烧结过程中陶瓷刀具材料微观组织结构演变模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
陶瓷刀具以其较高的硬度、良好的耐磨性和高温稳定性,已经成为高效高精密加工的重要刀具之一。但是陶瓷刀具材料的断裂韧度仍偏低,其力学性能的高低主要取决于微观组织结构,为此有必要对陶瓷刀具材料的微观组织结构进行模拟和优化设计,为进一步提高陶瓷刀具材料的断裂韧度提供理论指导。
     本文利用Monte Carlo Potts模型模拟烧结过程中陶瓷刀具材料微观组织结构演变,系统研究了Monte Carlo Potts模型的模拟算法,提出了新的H-FMonte Carlo模拟算法,并进行了实验验证。
     研究了Monte Carlo Potts模型及Monte Carlo模拟算法,提出了H-FMonte Carlo模拟算法,该算法首先对随机选择的当前晶格点阵进行晶粒边界判断,仅对处于晶粒边界上的晶格点阵进行重新取向尝试,提高了模拟效率。基于微软公司开发的Visual C++6.0平台,利用C++语言,对H-F Monte Carlo算法和R-Z Monte Carlo算法进行编程,开发了H-F Monte Carlo模拟算法程序(H-F MCSPⅠ)和R-Z Monte Carlo模拟算法程序(R-Z MCSP),并对微观组织结构演变过程进行了模拟。结果表明,H-F Monte Carlo模拟算法的模拟效率明显高于R-Z Monte Carlo模拟算法的模拟效率。当晶粒取向Q值为90、150或200时,可有效消除晶粒粗化现象,当晶粒取向Q值为200和晶格点阵尺度为500×500时,具有良好的模拟效果。
     建立了两相陶瓷刀具材料微观组织结构演变的Monte Carlo Ports模型,该模型考虑了材料体系的晶界能和两相材料之间的相互扩散。创新性地采用具有一定的初始平均晶粒半径的仿真区域作为模拟烧结过程微观组织结构演变模拟的初始组织,利用开发的H-F MCSPⅡ模拟程序,考虑材料体系中晶界能比例、初始粉末形状及含量对模拟结果的影响,在规则单元和非规则单元的条件下模拟了烧结过程中两相陶瓷刀具材料微观组织结构的演变。结果表明,具有相同晶界能的基体相之间,较易扩散,晶粒生长快;第二相颗粒对基体相晶粒生长具有阻碍作用,第二相含量越大,对基体相晶粒生长的阻碍作用越强;两相之间的晶界能增大时,第二相对基体相晶粒生长的阻碍作用减弱。采用非规则单元模拟的微观组织结构更接近实验烧结时陶瓷刀具材料的微观组织结构形貌。
     建立了烧结过程中含有气孔、液相和烧结助剂时陶瓷刀具材料微观组织结构演变的Monte Carlo Potts模型,在开发的H-F MCSPⅠ和H-F MCSPⅡ的基础上,对含有气孔、液相和烧结助剂时陶瓷刀具材料微观组织结构演变进行了模拟。结果表明,单相和两相陶瓷刀具材料致密度随模拟时间的变化趋势及两种刀具材料的致密度基本相同,两相陶瓷刀具材料的平均晶粒半径始终低于单相材料的,液相的存在可以促进致密化过程。烧结助剂对基体相晶粒的生长具有较强的钉扎作用,明显阻碍晶粒的生长。在相同的模拟时间内,不含气孔时刀具材料模拟的平均晶粒半径大于含有气孔时刀具材料的平均晶粒半径。平均晶粒半径均随模拟时间的增加而增大。
     建立了模拟时间和实际保温时间之间的关系模型,建立了烧结温度、烧结压力和微观组织结构演变之间的关系,并将其耦合到模拟程序中,实现了考虑烧结工艺参数时烧结过程中陶瓷刀具材料微观组织结构演变的模拟。结果表明,模拟后的陶瓷刀具材料平均晶粒半径随模拟时间的增加而增大,利用温度因子法模拟的平均晶粒半径随温度升高而增大,模拟的平均晶粒半径随压力的升高而增大,但是烧结压力对晶粒生长的影响程度小于烧结温度的影响,这与实际实验结果基本吻合,证明了模型的正确性。
     在考虑气孔、液相和烧结助剂的条件下,模拟了烧结过程中单相和两相Al_2O_3基陶瓷刀具材料微观组织结构的演变,并进行了实验验证。结果表明,单相和两相Al_2O_3基陶瓷刀具材料平均晶粒直径的模拟值略低于实测值,其主要原因是将MgO作为惰性粒子,仅考虑了其钉扎作用,忽略了液相引起的颗粒重排问题,假设模拟前的粉末之间存在晶界能,仅考虑晶界扩散而忽略了其它扩散方式等。刀具材料平均晶粒直径的模拟值和实测值之间的误差率仅为12.1-18.2%,可认为具有较高的模拟精度,证明了模拟方法的正确性,为设计陶瓷刀具材料、优化烧结工艺参数和刀具力学性能奠定了基础。
The advanced ceramic tools have been one of the most important cutting tools applied in high efficiency and precision machining because of its high hardness, good wear resistance and elevated-temperature anti-oxidation. However, the fracture toughness of ceramic tools is low at the present time and the mechanical properties of ceramic tools are governed by its microstructure. In order to provide the theory guide for the improvement in the fracture toughness, it is very significant to simulate and optimize the microstructure of ceramic tool materials.
     The microstructure evolution for the ceramic tool materials during fabrication has been simulated with the Monte Carlo Potts model. The novel H-F Monte Carlo simulation algorithm is proposed based on the systemic research of the present Monte Carlo Potts simulation algorithm and verified by experiments.
     In the H-F Monte Carlo simulation algorithm, a grain lattice is randomly chosen in simulation space firstly, and then the grain lattice which lies in the grain boundary is used to attempt another reorientation. So, the H-F Monte Carlo simulation algorithm has more efficiency than the present Monte Carlo simulation algorithm. The H-F MCSPI and R-Z MCSP software have developed with Visual C++ compiler and C++ program language on the base of H-F Monte Carlo algorithm and R-Z Monte Carlo algorithm respectively. The microstructure evolution has been simulated with the H-F MCSPI and R-Z MCSP. The simulation efficiency of H-F Monte Carlo algorithm is remarkably higher than that of R-Z Monte Carlo algorithm. The grain coarsening effect is eliminated when the grain orientation value Q is equal to 90, 150 and 200 respectively. The satisfying simulation results can be gained when the grain orientation Q and the lattice size space are 200 and 500 X 500 respectively.
     The Monte Carlo Potts model for simulating the microstructure evolution of the two-phase ceramic tool materials has been established. The model contains all boundary energy in the material system and the diffusion between the matrix and the second-phase material. The simulation space with the initial grain radius is adopted creatively at the beginning of the simulation for the microstructure evolution during the fabrication of the ceramic tool materials. The microstructure evolution of two-phase ceramic tool materials is simulated under the regular and irregular cell condition with the developed H-F MCSPII simulation software. At the same time, the proportion of grain boundary energy, the initial shape of powders and contents are considered. It is shown that the matrix which has the same grain boundary energy diffuses easily each other, and the grain grows fast. The second particles can inhibit the matrix grain from growing, and the inhibitation function increases with an increment in the content of second particles. However, the inhibitation by second phase particles decreases with an increment in the boundary energy between the matrix and the second phase. The simulated microstruture that adopts the irregular cell is more similar with that of the real ceramic tool materials than the simulated microstruture that adopts the regular cell.
     The Monte Carlo Potts model, which can simulate the microstructure evolution for the ceramic tool materials containing pores, liquid phase and additives during fabrication, has been established. The microstructure evolution for the ceramic tool materials containing pores, liquid phase and additives during fabrication is simulated on the base of the developed H-F MCSPI and H-F MCSPII simulation software. It is shown that both the change trend of the densification with the simulation time and the densification of the single- and two-phase ceramic tool materials during fabrication is similar. The mean grain radius of the two-phase ceramic tool materials is always lower than that of the single-phase ceramic tool materials. The liquid phase benefits the densification during fabrication. The additives pin the grain growth strongly and impede the grain growth significantly. At the same simulation time, the simulated mean grain radius without the pores is larger than that with the pores. The mean grain radius increases with an increment in the simulation time.
     The relationship between simulation time and real duration time is established. The relationship between fabrication temperature and the microstructure evolution and relationship between fabrication pressure and the microstructure evolution are also established and incorporated into the simulation program. The microstructure evolution of ceramic tool materials is simulated with the fabrication parameters during the fabrication. The simulated mean grain radius increases with an increment in the simulation time. The simulated mean grain radius also increases with an increment in the fabrication temperature using the temperature factor. And the simulated mean grain radius increases with an increment in the fabrication pressure, however, the effect of the fabrication pressure on the grain growth is lower than that of the fabrication temperature. The simulation model is desirable because the simulation results with the fabrication parameters mentioned above are consistent with the practical experiment results.
     The microstructure evolution of single- and two-phase Al_2O_3 matrix ceramic tool materials is simulated under the simulation space containing pores, liquid phase and additives. The simulation results are verified. It is shown that the simulated mean grain diameter is slightly lower than the measured mean grain diameter, this is because that the MgO is treated as inert particles to pin the grain growth only, the rearrangement of particles caused by the liquid phase is omitted, the grain boundary energy is assumed to lie among the initial powders at the beginning of simulation, the grain boundary diffusion is only considered and other kinds of diffusions are neglected, etc. Because the error ratios of the simulated mean grain diameter and the measured mean grain diameter of ceramic tool materials are only from 12.1% to 18.2%, the simulation precision is high enough to be accepted. The simulation of the ceramic tool materials lays a foundation for designing the new ceramic tool materials and optimizing the fabrication parameters and mechanical properties of ceramic tool materials.
引文
1.袁人炜,陈明.高速切削加工中刀具材料的选用[J],机械工艺师,2000(3):12-14
    2.王宝友,崔丽华,黄传真,艾兴.陶瓷刀具使用中应注意的几个问题[J],机械工程师,2001,(1):25-26
    3.陈木耳.陶瓷刀具的特性、种类及应用[J],机械制造,2000,38(435):17-18
    4.文东辉,刘献礼,严复钢,胡荣生.干式切削材料的现状[J],机械工程师,2001(9):5-7
    5.陈元春.粉末表面涂层陶瓷的硬质合金刀具材料的研制和性能研究[D],山东大学博士学位论文,2000
    6.肖诗刚.现代刀具材料[M],重庆:重庆大学出版社,1992
    7. B. Mills. Recent Development in Cutting Tool Materials [J], Journal of Materials Processing Technology, 1996, 56:16-23
    8.邹斌.新型自增韧氮化硅基纳米复合陶瓷刀具及性能研究[D],山东大学博士论文.2001:1-10
    9.黄传真.新型复相陶瓷刀具材料的研制及其破损机理研究[D],山东工业大学博士论文,1994:1-5
    10.赵军.新型梯度功能陶瓷刀具材料的设计与切削性能研究[D],山东工业大学博士论文,1998:1-10
    11. S.T. Buljan, et al. Silicon Matrices Based Composite Cutting Tools: Material Design Approch[J], Advanced Ceramic Materials, 1987, 2(2): 146-153
    12. J. Aucote. Performance of Sialon Tools when Machining Nickel-Based Aerospace Alloys [J], Materials Science and Technology, 1986, 2:700-708
    13.艾兴.高速切削加工技术[M],北京:国防工业出版社,2003
    14. A.M.Stoneham. The Challenges of Nanostructures for Theory [J], Materials Science and Engineering C, 2003, 23:235-241
    15. M.Wautelet, J.P.Dauchot, M.Hecq. Size Effects on the Phase Diagrams of Nanoparticles of Various Phases [J], Materials Science and Engineering C, 2003, 23:187-190
    16. Niihara K, Nakahira A. Strengthening of Oxide Ceramics by SiC and Si_3N_4 Dispersion[A], Tennery V J.In Proc.3rd. Int. Svrnp. on Ceramic materials and components for Engines[C], Westerville Ohio: 1988:919-926
    17.宋世学.高性能Al_2O_3系陶瓷刀具材料的研制及其性能的研究[D],山东大学博士学位论文,2000:33-56
    18.仝建峰,陈大明,陈宇航,雷廷权.热压工艺参数对纳米SiC-Al_2O_3/TiC新型陶瓷刀具材料力学性能的影响[J],粉末冶金技术,2000,18(2):33-56
    19.何京彦,夏志华,贾虹.Si_3N_4/SiC_p复相陶瓷材料及其刀具切削性能的研究[J],稀有金属,1997,21(5):321-325
    20. M. Szafran, E. Bobryk, D. Kukla. Si_3N_4-Al_2O_3-TiC-Y_2O_3 Composites Intended for the Edges of Cutting Tools [J], Ceramics International, 2000, 26:579-582
    21.李凤生.超细粉体技术[M].北京:国防工业出版社,2000
    22.曹伟.球磨法制备超细α-Al_2O_3粉体的研究[J],轻金属,2006,(4):14-16
    23.唐志阳.化学合成法制备高纯超细Al_2O_3粉体[J],江苏陶瓷,2005,38(2):24-26
    24.孙成林.我国超细粉碎与超细分级技术的现状及问题[J],硫磷设计与粉体工程,2002,(6):4-11
    25.谢田甜,李冬云,杨辉.纳米Al_2O_3粉体的热处理工艺参数的优化[J],陶瓷学报,2006,27(1):1-5
    26.陈前林,何显平,高珊珊等.β-Sialon╱刚玉复相粉体材料的制备[J],现代机械,2004,(3):73-74
    27.王锐,高峰,李道火.Si_3N_4超微粉体及其制备[J],安徽建筑工业学院学报(自然科学版),2006,14(2):50-51
    28.吴华武,来月英.高纯Si_3N_4微细粉合成工艺的最新进展[J],无机盐工业,1995,(1):18-21.
    29.徐彩虹,谢择民.氮化硅陶瓷前驱体研究进展[J],高分子通报,2000,(4):27-33.
    30.李晓杰,李瑞勇,曲艳东等.爆轰法合成纳米α-Al_2O_3粉体[J],工程爆破,2006,12(1):19-21
    31.金志浩,高积强,乔冠军.工程陶瓷材料[M],西安:西安交通大学出版社,2002
    32.果世驹.粉末烧结理论[M].北京:冶金工业出版社,2002
    33.方岱宁.先进复合材料的宏微观力学与强韧化设计:挑战与发展[J],复合材料学报,2000,17(2):1-7
    34. H.V. Atkinson. Theory of Normal Grain Growth in Pure Single Phase Systems [J], Acta Metall., 1988, 36(3): 469-491
    35. J.E. Burke, D. Turnbull, Recrystallization and Grian Growth[J], Prog, Metal Phys., 1952, (3): 220-292
    36. H.V. Atkinson. Theories of Normal Grain Growth in Pure Single Phase Systems [J], Acta Metall., 1988, 36 (3): 469-491
    37. Hu H, Rath B B. On the Time Exponent in Isothermal Grain Growth [J], Metll Trans, 1970, 1:3181-3184
    38. Gil F X, Kodriguez D, Planell J A. Grain Growth Kinetics of Pure Titanium[J], Script Metll. Mater., 1995, 33 (8): 1361-1366
    39.唐仁政.物理冶金基础[M],北京:冶金工业出版社,1997
    40.柳百成.21世纪的材料成形加工技术[J],航空制造技术,2003,(6):17-21
    41. C.A.J. Fisher. Theory, Simulation and Design of Advanced Ceramics and Composites, pp. 141-152, European White Book on Fundamental Research in Materials Science
    42. Dimitrios Marouds. Multiscale Modeling of hard Materials: Challenges and Opportunities for Chemical Engineers[J], AIChE Journal, 2000,46(5):878-882
    43. H.Dosch and M.H.Vande Voorde. Materials Science and Basic Research Europe: Conclusion and Recommendations, pp. 288-309 European White Book on Fundamental Research in Materials Science
    44. G. N. Hassold, I-Wei Chen, D. J. Srolovtz. Computer Simulation of Final-stage: I, Model, Kinetics, and Microstructure [J], J. Am. Ceram. Soc, 1990, 73(10): 2857-2864
    45. I-Wei Chen, Gregory N. Hassold, David J. Srolovitz. Computer Simulation of Final Sintering: Ⅱ Influence of Initial Pore Size [J], J. Am. Soc, 1990, 73(10): 2865-2872
    46. Tikare V, Holm E A. Simulation of Grain Growth and Pore Migration in a Thermal Gradient [J], J. Am. Ceram. Soc. 1998, 81:480-484
    47. Tikare V, Braginsky M, O levsky E A. Numerical Simulation of Solid-state Sintering: I, Sintering of Three Particles [J], J. Am. Ceram. Soc., 2003, 86 (1): 49-53
    48. Qin X G, Sun J B, Liu G Q. Three-dimensional Simulation of Sintering of Ceramics[A], Materials Science Forum, 2005, 475-479:1287-1290
    49.柳百成,李敏贤,吴俊郊等.成形制造(第五章).国家自然科学资金优先资助领域 战略研究报告.先进制造技术基础[M],北京:高等教育出版社,1998,144-182
    50.罗旋,费维栋,李超,姚忠凯.材料科学中分子动力学模拟研究进展[J],材料科学与工艺,1996,4(1):124-128
    51. L. Verlet. Computer Experiments on Classical Fluids: I. Thermodynamical Properties of Lennard-Jones Molecules [J], Phys. Rev., 1967,159:98-103
    52.罗旋,费维栋,李超,姚忠凯.材料科学中的分子动力学模拟研究进展[J],材料科学与工艺,1996,4(1):124-128
    53.胡慧芳,李义兵,何红波等.分子动力学模拟纳米晶体银的结构和性能[J],化学物理学报,2000,13(3):293-298
    54. Martina E. Bachlechner, Rajiv K. Kalia, et al. Structural Correlations at Si/Si_3N_4 Interface and Atomic Stresses in Si/Si_3N_4 Nanopixel-10 Million-atom Molecular Dynamics Simulation on Parallel Computers[J], J. of the Euro. Cera. Soc., 1999, (19): 2265-2272
    55. Alok Chatterjee, Timothy Campbell, Rajiv K. Kalia, et al. Parallel Molecular Dynamics Simulations of High Temperature Ceramics[J], Journal of the European Ceramic Society, 1999(19): 2257-2264
    56. T.S. Rahman, J.E. Black. Dynamics of a Ag overlayer on Ni(100) [J], Phys. Rev. B, 1993, 48:5530-5539
    57.罗旋,钱革非,刘秋云,费维栋.界面对复合材料静态及弯曲力学性能影响的分子动力学模拟[J],复合材料学报,1999,16(1):159-164
    58. L. Q Yang, T.S. Rahman, J. Black. Nearly Incommensurate Ag Overlayer on Ni(100)-A Molecular Dynamics Study[J], Surf. Sci. 1992, 278(3): 407-413
    59.罗旋,钱革非,王煜明.Ag/Ni和Cu/Ni界面的分子动力学模拟[J],物理学报,1994,43(12):1957-1965
    60.D.罗伯著.项金钟,吴兴惠译.计算材料学[M],北京:化学工业出版社,2002
    61. Packard N. Theory and Applications of Cellular Automata [M], Singapore: World Scientific, 1986:305
    62. Brown S G R, Spittle J A, Rule. Based Lattice Computer Models for Simulating Dendritic Growth [J], Scripta. Mera11. Mater., 1992, 42:1599-1673
    63. Brown S G R, Willians T, Spittle A. A Cellular Automata Model of the Steady-state "Free" Growth of a Non-isothemal Dendrite[J], Acta Matall. Mater., 1994, 42: 2893-2898
    64. Brown S G R, Bruce N B. A 3-dimensional Cellular Automaton Model of "Free" Dendritic Growth [J], Scripta. Matall. Mater., 1995, 32:241-246
    65.魏秀琴,周浪.电渣熔铸中熔池深度及其控制的计算机模拟研究[J],南昌大学学报(工科版),1999,21(4):21-25
    66.张林,王元明,张彩碚.Ni基耐热合金凝固过程的元胞自动机方法模拟[J],金属学报,2001,37(8):882-888
    67.于亮,顾斌,李绍铭等.枝晶生长的元胞自动机模拟[J],安徽工业大学学报,2002,19(1):10-12
    68.丁恒敏,刘瑞祥,陈立亮,刘晶峰.用Cellular Automaton模型方法模拟二元合金枝晶生长[J],中国制造装备与技术,2005,2:17-19
    69.许林,郭洪民,杨湘杰.元胞自动机法模拟铝合金三维枝晶生长[J],铸造,2005,54(6):575-578
    70. H W Hesselbarth, I R Gobel. Simulation of Recrystallization by Cellular Automata[J], Acta Metall. Mater., 1991, 39:2135-2143
    71. R. Ding, Z. X. Guo, Coupled Quantitative Simulation of Microstructural Evolution and Plastic Flow during Dynamic Recrystallization[J], Acta Mater., 2001, 49: 3163-3175
    72. C.A. Gandin. Stochastic Modeling of Dendritic Grain Structure[J], Adv. Eng. Mater., 2001, 3 (3): 303-306
    73. D. Raabe. Yield Surface Simulation for Partially Recrystallized Aluminium Polycrystals on the Basis of Spatially Discrete Data[J], Comput. Mater. Sci.. 2000,19(14): 13-26
    74. D. Raabe. Mesoscale Simulation of Recrystallization Textures and Microstructures[J], Adv. Eng. Mate. 2001, 3(10): 745-752
    75.夏维国.晶粒长大动力学的计算机模拟[J],株洲工学院学报,2003,17(5):36-39
    76. TongMing Wang, Junze Jin, XianShu ZHeng. A CA/MC Model for the Simulation of Grain Structures in Solidification Processes[J], Journal of Materials Science, 2002, 37: 2645-2650
    77. A.G. Khachaturyan. Microscopic Theory of Diffusion in Crystalline Solid Solutions and the Time Evolution of the Diffuse Scattering of X rays and Thermal Neutrons[J], Soy. Phys. Solid. State, 1968, 9:2040-2046
    78. S. Chen, A.M. Ferrenberg and D.P. Landau. Monte Carlo Simulation of Phase Transitions in a 2-D Random-Bond Potts Model[J], Phys. Rev. E, 1995, 52(2): 1377-1386
    79. Kobayashi Ryo. Modeling and Numerical Simulation of Dendritic Crystal Growth[J], Phys. D, 1993, 63(1): 410-423
    80.张光跃,荆涛,柳百成.相场方法原理及在微观组织结构模拟中的应用[J],机械工程学报,2003,39(5):6-9
    81. Wheeler A A, Boettinger W J, McFadden G B. Phase-field Model for Isothemal Phase Transitions in Binary Alloys[J], Phys. Rev. A, 1992, 45(10): 7424-7439
    82. Karma A, Rappel W J. Quantitative Phase-field Modeling of Dendritic Growth in Two and Three Dimensions[J], Phys. Rev. E, 1998, 57(4): 4323-4349
    83.赵代平,荆涛.用捕获液态改进的相场方法模拟三维枝晶生长[J],金属学报,2002,38(12):1238-1240
    84.赵代平,荆涛,柳百成.相场模型参数对枝晶形貌的影响[J],金属学报,2003,39(8):813-816
    85.张光跃,荆涛,柳百成.用相场方法模拟铝合金枝晶生长形貌[J],中国有色金属学报,2002,12(5):875-877
    86.张光跃,荆涛,柳百成,赵代平.铝合金枝晶生长形貌数值模拟研究[J],铸造,2002,51(12):764-766
    87. Steinbach I, Pezzolla F, Nestler B, et al. A Phase Field Concept for Multiphase System [J], Phys. D. 1996, 94(1): 135-147
    88. Nestler B, Wheeler A A. A Multi-phase-field Model of Eutectic and Peritectic Alloys: Numerical Simulation of Growth Structures[J], Phys. D. 2000, 138(1): 114-133
    89. Toru Miyazaki, Toshiyuki Koyama, Takao Kozakai. Computer Simulations of the Phase Transformation in Real Alloy Systems Based on the Phase Field Method[J], Materials Science and Engineering A, 2001,312:38-49
    90. A. Kuprat. Modeling Microstructure Evolution Using Gradient-weighted Moving Finite Elements [J], SIAM Journal on Scientific Computing, 2000, 22 (2): 535-560
    91. A. Kuprat, D. George, G. Straub, et al. Modeling Microstructure Evolution in Three Dimensions with Grain3D and LaGriT[J], Computational Materials Science, 2003, 28: 199-208
    92. M. C. Demirel, A. P. Kuprat et al. Linking Experimental Characterization and Computational Modeling of Grain Growth in Al-Foil[J], Interface Science, 2002,10: 137-141
    93. D. Kinderlehrer, Chun Liu. Evolution of Grain Boundaries[J], Mathematic Models and Methods in Applied Sciences, 2001, 11 (4): 713-729
    94. F. Eberl, S. Forest, T. Wroblewski, et al. Finite-element Calculations of the Lattice Rotation Field of a Tensile-Loaded Nickel-Based Alloy Multicrystal and Comparison with Topographical X-Ray Diffraction Measurements[J], Metallurgical and Materials Transactions, 2002,33A(9): 2825-2833
    95. M. Upmanyu et al. Boundary Mobility and Energy Anisotropy Effects on Microstructural Evolution During Grain Growth[J], Interface Science 2002,10: 201-216
    96. C. Binet, K. L. Lencoski, D. F. Heaney et al. Modeling of Distortion after Densification during Liquid-Phase Sintering[J], Metallurgical and Materials Transactions, 2004,35A(12): 3833-3841
    97. A.J. Beaudoin, J.D. Bryant, and D.A. Korzerwa. Analysis of Ridging in Aluminum Auto Body Sheet Metal[J], Metallurgical and Materials Transactions, 1998,29A(9): 2323-2332
    98. R L Fullman. Boundary Migration during Grain Growth[J], Metal Interfaces, 1952, 179-207
    99. M. Morhac, E. Morhacova. Monte Carlo Simulation Algorithms of Grain Growth in Polycrystalline Materials[J], Cryst. Res. Technol., 2000, 35(1): 117-128
    100. R. B. Potts. Some Generalized Order-disorder Transformations[J], Proc. Camb. Phil. Soc., 1952, 48:106-109
    101. M. P. Anderson, D. J. Srolovitz, G. S. Grest et al. Computer Simulation of Grain Growth-I Kinetics[J], Acta Metall., 1984, 32(5): 783-791
    102. D. J. Srolovitz, M. P. Anderson, P. S. Sahni et al. Computer Simulation of Gram Growth-Ⅱ Grain Size Distribution, Topology, and Local Dynamics[J], Acta Metall., 1984, 32(5): 793-802
    103. E. A. Holm, C. C. Battaile. The Computer Simulation of Microstructural Evolution[J], JOM, 2001, 53(9): 20-23
    104. B. Radhakrishnan, T. Zacharia. Monte Carlo Simulation of Stored Energy Driven Interface Migration[J], Modelling Simul. Mater. Sci. Eng. 2003, (11): 307-319
    105. R. S. Miller, G. Cao, and M. Grujicic. Monte Carlo Simulation of Three-dimensional Nonisothermal Grain-microstructure Evolution: Application to LENS Rapid Fabrication[J], Journal of Materials Synthesis and Processing, 2001, 9(6): 329-345
    106. P. Yu and S. Ta'asan. Large Scale Limit of Monte-Carlo Simulations of Grain Growth, Computational Fluid and Solid Mechanics, K.J. Bathe, Editor, Elsevier Science 2003
    107. E. A. Holm, J. A. Glazier, D J. Srolovitz, et al. Effect of Lattice Anisotropy and Temperature on Domain Growth in the Two-dimensional Ports model[J], Physical Review A, 1991, 43(6): 2662-2668
    108. C. Maurice. 2- and 3-d Curvature Driven Vertex Simulation of Grain Growth, Proceedings of the First Joint International Conference on Recrystallization and Grain Growth, Vol. 1, Springer-Verlag, Berlin, 2001, pp. 123-134
    109. Rollett A. D., E. A. Holm. Abnormal Grain Growth-the Origin of Recrystallization Nuclei[C]. In Recrystallization 96, (T. R. McNelley, ed.) Monterey, CA (Rex'96) pp. 31-42
    110. B. Radhakrishnan, T. Zacharia, Monte Carlo Simulation of Stored Energy Driven Interface Migration[J], Modelling Simul. Mater. Sci. Eng., 2003, (11): 307-319
    111. D.J. Srolovitz, G. S. Grest, M. P. Anderson. Computer Simulation of Recrystallization-I. Homogeneous Nucleation and Growth, Acta Metall. 1986, 34(9): 1833-1845
    112. B. Radhakrishnan, T. Zacharia. On the Monte Carlo Simulation of Curvature-driven Growth[J], Modelling Simul. Mater. Sci. Eng., 2002, (10): 227-236
    113. B. Radhakrishnan, T. Zacharia. Simulation of Curvature-Driven Growth by Using a Modified Monte Carlo Algorithm[J], Metallrtgical and Materials Transactions A, 1994, 26A: 167-180
    114. Song Xiaoyan, Liu Guoquan. Computer Simulation of Normal Grain Growth in Polycrystalline Thin Films[J],Journal of Material Science, 1999, 34:2433-2436
    115.张继祥,关小军,孙胜.一种改进的晶粒长大Monte Carlo模拟方法[J],金属学报,2004,40(5):457-461
    116.张继祥,关小军,孙胜.晶粒长大过程微观组织演变Monte Carlo方法模拟[J],山东大学学报,2005,35[4]:1-5
    117. R. J. Brook, In Ceramic Fabrication Processes. (Ed. by F. F. Y. Wang), pp. 331-365, Academic Press, New York, 1976
    118. Mehnert K, Klimanek P. Grain Growth in Metals with Strong Textures: Three-dimensional Monte Carlo Simulation, Computational Materials Science, 1997, 9: 261-266J
    119. Jiang Y, Mombach J C M, Glazier J A. Grain Growth from Homogeneous Initial Conditions: Anomalous Grain Growth and Special Scaling State[J], Physical Review E, 1995, 52(4): R3333-R3336
    120. M. Miodownik, J.W. Martin, A. Cerezo. Mesoscale simulation of particle pinning[J], Philosophical Magazine A, 1999, 79(1): 203-222
    121. A. D. Rollett, D. J. Srolovitz, and M. P. Anderson. Simulation and Theory of Abnormal Grain Growth—Anisotropic Grain Boundary Energies and Mobilities[J], Acta Metall, 1989, 37(4):1227-1240
    122. Yi-Ming Pan, Richard A. Page, Gabrielle G. Long, Susan Krueger. Role of Zirconia Addition in Pore Development and Grain Growth in Alumina Compacts[J], Joural of Materials Research, 1999, 14(12): 4602-4614
    123.郭景坤.陶瓷材料的强化与增韧新途径的探索[J],无机材料学报,1998,13(1):23-26
    124.徐利华,丁子上,黄勇.先进复相陶瓷的研究现状与展望(Ⅰ)[J],硅酸盐通报,1996,(5):43-48
    125. Lang F F. Transformation Toughening Part 1 Size Efects Associated with the Thermodynamics of the Constrained Transformation[J], J. Mater Sci., 1982, 17(1): 225-234
    126.辜萍,傅正义,王为民.复相陶瓷的制备与研究[J],武汉工业大学学报,1999, 21(2):7-9
    127.阚艳梅,靳喜海.复相陶瓷的内在增韧机制及其影响因素[J],陶瓷学报,1998,19(4):221-224
    128.许崇海.复相陶瓷刀具材料设计、仿真及其应用研究[D],山东工业大学博士学位论文,1998
    129.刘含莲.多元多尺度纳米复合陶瓷刀具材料的研制及其切削性能研究[D],山东大学博士学位论文,2005
    130. Von Neumann J. "Discussion Remark Concerning Paper of CS Smith, Grain Shapes and Other Metallurgical Applications of Topology"; in Metal Interfaces. American Society for Metals, Cleveland, OH, 1952, pp. 108-110.
    131. Neal Myers, Tim Meuller, and Randall German. Production of Porous Refractory Metals with Controlled Pore Size. In Particle Packing Characteristics, Metal Powder Industries Federation, Edited by Randall German, pp. 298-300, 1989
    132. R. J. Brook. Pore Grain Boundary Interactions and Grain. Growth[J]. J. Am. Cera. Soc., 1969, 52:56-57
    133. Randall M.German, Ivi Smid, Louis G. et al. Liquid Phase Sintering of Tough Coated Hard Particles[J], International Journal of Refractory Metals & Hard Materials, 2005,23:267-272
    134. R M German. Liquid Phase Sintering[M], New York: Plenum Press 1985
    135. Randall M German, Eugene A Olevsky. Modeling Grain Growth Dependence on the Liquid Content in Liquid-phase-sinter[J], Metallurgical and Materials Transactions, 1998, 29A, 12:3057-3067
    136. R. L. Coble. Sintering Crystalline Solids: Ⅱ, Experimental Test of Diffusion Models in Powder Compacts[J], J. Appl. Phys., 1961, 32 (5): 793-99
    137. C. A. Bateman, S. J. Bennison, and M. P. Harmer. Mechanism for the Role of MgO in the Sintering of Al_2O_3 Containing Small Amounts of a Liquid Phase[J], J. Am. Ceram.Soc.,1989, 72 [7]: 1241-1244
    138. S. J. Bennison, M. P. Harmer, A History of the Role of MgO in the Sintering of Al_2O_3[J], Ceramic Transactions, 1990, (7): 13-49
    139. J. Wang, S.Y. Lim, S.C. Ng, C.H. Chew, L.M. Gan. Dramatic Effect of a Small Amount of MgO Addition on the Sintering of Al_2O_3-5 vol% SiC Nanocomposite, Materials Letters[J], 1998, 33:273-277
    140. A. Rittidech, L. Portia, T. Bongkarn. The Relationship between Microstructure and Mechanical Properties of Al_2O_3-MgO Ceramics[J], Materials Science and Engineering A, 2006, (438-440): 395-398
    141. M. Braginsky, V. Tikare, E. Olevsky. Numerical simulation of solid state sintering[J], International Journal of Solids and Structures, 2005, 42:621-636
    142. V. Tikare, M.A. Miodownik, E. A. Holm. Three-dimensional Simulation of Grain Growth in the Presence of Mobile Pores, J. Am. Ceram. Soc., 2001, 84(6): 1379-1385
    143. DeHoff, R.T., 1989. Stereological Theory of Sintering. In: Uskokovic, D.P. et al. (Eds.), Science of Sintering. Plenum Press, New York, pp. 55-71.
    144. Kingery WD, Francois B. Grain Growth in Porous Compacts[J], J Am Ceram Soc., 1965, 48:546-547
    145. G. N. Hassold, E. A. Holm, D. J. Srolovitz. Effects of Particles Size of Inhibited Grain Growth[J], Scripta Metall. and Mater., 1990, 24(1): 101-106
    146. Laura C. Streams, Martin. P. Harmer. Particle-inhibited Grain Growth in Al_2O_3-SiC: Ⅱ, Equilibrium and Kinetic Analyses[J], J. Am. Ceram. Soc., 1996, 79(12): 3020-3028
    147. Y. Limoge, J.L. Bocquet. Monte Carlo Simulation in Diffusion Studies: Time Scale Problem[J], Acta Metall, 1988, 36(7): 1717-1722
    148. J. Gao, R.G. Thompson. Real Time-temperature Models for Monte Carlo Simulations of Normal Grain Growth, Acta Mater. 1996, 40(11): 4565-4570
    149. M. F. Ashby. Sintering and Isostatic Pressing Diagrams, Technical Report, University of Cambridge, 1990
    150.高瑞平,李晓光,施剑林,周玉,傅正义.先进陶瓷物理化学原理与技术[M],北京:科学出版社,2001
    151. Wenming Zeng, Lian Gao, Linhua Gui, Jinkun Guo. Sintering Kinetics of α-Al_2O_3 Powder[J], Ceramics International, 1999, 25:723-726
    152.叶大伦,胡建华.实用无机物热力学数据手册[M],北京:冶金工业出版社,2002.9ISBN 7-5024-3055-5,第2版
    153. L.A. Xue, I.W. Chen. Deformation and Grain Growth of Low-temperature-sintered High-purity Alumina[J], J. Am. Ceram. Soc. 1990, 73(11): 3518-3521
    154. Y. S. Kwon, K. T.Kim. High Temperature Densification Forming of Alumina Powder-Constitutive Model and Experiments[J], J. Eng. Mater. Tech, 1996,118:448-455
    155. Y. S. Kwon, K. T.Kim. Densification Forming of Alumina Powder-effects of Power-law Creep and Friction[J], J. Eng. Mat. Tech., 1996, 118:471-477
    156. K. T. Kim, H. G. Kim, and H. M. Jang. Densification Behavior and Grain Growth of Zirconia Powder Compact under High Temperature[J], Int. J. Eng. Sci., 1998, 36(11): 1295-1312
    157. J. Besson and M. Abouaf. Rheology of Porous Alumina and Simulation of Hot-isostatic Pressing[J], J. Am. Ceram. Soc., 1992, 75 (8): 2165-2172
    158. Zeming He, J Ma. Grain-growth Law during Stage 1 Sintering of Materials[J], J. Phys. D: Appl. Phys. 2002, 35:2217-2221
    159.张兰亭,唐志宏译.加钼的钨重合金[J],中国钨业,2001,16(3):36-39
    160. Laura C. Stearns, Martin P. Harmer. Particle-inhibited Grain Growth in Al_2O_3-SiC: I Experiment Results[J], J. Am. Ceram. Soc., 1996, 79 (12): 3013-3020
    161. Y. Sakka, S. Ohno, M. Uda. Oxidation and Degradation of Titanium Nitride Ultrafine Powders Exposed to Air[J], J. Am. Ceram. Soc., 1992, 75 (1): 244-248
    162. Koji Tanaka, Masanori Kohyama. Atomic Structure Analysis of ∑=3, 9 and 27 Boundary, and Multiple Junctions in β-SiC[J], JEOL, 2003, 28 (2): 8-10
    163.李荣久.陶瓷—金属复合材料[M],北京:冶金工业出版社,2004
    164. W.D.Kingery. Metal-ceramic Interactions: IV, Absolute Measurements of Metal-ceramic Interracial Energies[J], J. Am. Ceram. Soc., 1954,37:42-45
    165. S. Jiao, M. L. Jenkins, R. W. Davidge. Interfacial Fracture Energy-mechanical Behaviour Relationship in Al_2O_3/SiC and Al203/]'iN Nanocomposites[J], Acta mater., Vol. 1997, 45(1): 149-156
    166.余永宁,刘国权.体视学—组织定量分析的原理和应用[M],北京:冶金工业出版社,1989
    167. H. Gu, W. Y. Shih, Wei-Heng Shih. Low-temperature, Single Step, Reactive Sintering of Lead Magnesium Niobate Using Mg(OH)_2-Coated Nb_2O_5 Powders[J], J. Am. Ceram. Soc., 2005, 88(6): 1435-144

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700