仿生合成丝素蛋白/羟基磷灰石类骨质复合生物材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
仿生合成技术模仿了自然界生物体合成自身矿物的过程,即无机成分在有机模板的精确调控下合成有机/无机复合体。在合成过程中先形成有机自组装体(如:蛋白质、多糖、核酸、生物膜、脂质体等),使无机成分在有机自组装聚集体和溶液的相界面发生化学反应,在自组装体模板的精确调控下,形成有机/无机复合体。
     本论文研究主要以丝素蛋白为模板,使钙、磷溶液在一定的PH值及一定的温度下,通过分子键的作用,在丝素蛋白表面自组装沉积、成核形成类骨羟基磷灰石,并研究不同温度对磷灰石晶体在丝素蛋白表面取向的影响,制备丝素蛋白/羟基磷灰石类骨质复合生物材料,用于骨缺损的修复。
     首先,仿生合成丝素蛋白/羟基磷灰石类骨质复合生物材料的制备。以蚕丝丝素蛋白为模板,按照有机/无机为3/7的比例将蚕丝丝素蛋白和磷酸的混合溶液逐步滴定到氢氧化钙溶液中(Ca∶P=1.67),同时用氢氧化钠调节PH值为9~10,强力搅拌,沉化48小时,形成丝素蛋白/羟基磷灰石复合生物材料。采用梯度温度(25℃、37℃、50℃、60℃、70℃)制备不同的样本,通过FTIR、XRD、SEM、TEM对样本进行表征,筛选出最佳类骨质结构的复合生物材料制备的条件。结果显示:通过对不同温度下制备的SF/HA复合材料进行表征显示,FTIR、XRD显示所制备的复合生物材料中,磷灰石晶体为含有碳酸根的低结晶度纳米羟基磷灰石,与天然骨组织中的磷灰石晶体相似;同时XRD显示磷灰石晶体尺寸为15.6~22.8nm,扫描电镜图片Smile View软件测量显示SF/HA复合材料晶体颗粒为0.229~0.409μm,表明HA晶体以及SF/HA复合材料晶体颗粒均晶体随温度的增加而增大;SF/HA复合材料晶体颗粒XRD图谱显示,随着温度的增加晶体沿c轴择优取向生长,同时TEM电子衍射图显示,在60℃、70℃水浴时,晶体明显沿c轴方向择优生长,生长方向与纤维长轴平行,并且水浴70℃时晶体取向稍优于60℃时复合材料的晶体:这与天然骨组织中,羟基磷灰石晶体在胶原纤维表面生长与排列方向相同。因此,所制备的丝素蛋白/羟基磷灰石复合生物材料为类骨质结构。
     论文的第二部分研究了所制备的丝素蛋白/羟基磷灰石类骨质复合生物材料的生物学特性。首先将制备好的材料粉体利用压片机在20MPa的机械力作用下,压制成直径约1.2mm的圆盘型,并利用纯羟基磷灰石材料作为对照培养MG63细胞,观察细胞的增殖,测试其生物学特性。通过检测MTT,ALP,Ca及OC值,利用SEM观察不同时间细胞的粘附和生长,显示所制备的丝素蛋白/羟基磷灰石类骨质复合生物材料有利于细胞的粘附、增殖和生长,可以促进细胞ALP活性表达,提高细胞基质钙离子的释放,并且可以诱导细胞OC分泌增加,促进细胞成骨性能的表达,是一种理想的复合生物材料。
     综上所述,本论文以蚕丝丝素蛋白纤维为模板,钙磷在丝素蛋白模板的调控下,在纤维表面沉积、成核形成类骨羟基磷灰石晶体,在丝素蛋白模板精确的调控下,磷灰石晶体在纤维表面沿c轴择优取向生长,晶体生长方向与纤维长轴平行,所制备的类骨质复合生物材料与天然骨具有组成和结构上的统一;并对其生物学特性进行了评价,有利于细胞的粘附,增殖和生长以及成骨活性的表达,是一种理想的复合生物材料。
Multiplicity mineralized composite procedures in Nature provide a rich foundation for biomineralization and novel materials designs. i.e. sea hells, bone and other hard tissue. The procedure is the Natural inorganic mineral formatted by the organic template regulation. The formation of Natural inorganic-organic composites is a complex process, including the assembly of the organic template (i.e. protein, polysaccharides, nucleinic acid, biological membrane and liposome) subsequent inorganic mineral deposition, nucleation and growth on the organic template surface by the the organic template regulation.
     The major of thesis focused on the study of the like-bone Silk fibroin (SF)/ hydroxyapatite(HA) biocomposite. First prepare the SF organic template, secondly under controlled PH and temperature calcium and phosphorus begin deposition and nucleation and growth on the organic template surface by the the organic template precise regulation and form like-bone silk fibroin /hydroxyapatite biocomposite. at the same time, research the effect of temperature on the hydroxyapatite crystal direction on the silk fibroin template surface.
     Firstly the preparation of like-bone Silk fibroin (SF)/ hydroxyapatite (HA) biocomposite by biomineralization. Ca(OH)_2, H_3PO_4 and SF were used as starting materials, and their composites were synthesized by a biomineralization. The starting materials were prepared for the composition of the SF/HA composite to be 30/70 in weight ratio. add SF template into the H3PO4 solution with vigorous stirring until uniform mixing, the prepare of the composite was conducted by adding the H_3PO_4 solution with the SF slowly into the Ca(OH)_2 solution with vigorous stirring and adjust PH to 9~10 With NaOH at grade temperature (25℃、37℃、50℃、60℃、70℃). Checking the biomaterial prepared at grade temperature, chose the better reparation condition. The results from the tests of FTIR、XRD show that the hydroxyapatite is low crystallinity nano-carbonated apatite [CO_3-substituted Ca_(10)(PO_4)_6(OH)_2].it is consistent with the hydroxyapatite crystals in bone. the size of hydroxyapatite crystals is 15.6~22.8nm showed by XRD, and the crystals size of composite is 0.229~0.409um.they indicate that the crystals size increase with the rising of temperature. The results from the tests of SEM,TEM and electron diffraction show that the needle-like hydroxyapatite crystal grows along the c-axes of hydroxyapatite crystal and The crystallographic c-axes of hydroxyapatite were aligned along the long axes of the fibers, consistent with observations of collagen fibrils and hydroxyapatite crystals in bone at the 60℃、70℃.the like-bone structure is better at the aqueous bath of 70℃than 60℃.
     Secondly, in vitro experiments were designed and carried out to evaluate the biological reaction of the biomaterial prepared as described in the first part. Compress the SF/HA powder into disk shape with 1.2mm diameter by tablet machine. and MG63, which is human osteoblast cell phenotypes was adopted to valuate the biological reaction. controlled by HA. Morphology observation ,SEM and MTT results show that the like-bone SF/HA is better benefit to MG63 that HA, it is benefit to MG63 adhesion differentiation and proliferation. At the same time the results of ALP, Ca~(2+) concentration and OC indicate that The SF/HA can promote the ALP express, hasten the delivery of cell matrix Ca~(2+) and induce the OC perspire controlled with HA. So the like-bone SF/HA biomaterial is a better biomaterial.
     Based on the evidences from the experiments. calcium and phosphorus begin deposition , nucleation and growth on the organic template surface by the organic template precise regulation and form like-bone silk fibroin/hydroxyapatite biocomposite. The hydroxyapatite is low crystallinity nano-carbonated apatite [CO_3-substituted Ca_(10)(PO_4)_6(OH)_2]. It is consistent with the hydroxyapatite crystals in bone. and the needle-like hydroxyapatite crystal grows along the c-axes of hydroxyapatite crystal and The crystallographic c-axes of hydroxyapatite were aligned along the long axes of the fibers, consistent with observations of collagen fibrils and hydroxyapatite crystals in bone. At the same time, evaluate the biological reaction, the like-bone SF/HA can promote MG63 adhesion differentiation and proliferation and ossify activity.
引文
1. Peppas HA, Lanser R. New challenges in biomaterials. Science, 1994, 263; 1715-1720
    2. Larry L. Hench and Julia M. Polak. Third-Generation Biomedical Materials. Science, 2002, 295; 1016-1017
    3. LeGeros RZ, Properties of Osteoconductive Biomaterials: Calcium Phosphates. Clinical Orthopaedics and Related Research, 2002, 395; 81-98
    4.李玉宝 主编 生物医学材料 北京 化学工业出版社,2003:
    5. Lu LC, Bradford LC, Michael JY. Synthetic bone substitutes. Current Opinion in Orthopedics, 2000, 11; 383-390
    6. Dean M. Toriumi, and Amita Manickam. New advances in bone grafting alternatives Current Opinion in Otolaryngology& Head and Neck Surgery. 2000, 8; 282-287
    7. Block J. E,. Thorn M. R. Clinical Indications of Calcium-Phosphate Biomaterials and Related Composites for Orthopedic Procedures. CalcifTissue Int 2000, 66: 234-238
    8. Adele L. Boskey Biomineralization: Conflicts, Challenges, and Opportunities Journal of Cellular Biochemistry Supplements 1998, 30/31: 83-91
    9.陈洪渊.仿生材料与微系统.科学中国人,2004,4:28
    10.左奕 羟基磷灰石_聚酰胺_聚乙烯三元复合仿生材料研究四川大学博士学位论文,2006
    11.陈治清 主编 口腔生物材料学,北京化学工业出版社,2004
    12. S. Weiner and H. D. Wagner, The material bone: structure-mechanical function relations. Annu. Rev. Mater. 1998, 28: 271-298
    13. Kaplan D L. Mollusc shell structures: novel design strategies for ynthetic materials. Current Opinion in Solid State & Materials Science 1998, 3: 232-236
    14. Stupp SI, Hartgerink JD, Beniash E. Self-assembly and mineralization of peptide-amphiphile nanofibers. US Patent 2003, WO 2003054146
    15. S.-.H. Rhee, Y. Suetsugu and J. Tanaka, Biomimetic configurational arrays of hydroxyapatite nanocrystals on bio-organics. Biomaterials 2001, 22:2843-2847
    16. Chunmei Li and David L. Kaplan Biomimetic composites via molecular scale self-assembly and biomineralization Current Opinion in Solid State and Materials Science 2003, 7:265 — 271
    17. Yan Pan, Xu Zhao, Ye Sheng et al Biomimetic synthesis of dendrite-shaped aragonite particles with single-crystal feature by polyacrylic acid Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 297:198-202
    18. Y.Z. Wan, Y. Huang, CD. Yuan, S. et al Biomimetic synthesis of hydroxyapatite/bacterial cellulose nanocomposites for biomedical applications Materials Science and Engineering: C, 2006,15
    19. Hong Li, Weiya Huang, Yuanming Zhang and Mei Zhong Biomimetic synthesis of enamel-like hydroxyapatite on self-assembled monolayers Materials Science and Engineering: C, 2006, 20.
    20. Stacy A. Hutchens, Roberto S. Benson et al Biomimetic synthesis of calcium-deficient hydroxyapatite in a natural hydrogel Biomaterials 2006, 27: 4661-4670
    21. Santosh Aryal, Shanta Raj Bhattarai, Remant Bahadur K.C et al Carbon nanotubes assisted biomimetic synthesis of hydroxyapatite from simulated body fluid Materials Science and Engineering: A, 2006,426:202-207
    22. Masanori Kikuchi, Toshiyuki Ikoma, Soichiro Itoh, Hiroko N. Biomimetic synthesis of bone-like nanocomposites using the self-organization mechanism of hydroxyapatite and collagen Composites. Science and Technology, 2004, 64:819-825
    23. Zhang YQ. Applications of natural silk protein sericin in biomaterials. Biotechnology Advances, 2002, 20: 91-100
    24. Gregory HA, Diaz F, Jakuba Ce, et al. Silk-based biomaterials. Biomaterials, 2003, 24: 401-416
    25. INOUE SI, MAGOSHI J, TANAKA T, et al. Atomic Force Microscopy: Bombyx mori Silk Fibroin, Molecules and Their Higher Order Structure. J Polym Sci B: Polym Phys, 2000, 38: 1436~1439
    26.刘佳佳;杨华 新蚕丝蛋白和新生物材料 国外丝绸 2004,5,4—7.
    27. Santin M, Motta A, Freddi G. In vitro evaluation of the inflammatory potential of the silk fibroin, J Biomed Mater Res, 1999, 46: 382-389
    28. Saitoh H, Ohshima KI, Tsubouchi K, et al. X-ray structural study of noncrystalline regenerated Bombyx mori silk fibroin. International Journal of Biological Macromolecules, 2004, 34: 259-265
    29.闻荻江;王辉:朱新生:孙建平 丝素蛋白的构象与结晶性 纺织学报 2005,1,110—112
    30. Kong XD, Cui FZ, Wang XM, et al. Silk fibroin regulated mineralization of hydroxyapatite nanocrystals. Journal of Crystal Growth, 2004, 270: 197-202
    31. W einer S, T raub W, Wagner H D. Lamellar bone: Structure-function relations J Struct Bioi, 1999, 126: 241-255.
    32.冯庆玲 生物矿化与仿生材料的研究现状及展望 清华大学学报(自然科学版) 2005,3:378—383
    33.王一平,朱丽 仿生合成技术及其应用研究 化学工业与工程 2001,18,272-278
    34. J. Liu, A. Y. Kim, L. Q. Wang, B. J. Palmer, et al Self-assembly in the synthesis of ceramic materials and composites Advances in Colloid and Interface Science 1996, 69: 131-180
    35.崔福斋 自组装生物材料 新材料产业 2003,5:61—64
    36. Sofia S, McCarthy MB, Gronowicz G, et al. Functionalized silk-based biomaterials for bone formation. Journal of Biomedical Materials Research, 2001, 54: 139-148
    37. Karageorgiou V, Meinel L, Hofmann S, et al. Bone morphogenetic protein-2 decorated silk fibroin films induce osteogenic differentiation of human bone marrow stromal cells. J Biomed Mater Res, 2004, 71A: 528-537
    38.李罡.气电纺蚕丝蛋白纳米纤维的制备与组织工程研究.四川大学华西口腔医学院博士毕业论文,2005:17
    39.赵勇 仿生合成丝素蛋白/羟基磷灰石复合支架材料的骨组织工程研究 四川大学华西口腔医学院博士毕业论文,2006,17
    40.钱国坻 姚予梁 红外光谱在蚕丝纤维结构研究中的应用 苏州丝绸工学院学报 1983.9:26—31
    41.叶恒强 王元明 主编 透射电子显微学进展 科学出版社 2003;239
    42. Thomas J. Webster, Elizabeth A. Massa-Schlueter Osteoblast response to hydroxyapatite doped with divalent and trivalent cations Biomaterials 2004, 25: 2111-2121
    43. International Centre for Diffraction Data. Calcium phosphate hydroxide. Card No. 09-0432, Joint Committee on Powder Diffraction Standards, Newtown Square, NJ, 1998
    44. Cullity BD. Elements of X-ray diffraction, 2nd ed. Reading, MA: Addison-Wesley; 1978.
    45.王庆良 葛世荣 朱华 张强 常温常压下纳米羟基磷灰石的合成及结构研究 中国矿业大学学报 2004,23,533—536
    46. Fujishiro Y, Yabaki H, Kawamura K, et al. Preparation of eedle-like hydroxyapatite by homogeneous precipitation under hydrothermal condition J. Chem. Tech. Biotechnol, 1993, 57: 349-353.
    47.郭连峰,台立刚 王成焘 反应温度对合成纳米羟基磷灰石粉体的粒度和相结构的影响电子显微学报 2006,25:373—376
    48.张超武,李娟莹 共沉淀法制备羟基磷灰石影响因素的研究 陶瓷 2006,9:47—50
    49.卢神州 李明忠 白伦 羟基磷灰石/丝素蛋白纳米复合颗粒的制备 丝绸 2006,2:17—19
    50. Li Wang, Rei Nemoto, Mamoru Senna Changes in microstructure and physico-chemical properties of hydroxyapatite-silk fibroin nanocomposite with varying silk fibroin content Journal of the European Ceramic Society 2004, 24: 2707-2715.
    51. Masanori Kikuchi, Soichiro Itoh_, Shizuko Ichinose Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo Biomaterials 2001, 22: 1705-1711
    52. C. Du, F. Z. Cui, 1 W. Zhang etc. Formation of calcium phosphate/collagen composites through mineralization of collagen matrix Journal of Biomedical Materials Research), 2000, 50: 518-527
    53. SANG-HOON RHEE Self-assembly phenomenon of hydroxyapatite nanocrystals on chondroitin sulfate Journal of materials science: materials in medicine 2002, 13: 597-600
    54. Miyamoto Y, Ishikawa K, Takechi M, Toh T, Yuasa T, Nagayama M, Suzuki K. Basic properties of calcium phosphate cement containing atelocollagen in its liquid or powder phases. Biomaterials 1998; 19: 707-715.
    55. Bacon GE, Bacon PJ, Gri$ths RK. Neutron di!raction studies of lumbar vertebrae. J Anat 1979; 128: 277-283
    56. X D Kong, F Z Cui, X M Wang, et al. Silk fibroin regulated mineralization of hydroxyapatite nanocrystals. Journal of Crystal Growth, 2004, 270: 197-202
    57.张真,卢晓风.生物材料有效性和安全性评价的现状与趋势.生物医学工程学杂志 2002.19:117-121
    58.司徒镇强,吴军正.细胞培养.世界图书出版社,西安,2004.3:71-72
    59.沈雁,刘锡麟,唐毅,等.检测人成纤维细胞增殖的XTT比色法.生物化学与生物物理进展,2002:29:659-662
    60. Mosmann Y. Rapid colorimeteric assay for cellular growth and survival: Application to proliferation and cytotoxity assay. J Immunol methods, 1988; 65: 55-59
    61.Ciapetti G,Cenni E, Pratelli L, et al. In vitro evaluation of cell/biomaterial interaction by MTT assay.Biomaterials, 1993; 14:359-363.
    
    62. Kun Na, Sung won Kim, Bo Kyung Sun et al Osteogenic differenttiation of rabbit mesenchymal stem cells inthermo-reve rsible hydrogel constructs containing hydroxyapatite and bone morphogenic protein-2 (BMP-2) Biomaterials 2007,28: 2631-2637
    
    63.Moon Moo Kim, Eresha Mendis, Niranjan Rajapakse and Se-Kwon Kim Glucosamine sulfate promotes osteoblastic differentiationof MG-63 cells via anti-inflammatory effect Bioorganic & Medicinal Chemistry Letters 2007,17:1938-1942
    64. Kavlock KD et al., Synthesis and characterization of segmented polypoly (esterurethane urea) elastomers for bone tissue engineering Acta Biomaterialia 2007
    65.Yongzhong Wang, Hyeon-Joo Kim, Gordana Vunjak-Novakovic Stem cell-based tissue engineering with silk biomaterials 2006,27:6064-6082
    
    66.Sabine Fuchs, Antonella Motta, Claudio Migliaresi and Charles James Kirkpatrick Outgrowth endothelial cells isolated and expanded from human peripheral blood progenitor cells as a potential source of autologous cells for endothelialization of silk fibroin biomaterials 2006, 27:5399-5408
    
    67.Yongzhong Wang, Dominick J. Blasioli, Hyeon-Joo Kim, et al Cartilage tissue engineering with silk scaffolds and human articular chondrocytes Biomaterials, 2006, 27:4434-4442
    68. S. Hofmann, CT. Wong Po Foo, F. Rossetti, M. Textor, et al Silk fibroin as an organic polymer for controlled drug delivery Journal of Controlled Release, 2006, 111: 219-227
    69.Yang Liu_, Paul R. Cooper, Jake E. Barraletl, Richard M. Shelton Influence of calcium phosphate crystal assemblies on the proliferation and osteogenic gene expression of rat bone marrow stromal cells Biomaterials 2007,28:1393-1403
    70. M. Ahmad, D. Gawronski, J. Blum, J. Goldberg, G. Gronowicz Differential response of human osteoblast-like cells to commercially pure (cp) titanium grades 1 and 4 Journal of Biomedical Materials Research 1999, 46: 121-131
    71. P. Torricelli, M. Fini, G. Giavaresi, M et al Isolation and haracterization of osteoblast cultures from normal and osteopenic sheep for biomaterials evaluation Journal of Biomedical Materials Research 2000, 52: 177-182
    72. Francesco Carinci , Adriano Piattelli b, Marco Degidi et al Genetic effects of anorganic bovine bone (Bio-Oss) on osteoblast-like MG63 cells Archives of Oral Biology 2006, 51: 154—163
    73.陈建庭,谭小云,杨春露等.脉冲电磁场对成骨细胞—破骨细胞复合培养体系中成骨细胞膜电位及细胞内钙离子的影响.中国临床康复,2004,8:870-872
    74.韩志岩,程锦轩,刘景生.人甲状旁腺素(1-34)对新生鼠成骨细胞钙含量及钙化结节形成的影响.中国骨质疏松杂志,1999,5:5-8
    75.黄永光,陈治清.硬组织替代材料对成骨细胞骨钙蛋白和ALP水平的影响.华西口腔医学杂志,2000,18:192-194
    76. Neil Price, Stephen P. Bendall, et al Human osteoblast-like cells (MG63) proliferate on a bioactive glass surface Journal of Biomedical Materials Research 1997, 37: 394-400
    77. Philip Kasten, Julia Vogel, Reto Luginbu et al Ectopic bone formation associated with mesenchy,mal stem cells in a resorbable calcium deficient hydroxyapatite carrier Biomaterials 2005, 26: 5879-5889
    78. J. Lincks, B. D. Boyan, C. R. Blanchard, Response of MG63 osteoblast-like cells to titanium and titanium alloy is dependent on surface roughness and composition Biomaterials 1998, 19: 2219—2232
    79. Kyung Mi Woo, Ji-Hae Jun, Victor J. Chert Nano-fibrous scaffolding promotes osteoblast differentiation and biomineralization Biomaterials 2007, 28: 335—343
    80. Lorenz Meinel, Sandra Hofmann, Oliver Betz, et al Osteogenesis by human mesenchymai
    stem cells cultured on silk biomaterials: Comparison of adenovirus mediated gene transfer and protein delivery of BMP-2 biomaterials 2006,27:4993-5002 81.Karageorgiou V, Meinel L, Hofmann S, et al. Bone morphogenetic protein-2 decorated silk fibroin films induce osteogenic differentiation of human bone marrow stromal cells. J Biomed Mater Res, 2004/71A: 528-537
    1. Shuting Wet , Michael Jakusch, Boris Mizaikoff Capturing molecules with templated materials—Analysis and rational design of molecularly imprinted polymers Analytica ChimicaActa 2006, 578, 50-58
    2. Y. Z. Wan, L. Hong, S. R. Jia et al Synthesis and characterization of hydroxyapatite-bacterial cellulose nanocomposites Composites Science and Technology 66 (2006) 1825-1832
    3. Vincent Ladmiral, Emma Melia, David M. Haddleton Synthetic glycopolymers: an overview European Polymer Journal 2004, 40, 431-449
    4. Chunmei Li, David L. Kaplan Biomimetic composites via molecular scale self-assembly and biomineralization Current Opinion in Solid State and Materials Science 2003, 7, 265-271
    5. Michele Aresta_, Angela Dibenedetto Development of environmentally friendly syntheses: use of enzymes and biomimetic systems for the direct carboxylation of organic substrates Reviews in Molecular Biotechnology 2002, 90, 113-128
    6. D. GREEN, D. WALSH, 2 S. MANN, and R. O. C. OREFFO The Potential of Biomimesis in Bone Tissue Engineering: Lessons From the Design and Synthesis of Invertebrate Skeletons Bone 2002, 810—815
    7. J. Liu, A. Y. Kim, L. Q. Wang et ai Self-assembly in the synthesis of ceramic materials and composites Advances in Colloid and Interface Science 1996, 69, 131-180
    8.冯庆玲 生物矿化与仿生材料的研究现状及展望 清华大学学报 (自然科学版),2005,3,378—383
    9.王一平,朱丽 仿生合成技术及其应用研究 化学工业与工程 2001,18,272-278
    10. J. Liu, A. Y. Kim, L. Q. Wang, B. J. Palmer, et al Self-assembly in the synthesis of ceramic materials and composites Advances in Colloid and Interface Science 1996, 69, 131-180
    11.崔福斋 自组装生物材料 新材料产业 2003,5,61—64
    12. Simkiss K. Biomineralization and detoxification.Calcif Tissue Res., 1977, 28, 24(2): 199-200
    13. Stupp SI, Hartgerink JD, Beniash E. Self-assembly and mineralization of peptide-amphiphile nanofibers. US Patent 2003, WO 2003054146
    14. S.-.H. Rhee, Y. Suetsugu and J. Tanaka, Biomimetic configurational arrays of hydroxyapatite nanocrystals on bio-organics. Biomaterials 2001, 22, . 2843-2847
    15. Chunmei Li and David L. Kaplan Biomimetic composites via molecular scale self-assembly and biomineralization Current Opinion in Solid State and Materials Science 2003, 7; 265-271
    16. Yan Pan, Xu Zhao, Ye Sheng et al Biomimetic synthesis of dendrite-shaped aragonite particles with single-crystal feature by polyacrylic acid Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 297, 198-202
    17. Y.Z. Wan, Y. Huang, CD. Yuan, S. et al Biomimetic synthesis of hydroxyapatite/bacterial cellulose nanocomposites for biomedical applications Materials Science and Engineering: C, 2006,15
    18. Hong Li, Weiya Huang, Yuanming Zhang and Mei Zhong Biomimetic synthesis of enamel-like hydroxyapatite on self-assembled monolayers Materials Science and Engineering: C,, 2006 20
    
    19.Stacy A. Hutchens, Roberto S. Benson et al Biomimetic synthesis of calcium-deficient hydroxyapatite in a natural hydrogel Biomaterials, 2006, 27, 4661-4670
    20.Santosh Aryal, Shanta Raj Bhattarai, Remant Bahadur K.C et al Carbon nanotubes assisted biomimetic synthesis of hydroxyapatite from simulated body fluid Materials Science and Engineering: A, 2006, 426, 202-207
    21.Masanori Kikuchi, Toshiyuki Ikoma, Soichiro Itoh, Hiroko N. Biomimetic synthesis of bone-like nanocomposites using the self-organization mechanism of hydroxyapatite and colIagenComposites Science and Technology, 2004, 64, 819-825
    22. Adele L. Boskey Biomineralization: Conflicts, Challenges, and Opportunities Journal of Cellular Biochemistry Supplements 30/31: 83-91 (1998)
    23.陈洪渊.仿生材料与微系统[J].科学中国人,2004 (4):28
    24.陈治清 主编 口腔生物材料学,北京化学工业出版社,2004
    25. S. Weiner and H. D. Wagner, The material bone: structure-mechanical function relations. Annu. Rev. Mater. Res 1998, 28;. 271-298
    26. .Kaplan D L. Mollusc shell structures: novel design strategies for ynthetic materials. Current Opinion in Solid State & Materials Science 1998, 3: 232-23
    27. Green D, Walsh D, Mann S, Oreffo RO. The potential of biomimesis in bone tissue engineering: lessons from the design and synthesis of invertebrate skeletons. Review. Bone. 2002, 30(6): 810-5
    28. Glimcher J. in Chemistry and Biology of Mineralized Tissues, ed. Veis, A. (Elsevier, Amsterdam), 1981: 617-673
    29. Tretinnikov ON, Kato K, Ikada Y in vitro hydroxyapatite deposition onto a film surface grafted with organophosphate polymer. J Biomed Mater Res 1994; 28: 1365-73
    30. Mucalo M R, Yokgawa, Y Yoriyama M, et al. Growth of calcium phosphate on surface-modified cotton. J Mater. Sci. Mater. Med. 1995, 6: 597-605
    31. Mucalo M. R., Yokogawa丫, Suzuki T., et al. Further studies of calcium phosphate growth on phosphorylated cotton fibres. J Mater. Sci. Mater. Med. 1995; 6: 658-69
    32. Yokogawa Y, Nishizawa K, Nagata F, et al. Bioactive properties of chitin/chitosan—calcium phosphate composite materials. J. Sol-Gel Science and Technology, 2001, 21: 105-113
    33. Fricain JC, Granjia PI>Barbosa MA, cellulose phosphates as biomaterials in vivo biocompatibility study. Biomaterial, 2002, 23: 971-980
    34. YOKOGAWA Y; PAZ REYES J; MUCALO M R et al Growth of calcium phosphate on phosphorylated chitin fibres Journal of Materials Science Materials in Medicine; 0957-4530; 1997 8, 407-412
    35. Masami Tanahashi, Takehisa Matsuda Surface functional group dependence on apatite formation on self-assembled monolayers in a simulated body fluid Journal of Biomedical Materials Research 1997, 34: 305-315
    36. Kawashita, M. Nakao, M. Minoda Apatite-forming ability of carboxyl group-containing polymer gels in a simulated body fluid Biomaterials 2003, 24: 2477~2484
    37. Takahiro Kawai, Chikara Ohtsuki, Masanobu Kamitakahara Coating of an apatite layer on polyamide films containing sulfonic groups by a biomimetic process Biomaterials, 2004, 25: 4529~4534
    38. H. K. Varma, Y. Yokogawa, F. E Espinosa Porous calcium phosphate coating over phosphorylated chitosan film by a biomimetic method Biomaterials, 1999, 20: 879~884
    39. Tadashi Kokubo, Masayuki Hanakawa, Masakazu Kawashit Apatite formation on non-woven fabric of carboxymethylated chitin in SBF Biomaterials, 2004, 25: 4485~4488
    40. Takahiro Kawai, Chikara Ohtsuki, Masanobu Kamitakahara, Coating of an apatite layer on polyamide films containing sulfonic groups by a biomimetic process Biomaterials 2004, 25 4529-4534
    41. Hayes WC. Biomechanics of cortical and trabecular bone: implication of assessment of fractures risk. In Moe VC, Hayes MC (ed). Basic Orthopaedic Biomechanics. New York, Raven Press, 1991, 93-142
    42.吴兰 人骨与纳米骨修复材料的比较研究 四川大学博士学位论文 2006,13
    43. Li-Juan Zhang, Xu-Sheng Feng, Hong-Guo Liu, et al. Hydroxyapatite/collagen composite materials formation in simulated body fluid environment Materials Letters, 2004, 58: 719-722
    44. Aaron W. Pederson, Jeffrey W. Ruberti, Phillip B. Messersmith. Thermal assembly of a biomimetic mineral/collagen composite. Biomaterials, 2003, 24: 4881—4890
    45. F. Z. Cui, C. Du, X.. W.. Su. et al. Biodegradation of a nano-hydroxyapatite/collagen composite by peritoneal monocyte-macrophages, Cells Mater. 1996, 6: 31—44
    46. TenHuisen KS, Matin RI, Klimkiewicz M, Rrown PW. Formation and properties of a synthetic bone composite: hydroxyapatite -collagen. J Biomed Mater Res. 1995; 29: 803-10.
    47. C. Du, F. Z. Cui, W. Zhang etc. Formation of calcium phosphate /collagen composites through mineralization of collagen matrix Journal of Biomedical Materials Research 2000, 50, 518-527
    48. Masanori Kikuchi, Soichiro Itoh, Shizuko Ichinose, Kenichi Shinomiya, Junzo Tanaka Self-organization mechanism in a bone-like hydroxyapat-ite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo Biomaterials 2001, 22, 1705-1711
    49. Y. Doi, T. Horiguchi, Y. Moriwaki, H. Kitago, T. Kajimoto, Y. Iwayama Formation of apatite - collagen complexes Journal of Biomedical Materials Research 1996, 31, 43-49
    50.刘佳佳:杨华 新蚕丝蛋白和新生物材料 国外丝绸 2004,5,4—7
    51. INOUE SI, MAGOSHI J, TANAKA T, et al. Atomic Force Microscopy: Bombyx mori Silk Fibroin, Molecules and Their Higher Order Structure. J Polym Sci B: Polym Phys, 2000, 38: 1436-1439
    52. Saitoh H, Ohshima KI, Tsubouchi K, et al. X-ray structural study of noncrystalline regenerated Bombyx mori silk fibroin. International Journal of Biological Macromolecules, 2004, 34: 259-265
    53.闻荻江;王辉;朱新生;孙建平 丝素蛋白的构象与结晶性 纺织学报 2005,1,110—112
    54.赵勇 仿生合成丝素蛋白/羟基磷灰石复合支架材料的骨组织工程研究 四川大学华西口腔医学院博士毕业论文,2006,102
    55. Li Wang, Rei Nemoto, Mamoru Senna Changes in microstructure and physico-chemical properties of hydroxyapatite-silk fibroin nanocomposite with varying silk fibroin content Journal of the European Ceramic Society 2004, 24, 2707-2715.
    56. ZHAO Y, HE G, NIE RR, et al. Calcium phosphate coating over silk fibroin film by biomimetic methods. Journal of the Wuhan University of Technology: Materials Science Edition (supplement), 2005, 20; 92-94
    57. X D Kong, F Z Cui, X M Wang, et al. Silk fibroin regulated mineralization of hydroxyapatite nanocrystals. Journal of Crystal Growth, 2004, 270; 197-202
    58. SANG-HOON RHEE Self-assembly phenomenon of hydroxyapatite nanocrystals on chondroitin sulfate Journal of materials science: materials in medicine 2002, 13; 597-600
    59. Wollenweber M, Domaschke H, Hanke T, et al. Mimicked bioartificial matrix containing chondroitin sulphate on a textile scaffold of poly(3-hydroxybutyrate) alters the differentiation of adult human mesenchymal stem cells. Tissue Eng. 2006, 12: 345-59
    60.蒋挺大编,甲壳素.北京:中国环境科学出版社,1995
    61. Eugene K, Lee Y L. Implantable applications of chitin and chitosan. Biomaterials, 2003, 24: 2339—2349
    62. Jozef Synowiecki and Nadia Ali Al-Khateeb. Production, Properties, and Some New Applications of Chitin and Its Derivatives. Critical Reviews in Food Science and Nutrition, 2003, 43: 145-171
    63. Quan-Li Li, Zhi-Qing Chen et al. Biomimetic synthesis of the composites of hydroxyapatite and chitosan- phosphorylated chitosan polyelectrolyte complex Materials Letters 2006, 60, 3533-3536
    64.吴刚:陈龙等N,O-羧甲基壳聚糖体系中纳米碳酸钙的仿生合成 应用化学,2006,10,1076-1080
    65.杨林,丁唯嘉等 以葡聚糖为模板控制合成文石型碳酸钙高等学校化学学报 2004, 8, 1403~1406
    66. Yu-Yang Liu, Xiao-Dong Fan, Bo-Rong Wei, pH-responsive amphiphilic hydrogel networks with IPN structure: A strategy for controlled drug release International Journal of Pharmaceutics, 2006, 308; 205-209
    67. Krister Holmberg Surfactant-templated nanomaterials synthesis Journal of Colloid and Interface Science 2004, 274, 355-364
    68. Jung Seok Lee, Dong Hyun Go, Jin Woo Bae Heparin conjugated polymeric micelle for long-term delivery of basic fibroblast growth factor Journal of Controlled Release, 2007, 117; 204-209
    69. Miyatake K, Okamoto Y, Shigemasa Y, et al. Anti-inflammatory effect of chemically modified chitin Carbohydrate Polymers 2003, 53: 417423
    70. Khanal D. R, Okamoto Y, Miyatake K, et al. Protective effects of phosphated chitin (P-chitin) in a mice model of acute respiratory distress syndrome CARDS). Carbohydrate Polymers 2001, 44:
    71.毛克业,宁江海,郝立波 双亲桥接多肽的合成与成骨活性研究 生物医学工程与临床 2003.9.61—64
    72. Fujisawa R, M izuno M, Nodasaka Y, et al. Attachment of osteblastic cells to hydroxyapatite crystal by synthetic peptide (Glu7-pro-Arg-Gly-Asp—Thr) containing two functional sequence of hone sialoprotein. Matrix Biol. 1997. 16: 21-28
    73.王希,孟庆伟,谌东中 双亲水性嵌段共聚物的生物矿化模拟研究进展 高分子材料科学与工程 2005.1:39—42
    74.刘玉萍,周慧静,沈铸睿 嵌段共聚多肽控制合成的复合空泡结构纳米孔二氧化硅 科学通报 2006,51;361—364.
    75. Yukna RA, Calian DP, Krauser JT et al. Multi-center clinical evaluation of combination anorganic bovine-derived hydroxyapatite matrix(ABM)/cell binding peptide(P-15) as a bone replacement graft material in human periodontal osseous defects.6-month results. J Periodontol. 1998, 69 :655-663

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700