Al_2O_3基纳米复合陶瓷模具材料的研制及其摩擦磨损行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对成形模具对陶瓷材料的要求,从提高陶瓷模具材料的综合力学性能出发,选用具有高硬度、耐磨损、耐高温、抗腐蚀、原料分布广泛的Al_2O_3陶瓷为基体,采用纳米复合方法制备出具有较高综合力学性能的纳米复合陶瓷模具材料。从热压烧结工艺、微观结构及其与力学性能的关系等方面,系统研究了纳米复合陶瓷模具材料的增韧补强机理,发现晶内/晶间混合型的微观结构和穿晶/沿晶混合断裂模式,是纳米复合陶瓷模具材料强韧化提高的主要原因。
     根据胶体化学理论中的悬浮液的稳定机制,采用起空间位阻稳定作用的PEG为分散剂,对不同的纳米陶瓷粉体进行了液相分散研究,通过优化PEG分散剂的分子量、加入量以及悬浮液的pH值等参数,结合超声分散及机械搅拌工艺,得到了分散均匀的纳米粉体及其混合粉体的稳定悬浮液。
     探讨了组分含量、烧结工艺对纳米复合陶瓷模具材料微观结构和力学性能的影响,研制成功了纳米复合陶瓷模具材料Al_2O_3/Ti(C_7N_3),其抗弯强度为789 MPa、断裂韧性为8.1MPa·m1/2、硬度16.4GPa。与单一的微米Al_2O_3陶瓷材料相比,其抗弯强度和断裂韧性都得到大幅提高。在致密的烧结陶瓷中,纳米Ti(C_7N_3)与微米Al_2O_3形成了典型的晶内/晶间混合型结构,裂纹从晶间到晶内再到晶间的路径扩展,消耗了更多的断裂能,形成了沿晶/穿晶混合的断裂模式,是其综合力学性能得到较大提高的主要原因。表面压痕裂纹的偏转和桥联及裂纹分支和颗粒拔出,是复合材料韧性提高的表现。
     对纳米复合陶瓷模具材料进行了摩擦磨损性能实验研究,并对其磨损表面微观形貌进行了观察和分析,探讨了Al_2O_3/Ti(C_7N_3)纳米复合陶瓷模具材料的磨损机理。研究结果表明,在法向载荷50~150N、摩擦转速为70r/min和140r/min干摩擦条件下,纯Al_2O_3陶瓷的摩擦系数为0.58~0.8,Al_2O_3/Ti(C_7N_3)纳米复合陶瓷模具材料的摩擦系数为0.45~0.65;纯Al_2O_3陶瓷磨损率的数量级为10-14m3/N·m,Al_2O_3/Ti(C_7N_3)纳米复合陶瓷模具材料磨损率的数量级为10-15m3/N·m;纯Al_2O_3陶瓷的磨损机理为脆性断裂和磨粒磨损,Al_2O_3/Ti(C_7N_3)纳米复合陶瓷模具材料的磨损机理为机械冷焊、塑性变形和磨粒磨损。
From the requirement for ceramic materials of the forming dies, nanocomposite ceramic die materials with high mechanical properties were fabricated successfully with nanometer composite method by selecting alumina ceramic as matrix which has excellent hardness, wear-resistance, high-temperature resistance, corrosion resistance and wide range raw materials. The strengthening and toughening mechanisms of the ceramic die materials were investigated from the respects of the correlations among the hot pressing process, the microstructures and mechanical properties. It reveals that the intra/inter granular microstructures and the trans/inter granular fracture modes are the main causes for improving the flexural strength and fracture toughness.
     Based on the stabilization mechanisms for suspensions in the colloidal chemistry, the dispersion of different nano-scale ceramic powders in liquid suspension were discussed by steric stabilization with PEG dispersant. The homogeneous and dispersing nanometer powder and its suspensions were obtained by means of adding different molecular weight PEG, adjusting PEG quality percent and pH values with ultrasonic dispersion and mechanical mixing technology.
     The effects of component quantity and sintering technique to microstructure and mechanical properties of nanocomposite ceramic die materials were discussed. Nanocomposite ceramic die material of Al_2O_3/Ti(C_7N_3) was fabricated successfully, its flexural strength, fracture toughness and Vickers hardness are 789MPa, 8.1 MPa·m1/2 and 16.4GPa respectively. The flexural strength and fracture toughness are much higher than that of pure micron alumina ceramic material. The nano-scale Ti(C_7N_3) particles are located between or within Al_2O_3 matrix. Thus the typical mixture granular microstructure is formed in the dense compacts, which resulted in the mixture granular fracture modes. The zigzag crack path, which is from the grain boundary into the grain and then turning to the boundary, can result in higher consumption of fracture energy and the increase of fracture toughness. Crack deflection, crack bridging, crack branching and grain pull-out reveals the improvement of the fracture toughness of the composites.
     The wear mechanisms of nanocomposite ceramic die materials were discussed by analyzing SEM micrographs of wear tracks on typical specimens. It is indicated that in unlubricated conditions of normal load of 50N to150N and rotational speed of 70r/min and 140r/min the friction coefficient of pure alumina is in the range of 0.58~0.8, and the friction coefficient of Al_2O_3/Ti(C_7N_3) nanocomposite ceramic die material is in the range of 0.45~0.65. The wear rate of pure alumina is in the order of 10-14m3/N·m while that of Al_2O_3/Ti(C_7N_3) nanocomposite ceramic die material is in the order of 10-15m3/N·m. The dominant wear mechanisms of pure alumina may be brittle fracture and abrasive wear. While the dominant wear mechanisms of Al_2O_3/Ti(C_7N_3) nanocomposite ceramic die material may be mechanical interlocking and plastic deformation combined with a little micro-fracture and abrasive wear.
引文
[1] 高濂, 李蔚. 纳米陶瓷[M]. 北京: 化学工业出版社, 2002
    [2] Gleiter H, Marquardt P. Nanocrystalline Structures - an Approach to New Materials[J]. Metallkd Z, 1984, 75: 263-267
    [3] K. Niihara. New Design Concept of Structural Ceramics: Ceramic Nanocomposites[J]. J. Ceram. Soc. Jpn.. 1991, 99(10): 974-982
    [4] 郭景坤. 关于先进结构陶瓷的研究[J]. 无机材料学报. 1999, 14(2): 193-202
    [5] Chonghai Xu. Preparation and performance of an advanced multiphase composite ceramic material[J]. Journal of the European Ceramic Society. 2005(25): 605-611
    [6] 李涛. 影响纳米陶瓷性能因素分析[J]. 佛山陶瓷, 2003, 13(11): 4-7
    [7] 邵刚勤, 段兴龙, 袁润章.纳米陶瓷、复相陶瓷及纳米复相陶瓷[J]. 材料科学与工艺, 2003, 11(2): 211-214
    [8] Niihara K, Unal N, Nakahira A. Mechanical properties of (Y-TZP)-alumina-silicon carbide nanocomposites and the phase stability of Y-TZP particles in it[J]. J Mater Sci, 1994, 29(2): 164-168
    [9] 仝建峰, 陈大明, 陈宇航, 等. 热压工艺参数对纳米SiC/Al2O3/TiC新型陶瓷刀具材料力学性能的影响[J]. 粉末冶金技术. 2002, 18(2): 102-105
    [10] 周新贵, 张长瑞, 陈大明, 等. 纳米Si-C-N粒子增强Si3N4复合材料的结构和性能[J]. 国防科技大学学报, 1999,3: 38-40
    [11] 仝建峰, 陈大明, 蔡万华. 退火处理对Nano-SiC-Al2O3-TiC纳米陶瓷复合材料性能的影响[J]. 金属热处理, 1999(11): 26-27
    [12] 董利民, 田杰谟, 张宝清. Si3N4/SiCn/SiCw纳米复合材料的力学性能研究[J]. 材料导报, 2000, 14(10): 343-345
    [13] 韩亚苓, 线全刚, 李家麟, 等. 无压烧结Al2O3-SiC纳米复相陶瓷的研究[J]. 硅酸盐学报, 2001, 29(1): 76-79
    [14] 王宏志, 高濂, 归林华, 等. 晶内型Al2O3-SiC纳米复合陶瓷的制备[J]. 无机材料学报, 1997, 12(5): 671-674
    [15] 李景国, 高濂, 郭景坤. TiN-Al2O3纳米复合材料的力学性能和导电性能[J]. 无机材料学报, 2002, 17(6): 1215-1219
    [16] 焦绥隆,Borsa C E. 氧化铝/碳化硅纳米复合陶瓷的力学性能和强化机理[J]. 材料导报, 1996,10(增): 89-93
    [17] 刘含莲. 多元多尺度纳米复合陶瓷刀具材料的研制及其切削性能研究[D]. 济南: 山东大学, 2005
    [18] 尤显卿, 斯庭智, 任萍萍, 等. 纳米TiN改性Al2O3-TiC复合陶瓷的力学性能[J].硅酸盐学报. 2004, 32(12): 1542-1545
    [19] 王随莲. 高性能金属陶瓷刀具材料的研制及其切削性能研究[D]. 济南: 山东大学, 2005
    [20] 宋世学. 高性能Al2O3系陶瓷刀具材料的研制及其性能研究[D]. 济南: 山东大学, 2002
    [21] 名和正弘, 中本彰一, 山崎圭一, 等. CeO2安定化正方晶ジルコニア/Al2O3ナノ复合材料の作制と机械的特性[J]. 粉体および粉末冶金, 1996, 43(4): 415-420
    [22] 中平敦, 福岛由晃, 新原皓一. Al2O3-SiC- ZrO2复合?うミツクス[J]. 粉体および粉末冶金, 1989, 36(2): 746-751
    [23] 松木龟一, 竹之内武義, 中平敦, 等. Microstructure and mechanical properties of Al2O3/TiC/ZrO2 composites [J]. 粉体および粉末冶金 , 1994, 41(10): 1232-1237
    [24] 高濂, 王宏志, 洪金生. SiC-ZrO2(3Y)-Al2O3纳米复相陶瓷的力学性能和显微结构[J]. 无机材料学报, 1999, 14(5): 795-800
    [25] Sekino T, Nakajima T, Ueda S, et al. Reduction and Sintering of a Nickel-Dispersed-Alumina Composite and Its Properties[J]. J Am Ceram Soc, 1997, 80(5): 1139-48
    [26] 李国军, 黄校先, 郭景坤. 晶内/晶间复合型Al2O3-Ni纳米金属陶瓷显微结构和力学性能的研究[J]. 无机材料学报, 2003, 18(1): 71-77
    [27] Sando Mutsuo, Niihara Koichi. Mechanical and magnetic properties of Ni-Co dispersed Al2O3 nanocomposites[J]. J Mater Sci, 2001, 36(7): 1817-1821
    [28] Garia D E, Slivia Shicker, Jorn Bruhn. Synthesis of Novel Niobium Aluminide-Based Composites[J]. J Am Ceram Soc, 1997, 80(9): 2248-52
    [29] 新 原 皓 一 . Nanostructure design and mechanical properties of ceramic composites[J]. 粉体および粉末冶金, 1990 , 37(2): 348-350
    [30] 顾培芷, 张伟儒, 李勇, 等. 采用有机先驱体制备Si3N4-SiC纳米复相陶瓷[J]. 硅酸盐学报, 1995, 23(3): 266-271
    [31] Niihara Koichi, Nakahira Atsushi, Sekino Tohru. New nano-composite structural ceramics[J]. Mater. Res. Soc. Symp. Proc., 286, 1993: 405-410
    [32] Deock Soo Cheong, Kwang Taek Hwang, Chang Sam Kim. Fabrication , mechanical properties and microstructure analysis of Si3N4-SiC nanocomposite[J]. Composites: Part A, 1999, 30: 425-427
    [33] 新原皓一, 伊崎正宽, 中平敦. 高温超强度Si3N4-SiCナノ复合材料[J]. 粉体および粉末冶金, 1990, 37(2): 352-356
    [34] Tomohiro Yanai, Kinemuchi Yoshiachi, Kozo Ishizaki. Influence of oxygen content on the mechanical properties of in-situ formed Si3N4/SiC nanocomposites prepared by carbon coated method[J]. Ceram Soc Jpn Int Edition, 1995, 103: 1177
    [35] K. Niihara. Nanomicrostructure and fracture[J]. Ceram., 27(4), 1992: 293-299 (in Japanese)
    [36] 吕志杰, 艾兴, 赵军, 等. Si3N4-TiC纳米复合陶瓷材料显微结构[J]. 山东大学学报(工学版), 2005, 35(1): 13-16
    [37] 徐智谋, 易新建, 胡茂中, 等. 纳米 Ti(C,N)增强 Ti(C,N)基金属陶瓷的研究[J]. 材料热处理学报, 2003, 24(3): 41-45
    [38] 高濂, 靳喜海, 郑珊. 纳米复相陶瓷[M]. 化学工业出版社. 2004, 5
    [39] I. A. Chou, H. M. Chan, M. P. Harmer. Effect of Annealing Environment on the Crack Healing and Mechanical Behavior of Silion Carbide-Reinforced Alumina Nanocomposites[J]. J. Am. Ceram. Soc. 1998, 81(5): 1203-1208
    [40] Junhong Zhao, Laura C, Martin P.Harmer, et al. Mechanical Behavior of Alumina-Silion Carbide Namocomposites[J]. J.Am.Ceram.Soc., 1993, 76(2): 503-510
    [41] Irene A. Chou, Helen M. Chan, and Martin P. Harmer. Effect of Annealing Environment on the Crack Healing and Mechanical Behavior of Silion Carbide–Reinforced Alumina Namocomposites[J]. J.Am.Ceram.Soc., 1998, 81(5): 1203-1208
    [42] S. Maensiri, S. G. Roberts. Thermal Shock of Ground and Polished Alumina and Al2O3/SiC Nanocomposites[J]. Journal of the European Ceramic Society. 2002, 22(16): 2945-2956
    [43] 刘含莲, 黄传真, 秦惠芳, 等. 纳米复合陶瓷材料的增韧补强机理研究进展[J].粉末冶金技术, 2004,22(2): 98-103
    [44] Jiao S, Jenkins M L.. Crack Deflection and Interfacial Fracture Energies in Alumina-SiC and Alumina-TiN Nanocomposites[J]. Mater. Res. Soc. Symp. Proc., 1997, 457: 401-406
    [45] 王宏志, 高濂, 郭景坤. Al2O3-SiC纳米复合陶瓷中的残余应力分析[J]. 中国科学(E辑), 1999, 29(3): 200-205
    [46] Tatsuki Ohji, Young-Keun Jeong, Yong-Ho Choa, et al. Strengthening an Toughening Mechanism of Ceramic Nanocomposites[J]. J.Am.Ceram.Soc., 1998, 81(6): 1453-1460
    [47] Borsa Carlos E., Todd Richard I., Brook Rihard J.. Mechanical Strength of AluminaReinforced by SiC Namocomposites[J]. Ceramic(Sao Paulo), 1997, 43(280): 84-87
    [48] Cesarano J H, A k say IA. Processing of concentrated aqueous α-Al2O3 suspensions stabilized with polyelectrolyte[J]. J Am Ceram Soc, 1988, 71(12): 1062-1067
    [49] Tatli Z , Thompson D P, Errington R J. Densification of mixed-oxide coated silicon nitride powders[J]. Key Eng Mater, 1997, 132-136: 994-997
    [50] Kan Honghua, Yang Hui, Zhang Dahai, et al. Fabrication, structure and properties of in-situ reinforced Si3N4 ceramics from sol-gel derived oxide-additive-coated powders[J], Key Eng Mater, 1997, 132-136: 540-543
    [51] Liden E, Person M, Carlstrom E, et al. Electrostatic adsorption of a colloidal sintering agent on silicon nitride particle[J]. J Am Ceram Soc, 1991, 74(6): 1335-1339
    [52] 张艾飞, 刘吉平. 纳米复合陶瓷制备工艺研究现状和发展前景[J]. 现代化工, 2002, 22(增刊): 62-69
    [53] 许煜汾, 蒋贤俊. ZTA 精密陶瓷拉丝模拉制钨丝的研究[J]. 合肥工业大学学报(自然科学版), 1996, 19(4): 29-34.
    [54] 尹龙卫, 李凤照, 刘援朝, 等. TZP-TiC-Al2O3陶瓷复合材料在模具中的应用[J].粉末冶金技术, 1997, 15(4): 274-277
    [55] 杨学锋, 邓建新, 姚淑卿. Al 2O3/TiC复合陶瓷拉丝模材料的摩擦磨损性[J]. 硅酸盐学报, 2005, 33(12): 1522-1526
    [56] 刘军, 周飞. 热挤压模用陶瓷材料的性能与应用研究[J]. 稀有金属材料与工程, 2003, 32(3): 232-235
    [57] 罗军明, 杨刚, 万润根, 等. 3Y-TZP-Al2O3陶瓷拉拔模材料及应用研究[J]. 金刚石与磨料磨具工程, 2002, (2): 41-43
    [58] 杨刚, 艾云龙, 罗军明, 等. TZP 陶瓷拉丝模的开发与应用[J]. 模具工业, 2001, (9): 36-38
    [59] 沈辉, 易佑宁. PSZ 陶瓷热挤压模的制备及应用研究[J]. 江苏陶瓷, 1996, 29(2): 10-12
    [60] 梁金生, 梁广川. 反应烧结氮化硅陶瓷模具材料的研究[J]. 中国陶瓷工业, 2000, 7(3): 9-11
    [61] 刘军, 佘正国, 罗启富. Sialon 陶瓷热挤压模的应用研究[J]. 中国机械工程, 1995, 6(3): 57-58
    [62] 许崇海, 孙德明. 模具用Ti(C,N)/Al2O3陶瓷材料的微观结构与力学性能[J]. 粉末冶金技术. 2005, 23(4): 243-247
    [63] 孙德明, 刘立红, 刘玉婷, 等. Al203/Cr3C2/(W,Ti)C陶瓷模具材料研究[J]. 粉末冶金技术, 2005, 23(5):343-346
    [64] 胡良页, 李顺禄, 李忠权. 纳米复合 TZP 陶瓷模具的研制[J]. 佛山陶瓷, 2002, (6): 8-9
    [65] J. M. Gao, H. N. Xiao, H. Q. Du. Effect of Y2O3 Addition on Ammono Sol-Gel Synthesis and Sintering of Si3N4-SiC Nanocomposite Powder[J]. Ceramics International: 2003, 29: 655-661
    [66] M. I. L. L. Oliveira, K. X. Chen, J. M.F. Ferreira. Influence of the Deagglomeration Procedure on Aqueous Dispersion, Slip Casting and Sintering of Si3N4-Based Ceramics[J]. J. Euro. Ceram. Soc. 2002, 22: 1601-1607
    [67] E. Laarz, B. V. Zhmud, L. Bergstr?m. Dissolution and Deagglomeration of Silicon Nitride in Aqueous Medium[J]. J. Am. Ceram. Soc. 2000, 83(10): 2394-2400
    [68] Y. Huang, J. Q. Dai, Z. P. Xie. Effects of Liquid and Ball-Milling on the Surface Group and Aqueous Dispersibility of Si3N4 Powder[J]. J. Euro. Ceram. Soc. 2003, 23: 985-900
    [69] 王匀, 刘全坤. 纳米技术在模具行业中发展与应用[J]. 模具技术, 2002, (6): 3-5, 16
    [70] 王昌, 于同敏, 郭东明, 等. 发展中的模具先进制造技术[J]. 模具制造, 2002, (3): 9-12
    [71] 郭成, 朱维斗, 金志浩. 梯度功能材料在模具中的应用展望[J]. 塑性工程学报, 1995, 2(2): 18-26
    [72] 王雷刚, 刘全坤. 陶瓷—钢组合挤压凹模的优化设计[J]. 锻压机械, 1997, 32(3): 38-41
    [73] 刘全坤, 陶宏芝. 陶瓷挤压凹模的强度分析[J]. 中国机械工程, 1997, 8(6): 37-39
    [74] 黄瑶, 王雷刚, 刘全坤, 等. 模具钢、复合陶瓷强化模具钢和结构陶瓷高温摩擦学性能比较[J]. 润滑与密封, 2002, (6): 22-23
    [75] 孙德明. Al2O3/Cr3C2多元复合陶瓷材料的制备、性能及应用研究[D]. 济南: 山东大学, 2006
    [76] 刘长霞. Al2O3基大型结构陶瓷导轨材料及其摩擦磨损性能研究[D]. 济南: 山东大学, 2007
    [77] 郭小龙, 陈沙鸥, 戚凭, 等. 纳米陶瓷粉末分散的微观过程和机理[J]. 青岛大学学报(自然科学版), 2002, 15(1): 78-88
    [78] 杨金龙, 吴建銧, 黄勇, 等. 陶瓷粉末颗粒尺寸测试、表征及分散[J]. 硅酸盐学报, 1995(5): 67-77
    [79] 高濂, 孙静, 刘阳桥. 纳米粉体的分散及表面改性[M]. 北京: 化学工业出版社, 2003, 12
    [80] 宋晓岚, 王海波, 吴雪兰, 等. 纳米颗粒分散技术的研究与发展[J]. 化工进展, 2005, 24(1): 47-52
    [81] Espiard Ph, Guyot A. Poly (ethyl acrylate) latexes encapsulating nanoparticles of silica: 2.Gratring process onto silica [J]. Polymer, 1995, 36(23): 4391-4396
    [82] 周祖康, 顾惕叁, 马季铭. 胶体化学基础[M]. 北京: 北京大学出版社, 1996
    [83] 刘大成. 粉体团聚及解决措施[J]. 中国陶瓷, 2000, 36(6): 33-35
    [84] 侯万国. 应用胶体化学[M]. 北京: 科学出版社, 1998
    [85] 高芳, 王重海, 范景林, 等. 陶瓷纳米粉体的分散与表征[J]. 现代技术陶瓷, 2004(3): 27-29, 32
    [86] 张巨先. 包覆型纳米颗粒复合Al2O3基陶瓷材料的研制[D]. 北京: 北京真空电子技术研究所, 2000, 6
    [87] 杨静漪, 李理, 蔺玉胜, 等. 纳米ZrO2水悬浮液稳定性的研究[J]. 无机材料学报, 1997, 12(5): 665-670
    [88] 邹斌, 黄传真, 刘炳强, 等. 纳米Si3N4-TiC7N3混合悬浮液性质研究[J]. 机械工程材料, 2005, 29(4): 14-16
    [89] 许崇海. 复相陶瓷刀具材料设计、仿真及其应用研究[D]. 济南:山东工业大学,1998
    [90] Richerson D W. Modern ceramic engineering. New York: Marcel dekker publication, 1982, 76
    [91] 梁英教, 车荫昌. 无机物热力学数据手册[M]. 沈阳: 东北大学出版社, 1993
    [92] 艾兴, 萧虹. 陶瓷刀具切削加工[M]. 北京: 机械工业出版社, 1988
    [93] 崔忠圻. 金属学与热处理[M]. 北京: 机械工业出版社. 1989
    [94] 仝建峰, 陈大明, 陈宇航. 纳米SiC-Al2O3/TiC 多相陶瓷复合材料显微结构的研究[J]. 硅酸盐学报, 2001, 29(5): 427-430
    [95] 孙旭东, 李继光, 张民, 等. Al2O3/SiC纳米陶瓷复合材料的强韧化[J]. 金属学报, 1999, 35(8): 879-882
    [96] Faber K T, Evans A G. Crack deflection processes--Ⅰtheory[J]. Acta metall, 1983, 31(4): 565-568
    [97] 谭业发, 王耀华, 于爱兵等. 氧化锆增韧莫来石复相陶瓷的摩擦磨损行为与磨损机制[J]. 摩擦学学报, 2000, 20(2): 94-98
    [98] 童幸生. 陶瓷摩擦副磨损机理的研究[J]. 华南理工大学学报(自然科学版), 2001, 29(4): 94-97
    [99] 曾杰. 无润滑条件下氧化铝基陶瓷材料与钢结硬质合金 GT35 的磨损特性对比[J]. 硬质合金, 2004, 21(2): 89-93
    [100] 宋显辉, 陈立耀. 工程陶瓷疲劳裂纹扩展的实验研究[J]. 硅酸盐通报, 1997, 16(4): 70-74
    [101] 陈晓虎. 材料转移层对Al2O3基自润滑陶瓷/铸铁摩擦副摩擦的影响[J]. 陶瓷科学与艺术, 2002, (3): 5-7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700