O4 nanocubes. Chem. Mater., 2003, 15(14): 2829-2835
    [221] Hyeon T, Chung Y, Park J, et al. Synthesis of highly crystalline and monodisperse cobalt ferrite nanocrystals. J. Phys. Chem. B, 2002, 106(27): 6831-6833
    [222] Zitoun D, Amiens C, Chaudret B, et al. Synthesis and magnetism of CoxRh1-x and CoxRu1-x nanoparticles. J. Phys. Chem. B, 2003,107(29): 6997-7005
    [223] Si S, Li C, Wang, X, et al. Magnetic monodisperse Fe3O4 nanoparticles. Cryst. Growth Des., 2005, 5(2): 391-393
    [224] Lee D K, Kim Y H, Kim C W, et al. Vast magnetic monolayer film with surfactant-stabilized Fe3O4 nanoparticles using Langmuir-blodgett technique. J.Phys. Chem. B., 2007, 111(31): 9288-9293
    [225] Wijaya A, Hamad-Schifferli K. High-density encapsulation of Fe3O4 nanoparticles in lipid vesicles. Langmuir, 2007, 23(19): 9546-9550
    [226] Molday R S, MacKenzie D. Immunospecific ferromagnetic iron-dextran reagents for the labeling and magnetic separation of cells. J. Immunol. Methods, 1982, 52(3):353-367
    [227] An X, Su Z J. Characterization and Application of high magnetic property chitosan particles. Appl. Polym. Sci., 2001, 81(5): 1175-1181
    [228] Chatterjee J, Haik Y, Chen CJ. Modification and characterization of polystyrene-based magnetic microspheres and comparison with albumin-based magnetic microspheres. J. Magn. Magn Mater., 2001, 225(1): 21-29
    [229] Manju G N, Krishnan A, Vinod V P, et al. An investigation into the sorption of heavy metals from wastewaters by polyacrylamide-grafted iron (III) oxide. J. Hazardous Mater., 2002, 91(1): 221-238
    [230] Illum L, Church A E, Butterworth M D, et al. Development of systems for targeting the regional lymph nodes for diagnostic imaging: in vivo behaviour of colloidal PEG-coated magnetite nanospheres in the rat following interstitial administration. Pharma. Res., 2001, 18(5): 640-645
    [231] Müller-Schulte D, Brunner H J. Novel magnetic microspheres on the basis of poly(vinyl alcohol) as affinity medium for quantitative detection of glycated haemoglobin. J. Chromatogr., 1995, 711(1): 53-60
    [232] Turgeman R, Gedanken A. Crystallization of ZnO on crystalline magnetite nanoparticles in the presence of ultrasound radiation. Cryst. Growth Des., 2006, 6(10): 2260-2265
    [233] Wang L Y, Luo J, Fan Q, et al. Monodispersed core-shell Fe3O4@Au nanoparticles. J. Phys. Chem. B., 2005, 109(46): 21593-21601
    [234] Tang D, Yuan R, Chai Y. Magnetic core-shell Fe3O4@Ag nanoparticles coated carbon paste interface for studies of carcinoembryonic antigen in clinical immunoassay. J. Phys. Chem. B., 2006, 110(24): 11640-11646
    [235] Fillon Y, Verma A, Ghosh P, et al. Peptide ligation catalyzed by functionalized gold nanoparticles. J. Am. Chem. Soc., 2007, 129(21): 6676-6677
    [236] Ghosh S K, Pal T. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem. Rev., 2007, 107(11): 4797-4862
    [237] Jena B K, Raj C R. Electrochemical biosensor based on integrated assembly ofdehydrogenase enzymes and gold nanoparticles. Anal. Chem., 2006, 78(18): 6332-6339
    [238] Lee K.-S, El-Sayed M A. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. J. Phys. Chem. B, 2006, 110(39): 19220-19225
    [239] Gupta S, Huda S, Kilpatrick P K, et al. Characterization and optimization of gold nanoparticle-based silver-enhanced immunoassays. Anal. Chem., 2007, 79(10): 3810-3820
    [240] Kneipp J, Kneipp H, McLaughlin M, et al. In vivo molecular probing of cellular compartments with gold nanoparticles and nanoaggregates. Nano. Lett., 2006, 6(10): 2225-2231
    [241] Kouassi G K, Wang P, Sreevatan S, et al. Aptamer-mediated magnetic and gold-coated magnetic nanoparticles as detection assay for prion protein assessment. Biotechnol. Prog., 2007, 23(5): 1239-1244
    [242] Kouassi G. K, Irudayaraj J. Magnetic and gold-coated magnetic nanoparticles as a DNA sensor. Anal. Chem., 2006, 78(10): 3234-3241
    [243] Philipse A P, Van Bruggen M P B, Pathmamanoharan C. Magnetic silica dispersions: preparation and stability of surface- modified silica particles with a magnetic core. Langmuir, 1994, 10(1): 92-99
    [244] hobosheane M, Santra S, Zhang P, et al. Biochemically functionalized silica nanoparticles, Analyst, 2001, 126(8): 1274-1278
    [245] Tschopp J, Podack E R, Müller-Eberhard H J. Ultrastructure of the membrane attack complex of complement: detection of the tetramolecular C9 polymerizing complex C5b-8. Proc. Natl. Acad. Sci. USA, 1982, 79(2): 7474–7478
    [246] 彭勤, 彭惠, 骆云鹏等. MTT 比色法测定药物对 Hela 细胞作用的实验研究. 现代妇产科进展, 2000, 9 (5): 16-18
    [247] B?hmer R, King N J C. Flow cytometric analysis of immunogold cell surface label. Cytometry, 1984, 5(1): 543-546
    [248] 郑秀海,董家鸿,李前伟等. 放射性碘标记人工合成 RGD 肽拮抗物的设计与分子特性的计算机分析与模拟研究. 第三军医大学学报, 2005, 27(4): 340-342
    [249] 王福勇. 胶体金探针的制备与应用. 国外医学-临床生物化学与检验学分册, 1991, 12(4): 145-148.
    [250] 郝和平.医疗器械生物学评价标准实施指南. 北京: 中国标准出版社, 2002:100-110
    [251] Luo D, Saltzman W M. Enhancement of transfection by physical concentration of DNA at the cell surface. Nat. biotechnol., 2000, 18(8): 893-895
    [252] Luo D, Han E, Belcheva N, et al. A self-assembled, modular DNA delivery system mediated by silica nanoparticles. J. Control. Rel., 2004, 95(1): 333-341
    [253] Gemeinhart R A, Luo D, Saltzman W M. Cellular fate of a modular DNA delivery system mediated by silica nanoparticles. Biotechnol. Prog., 2005, 21(2): 532-537
    [254] 肖苏尧, 刘选明, 童春义等. 多聚赖氨酸淀粉纳米颗粒基因载体的研制及应用. 中国科学 B 辑: 化学, 2004, 34(6): 473-477
    [255] Luo D, Saltzman W M. Synthetic DNA delivery systems. Nat. Biotechnol., 2000, 18(1): 33-37
    [256] 黄世文, 卓仁禧. 高分子基因传递载体研究进展. 科学通报, 2003, 48(5): 405- 409
    [257] 周芬, 程时远. 基因治疗中的非病毒载体. 化学通报, 2005, 68(131): 1-7
    [258] Kakizawa Y, Kataoka K. Block copolymer micelles for delivery of gene and related compounds. Adv. Drug Deliv. Rev., 2002, 54(2): 203-222
    [259] 宋平根, 李素文. 流式细胞术的原理和应用. 北京: 北京师范大学出版社, 1991: 10-15
    [260] Fauci A S, Touchette N A, Folkers G K. Emerging infectious diseases: a 10-year perspective from the National Institute of Allergy and Infectious Diseases. Emerg. Infect. Dis., 2005, 11(4): 519–525
    [261] Daoud W A, Xin J H, Zhang Y H. Surface functionalization of cellulose fibers with titanium dioxide nanoparticles and their combined bactericidal activities. Surfa. Sci., 2005, 599(1): 69-75
    [262] Ghule K, Ghule A V, Chen B, et al. Preparation and characterization of ZnO nanoparticles coated paper and its antibacterial activity study. Green Chem., 2006, 8(1): 1034-1041
    [263] Makhluf S, Dror R, Nitzan Y, et al. Microwave-assisted synthesis of nanocrystalline MgO and its use as a bacteriocide. Adv. Funct. Mater., 2005, 15(10): 1708-1715
    [264] Qi L F, Xu Z R, Jiang X, et al. Preparation and antibacterial activity of chitosan nanoparticles. Carbohyd. Res., 2004, 339(16): 2693-2700
    [265] Esteban-Cubillo A, Pecharroman C, Aguilar E, et al. Antibacterial activity of copper monodispersed nanoparticles into sepiolite. J. Mater. Sci., 2006, 41(16):5208-5212
    [266] Morones J R, Elechiguerra J L, Camacho A, et al. The bactericidal effect of silver nanoparticles. Nanotechnology, 2005, 16(10): 2346-2353
    [267] Taylor P L, Ussher A L, Burrell R E. Impact of heat on nanocrystalline silver dressings Part II: Physical properties. Biomaterials, 2005, 26(35): 7221-7229
    [268] Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interf. Sci., 2004, 275(1): 177–182
    [269] Birringer R. Nanocrystalline materials. Mater. Sci. Eng., 1989, 117(1): 33-43
    [270] Berger T J, Spadaro J A, Bierman R, et al. Antifungal properties of electrically generated metallic ions. Antimicrob. Agents Chemother., 1976, 10(5): 856-860
    [271] Kusnetsov J, Iivanainen E, Elomaa N, et al. Copper and silver ions more effective against legionellae than against mycobacteria in a hospital warm water system. Water Res., 2001, 35(17): 4217- 4225
    [272] Russell A D, Hugo W B. Antimicrobial activity and action of silver. Prog. Med. Chem., 1994, 31(1): 351-370
    [273] Alt V, Bechert T, Steinrucke P, et al. An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials, 2004, 25(18): 4383-4391
    [274] Wright J B, Lam K, Buret A G, et al. Early healing events in a porcine model of contaminated wounds: effects of nanocrystalline silver on matrix metalloproteinases, cell apoptosis, and healing. Wound Repair Regen., 2002, 10 (3):141-151
    [275] Baker C, Pradhan A, Pakstis L, et al. Synthesis and antibacterial properties of silver nanoparticles. J. Nanosci. Nanotechnol., 2005, 5(2): 244-249
    [276] Melaiye A, Sun Z, Hindi K, et al. Silver (I)-imidazole cyclophane gem-diol complexes encapsulated by electrospun tecophilic nanofibers: Formation of nanosilver particles and antimicrobial activity. J. Am. Chem. Soc., 2005, 127(7): 2285-2291
    [277] Bechert T, Boswald M, Lugauer S, et al. The Erlanger silver catheter: in vitro results for antimicrobial activity. Infection, 1999, 27(Suppl 1): 24-29
    [278] Joyce-Wohrmann R M, Munstedt H. Determination of the silver ion release from polyurethanes enriched with silve. Infection, 1999, 27(Suppl 1): 46-48
    [279] Furno F, Morley K S, Wong B, et al. Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection. J. Antimicrob.Chemother., 2004, 54(6): 1019-1024
    [280] Kim S, Kim H J. Anti-bacterial performance of colloidal silver-treated laminate wood flooring. Int. biodeterior. Biodegrade., 2006, 57(3):155-162
    [281] Rosenman K D, Moss A, Kon S. Argyria: clinical implications of exposure to silver nitrate and silver oxide. J. Occup. Med., 1979, 21(6): 430-435
    [282] Cohen, S Y, Quentel G, Egasse D, et al. The dark choroid in systemic argyrosis. Retina, 1993, 13 (4): 312-316
    [283] Rungby J. An experimental study on silver in the nervous system and on aspects of its general cellular toxicity. Dan. Med. Bull., 1990, 37(5): 442-449
    [284] WHO. Guidelines for Drinking-water Quality. New York: World Health Organisation, 1996: 338-343
    [285] Drake P L, Hazelwood K J. Exposure-related health effects of silver and. silver compounds: a review. Ann. Occup. Hyg., 2005, 49(7): 575-585
    [286] ?afa?ík I. Removal of organic polycyclic compounds from water solutions with a magnetic chitosan based sorbent bearing copper phthalocyanine dye. Water Res., 1995, 29(1): 101-105
    [287] Lee D, Cohen R E, Rubner M F. Antimicrobial effect of surgical masks coated with nanoparticles. Langmuir, 2005, 21(21): 9651-9659
    [288] Kim D K, Zhang Y, Voit W, et al. Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles. J. Magn. Magn. Mater., 2001, 225(1): 30-36
    [289] 司民真, 方炎, 彭家林等. 电解法制备纳米银溶胶及其 SERS 活性研究. 光谱学与光谱分析, 2007, 27(5): 948-952
    [290] Kawashita M, Toda S, Kim H M, et al. Preparation of antibacterial silver-doped silica glass microspheres. J. Biomed. Mater. Res. A, 2003, 66(2): 266-274
    [291] Dibrov P, Dzioba J, Gosink K K, et al. Chemiosmotic mechanism of the antimicrobial activity of Ag+ in Vibrio cholerae. Antimicrob. Agents Chemother., 2002, 46(8): 2668-2670
    [292] Feng Q L, Wu J L, Chen G Q, et al. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res., 2000, 52(4): 662-668
    [293] Hope M J R, Nayer R, Mayer L D, et al. Reduction of liposome size and preparation of unilamellar vesicles by extrusion techniques. CRC Press: In Liposme Technology, 1993: 123-131
    [294] Uster P S, Allen T M, Daniel B E, et al. Insertion of poly (ethylene glycol)derivatized phospholipids into preformed liposomes results in prolonged in vivo circulation time. FEBS. Lett., 1996, 386(2): 243-246
    [295] Kenworthy A K, Hristova K, Mclntosh T J, et al. Range and magnitude of the steric pressure between bilayers containing lipids with covalently attached poly(ethylene glycol). Biophys. J., 1995, 68(5): 1921-1936
    [296] Park J W, Hong K, Carter P, et al. Development of anti-p185IER2 immunoliposomes for cancer therapy. Proc. Natl. Acad. Sci. USA, 1995, 92(5): 1327-1331
    [297] Chen T, Choi L S, Einstein S, et al. Proton-induced permeability and fusion of large unilamellar vesicles by covalently conjugated poly (2-ethylacrylic acid). J. Liposome Res., 1999, 9(1): 387-405
    [298] Voinea M, Simionescu M. Designing of intelligent liposomes for efficient delivery of drugs. J. Cell. Mol. Med., 2002, 6(4): 65-74
    [299] 唐朝晖, 钟德玝. 紫杉醇抗肿瘤的分子机制. 中国临床康复, 2006, 10(27): 125-127
    [300] 施斌, 裴元英. 紫杉醇及其制剂研究进展. 中国临床药学杂志, 2004, 13(6): 389-392
    [301] Xie J, Wang C H. Self-assembled biodegradable nanoparticles developed by direct dialysis for the delivery of paclitaxel. Pharm. Res., 2005, 22(12): 2079—2090
    [302] Shama A, Mayhew E, Bolicsak L, et al. Activity of paclitaxel liposome formulations against human ovarian tumor xenografts. Int. J. Cancer, 1997, 71(1): 103-107
    [303] Cabanes A, Briggs K E, Gokhale P C, et al. Comparative in vivo studies with paclitaxel and liposome encapsulated paclitaxel. Int. J. Oncol., 1998, 12(5): 1035-1040
    [304] 陈强, 张其忠, 刘健等. 紫杉醉脂质体与传统紫杉醇治疗乳腺癌和非小细胞肺癌的随机对照研究. 中华肿瘤杂志, 2003, 25(2): 190-192
    [305] Sharma A, Sharma U S, Straubinger R M. Paclitaxel-liposomes for intracavitary therapy of intraperitoneal P388 leukemia. Cancer Lett., 1996, 107(2): 265-272
    [306] Balasubrumanian S V, Straubinger R M. Taxol-lipid interactions: Taxol-dependent effects on the physical properties of model membranes. Biochemistry, 1994, 33(30): 8941-8947
    [307] Crosasso P, Ceruti M, Brusa P. Preparation, characterization and properties ofsterically stabilized paclitaxel-containing liposomes. J. Control. Rel., 2000, 63(1): 19-30
    [308] Aliabadi H M, Lavasanifar A. Polymeric micelles for drug delivery. Expert. Opin. Drug Deliv., 2006, 3(1): 139-162
    [309] Torchilin V P, Lukyanov A N, Gao Z, et al. Immunomicelles: Targeted pharmaceutical carriers for poorly soluble drugs. Proc. Natl. Acad. Sci., 2003,100 (10): 6039–6044
    [310] Cortesi R, Nastruzzi C. Liposomes, micelles and microemulsions as new delivery systems for cytotoxic alkaloids. Pharmaceut. Sci. Technol. Today, 1999, 2(7): 288-298
    [311] 赵小凌, 刘济湘, 柴铁军等. 脂质体的制备, 检测及其在化妆品中的应用研究. 日用化学工业, 1995,10 (5): 8-11
    [312] 段磊, 夏强, 马全红. 维甲酸纳米颗粒混悬剂稳定性的研究. 生物医学工程研究, 2005, 24(4): 251-254
    [313] 初培国. 细胞角蛋白染色在肿瘤诊断中的应用. 中华病理学杂志, 2004, 33(3): 273-276

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700