Al_2O_3/TiC/WC纳米复合陶瓷刀具的研制及切削性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在微米级Al_2O_3基体中添加纳米TiC和微米WC作为增强相,通过调整复合陶瓷材料中基体和增强相的含量、优化烧结工艺参数,成功制备出性能良好的Al_2O_3/TiC/WC纳米复合陶瓷刀具材料,并对其力学性能、微观结构、压痕裂纹扩展形态进行了研究。将新研制的纳米复合陶瓷刀具材料制成刀片进行切削实验,研究了刀具的切削性能和失效机理。
     通过合理选择分散剂及其用量、采用合适的分散工艺,较好的解决了纳米TiC颗粒团聚的问题。确定了纳米复合粉体的制备工艺,制备出了混合均匀、分散效果良好的纳米复合粉体。
     当基体Al_2O_3的体积含量为59%、增强相TiC和WC的体积含量分别为24%和16%时,在烧结温度1700℃、烧结压力30MPa、保温时间10min的工艺条件下烧结,可获得综合力学性能良好的复合陶瓷刀具材料,抗弯强度为840MPa、硬度为20GPa、断裂韧度为5.32 MPa·m~(1/2)。
     微观结构观察发现,Al_2O_3/TiC/WC纳米复合陶瓷刀具材料为晶内型和晶间型的混合结构,Al_2O_3基体以部分粒径较小的纳米TiC颗粒为核生长形成晶内型结构,其余粒径较大的TiC颗粒和所有WC颗粒镶嵌在Al_2O_3基体晶粒之间形成晶间型结构。在Al_2O_3和TiC晶粒中观察到的位错以及在Al_2O_3晶粒中观察到的微裂纹说明,在复合陶瓷刀具材料内部存在较大的残余应力场,残余应力增韧是该复合陶瓷刀具材料的一种增韧机制。在Al_2O_3/TiC/WC纳米复合陶瓷刀具材料压痕裂纹扩展路径上观察到大量的裂纹偏转、桥联和裂纹分叉现象,上述裂纹扩展方式有助于提高材料的断裂韧性。
     连续切削淬火45钢时,在不同速度下,LWT刀具的寿命都明显高于SG-4刀具。LWT刀具的磨损形态为前刀面的月牙洼磨损、后刀面磨损和边界磨损。磨损机理为磨粒磨损和粘结磨损。
     连续切削淬火T10A时,在较低的速度(v=100m/min)下,LWT刀具的寿命高于SG-4;速度较高(v=160m/min)时,LWT刀具的寿命不如SG-4。较低速度下,LWT刀具的磨损形态以前刀面的月牙洼磨损、后刀面磨损和边界磨损为主,并伴随有轻微的微崩刃;随着切削速度的提高,崩刃、碎断等破损成为刀具的主要失效形式。机械疲劳和热疲劳是造成刀具破损的原因。
     断续切削淬火45钢时,在较低的切削速度下,LWT刀具的抗冲击能力低于SG-4;当切削速度提高时,LWT刀具的抗冲击能力优于SG-4刀具。两种刀具的破损形态都是前刀面的剥落和切削刃上的碎断。
Nano-scale TiC and micron-scale WC particles were added into Al_2O_3 matrix. By adjusting the contents of TiC, WC and Al_2O_3 and optimizing the sintering parameters, an Al_2O_3/TiC/WC nano-composite ceramic cutting tool material with good mechanical properties was fabricated successfully. The mechanical properties, microstructure and fracture extension pattern of the ceramics were consequently studied. The cutting performance and failure modes and mechanisms of the newly developed ceramic tool were investigated via a series of cutting experiments.
     The problem of agglomeration of the nano particles was solved satisfactorily by selecting the appropriate dispersing medium and the right dispersion procedure. The preparation procedure of the nano-composite powders was established and well-dispersed powders were prepared.
     When the volume contents of Al_2O_3, TiC and WC are 59%, 24% and 16%, a ceramic with strength of 840MPa, hardness of 20GPa and toughness of 5.32MPa·m~(1/2) can be obtained by hot-press sintering under the temperature of 1700℃, pressure of 30MPa and holding time of 10 minutes.
     The microstructure of the Al_2O_3/TiC/WC nano-composite ceramic is characterized by a mixture of intragranular and intergranular structure. Some of the TiC particles in small scale are enwrapped by Al_2O_3 matrix and then intragranular structure is formed. Other TiC particles and all the WC particles embed between the Al_2O_3 boundaries to form intergranular structure. The dislocations in Al_2O_3 and TiC grains and the micro cracks in Al_2O_3 were observed, which indicate the existence of residual stresses in the Al_2O_3/TiC/WC nano-composite ceramic. Residual stress plays a role of toughening in the ceramic.The crack deflection, crack bridging and crack branching in the crack extension path also contribute to improving the toughness of the ceramic.
     The tool life of LWT tool was superior to that of SG-4 tool in different cutting speeds when machining hardened 45 steel. The failure modes of LWT tool are rake wear, flake wear and notch wear caused by abrasive and adhesive wear.
     As for the machining of hardened T10A steel, the tool life of LWT is longer than that of SG-4 under lower speed (v=100m/min),but shorter than that of SG-4 under higher speed. The failure modes of LWT tool are rake wear, flake wear and notch wear with chipping in the cutting edge in lower speed, but fracture becomes the main failure mode when speed is high. Mechanical and thermal fatigue is the main mechanisms for the tool failure.
     The tool life of LWT is shorter at lower speed but longer at high speed than that of SG-4 when intermittent machining hardened 45 steel. The failure modes of both tools are flaking in rake face and fracture in cutting edge.
引文
1 Mills B., Recent development in cutting tool materials, Journal of Materials Processing Technology, 1996, 56:16-23
    
    2 Ai Xing, Li Zhao-qian, Deng Jian-xin, Development and Perspective of Advanced Ceramic Cutting Tool Materials, Special Volume of Key Engineering Materials, Trans Tech Public Ltd, Aug, 1995, 53-56
    
    3 吕志杰.高性能Si_3N_4/TiC纳米复合陶瓷刀具材料的研制与性能研究.山东大 学博士学位论文.2005
    
    4 邹斌.新型自增韧氮化硅基纳米复合陶瓷刀具及性能研究.山东大学博士学 位论文.2006
    
    5 宋世学.高性能Al_2O_3系陶瓷刀具材料的研制及其性能研究.山东大学博士学 位论文.2002
    
    6 黄传真.新型复相陶瓷刀具材料的研制及切削可靠性研究.山东工业大学博 士学位论文.1994
    
    7 邓建新.添加TiB_2的新型陶瓷刀具材料的开发及其摩擦磨损行为和应用研究. 山东工业大学博士学位论文.1995
    
    8 赵军.新型梯度功能陶瓷刀具材料的设计制造与切削性能研究.山东工业大 学博士学位论文.1998
    
    9 苗赫濯.新型陶瓷刀具的发展与应用.中国有色金属学报.2004,14(2): 237-242
    
    10 宋世学,艾兴,赵军.TiC/Al_2O_3纳米陶瓷刀具材料的抗热震性能及断裂机理研 究.硅酸盐通报.2003,6:43-46
    
    11 马来鹏,尹衍升.Al_2O_3基陶瓷刀具及增韧机制.江苏陶瓷.2004,27(1):1-7
    
    12 罗学涛,谢小林,袁润章.热压烧结TiB陶瓷的微观结构和力学性能研究.无 机材料学报.2000,15(6):541-545
    
    13 刘峰晓,贺跃辉,黄伯云,刘咏。Ti(C,N)基金属陶瓷的发展现状及趋势.粉末??冶金技术.2004,22(8):236-240
    
    14 许崇海.复相陶瓷刀具材料设计、仿真及其应用研究.山东工业大学博士学位 论文.1998
    
    15 刘含莲.多元多尺度纳米复合陶瓷刀具材料的研制及其切削性能研究.山东 大学博士学位论文.2005
    
    16 周咏辉,艾兴,赵军,袁训亮,薛强.Al_2O_3/(W,Ti)C纳米复合陶瓷材料的力学 性能与强韧化机理.山东大学学报(工学版).2008,38(1):1-5
    
    17 艾兴等.高速切削加工技术.北京:国防工业出版社,2003
    
    18 尹衍升,李嘉.氧化锆陶瓷及其复合材料.北京:化学工业出版社,2004
    
    19 徐利华等.ZrO_2增韧Al_2O_3-TiC系陶瓷复合材料的力学性能及其耐磨性能. 硅酸盐通报.1995,2:12-16
    
    20 钟金豹.纳米氧化锆增韧氧化铝基陶瓷刀具及切削性能研究.山东大学硕士 学位论文.2007
    
    21 刘炳强.原位生长晶须增韧氧化铝陶瓷刀具及切削性能研究.山东大学博士 学位论文.2007
    
    22 董倩,唐清.燃烧合成-热压制备Al_2O_3-TiC-ZrO_2纳米复合陶瓷的力学性 能与显微结构.金属学报.2001,37(12)
    
    23 黄政仁,谭寿洪,江东亮.SiC晶须增强Al_2O_3-TiC复相陶瓷的研究.硅酸盐 学报.1993,21(4):349-355
    
    24 兰俊思,丁培道,黄楠.SiC晶须和Ti(C,N)颗粒协同增韧Al_2O_3陶瓷刀具的研 究.材料科学与工程学报.2004,22(1):59-64
    
    25 L. Mariappan, T. S. Kannan, A. M. Umarji. In situ synthesis of Al_2O_3-ZrO_2-SiC_w ceramic matrix composites by carbothermal reduction of natural silicates. Materials Chemistry and Physics. 2002, 75(1-3): 284-290
    
    26 葛启录,雷廷权,周玉.AI2O3-ZrO2-SiCw陶瓷复合材料的断裂特点和韧化机 理.材料科学进展.1992,6(2):180-184
    
    27 许并社.纳米材料及应用技术.北京:化学工业出版社,2003
    
    28 陈津等.纳米非金属功能材料.北京:化学工业出版社,2006
    
    29 #12
    
    30 K. Niihara, A. Nakahira, G Sasaki. Proceeding of the International Meeting on Advanced Materials. Material Research Society, Tokyo, Japan. 1989, 4
    
    31 高廉.纳米复相陶瓷.北京:化学工业出版社,2004
    
    32 S. Ananthakumar, K. Prabhakaran, U.S. Hareesh, P. Manohar, K.GK. Warner. Gel Casting Process for Al_2O_3-SiC Nanocomposites and its Creep Characteristics. Materials Chemistry and Physics. 2004, 85(1): 151-157
    
    33 刘银,武成利等.纳米Al_2O_3粉添加对氧化铝陶瓷烧结行为的研究.安徽理工 大学学报(自然科学版).2006,26(1):41-44
    
    34 宋世学,艾兴,赵军,王景海.Al_2O_3/TiC纳米陶瓷刀具材料的抗热震性能及断 裂机理研究.硅酸盐通报.2003,6
    
    35 邓建新,赵军.数控刀具材料选用手册.北京:机械工业出版社,2005
    
    36 Computational and Theoretical Techniques for Materials Science. National Academy of Sciences, 1995
    
    37 程兰征,章燕豪编.物理化学.上海:上海科学技术出版社,1988
    
    38 梁英教,车荫昌主编.无机物热力学数据手册.沈阳:东北大学出版社,1993
    
    39 靳喜海,高濂.纳米复相陶瓷的制备、微观结构和性能.无机材料学报,2001, 16(2):200-206
    
    40 Seising J., Internal Stress in Ceramics. J Am Ceram Soc. 1961,44(8):419
    
    41 Li Zhuang, Bradi R.C., Micromechanical stresses in SiC-reinforced Al_2O_3 composites. J Am Ceram Soc.l989,72(l):70
    
    42 Krestic V D., Nicholson P S. Toughening behavior of particulate reinforced ceramic composite, J Am Ceram Soc.l988,64(9):499
    
    43 Taya M. Toughening of a particulate reinforced ceramic matrix composite by thermal residual stress. J Am Ceram Soc. 1990,73(5): 1382
    
    44 Davidge R W. Mechanical behavior of ceramics. Cambridge: Cambridge University Press. 1979
    
    45 Wahi R P. Ilschner B. Fracture behavior of composites based on Al_2O_3-TiC. J Mater Sci, 1980,15:875
    
    46 张清纯.陶瓷材料的力学性能.北京:科学出版社.1987
    
    47 Taya M. Toughening of a particulate reinforced ceramic matrix composite by thermal residual stress. J Am Ceram Soc. 1990,73(5): 1382
    
    48 Faber K T. Evans A G Crack deflection process-Ⅰ theory. Acta Metall. 1983, 31(4):565
    
    49 Faber K T. Evans A G. Crack deflection process-Ⅱ experiment. Acta Metall. 1983,31(4):577
    
    50 杨云鹏,徐更生.莫来石基复相陶瓷的晶界应力及其设计.现代技术陶瓷. 1996(增刊):511
    
    51 金宗哲,张国军,包亦望.复相陶瓷增强颗粒尺寸效应.硅酸盐学报.1995. 23(6):610
    
    52 刘继富,沈仰云.颗粒弥散强化复相陶瓷临界晶粒尺寸的优化设计.材料科学 与工艺.1995,3(3):52
    
    53 张国军,金宗哲.颗粒增韧陶瓷的增韧机理.硅酸盐学报.1994,22(3):259
    
    54 金宗哲,张国军,包亦望.复相陶瓷增强颗粒尺寸效应.硅酸盐学报.1995. 23(6):610
    
    55 高家化,沈志坚,丁子上.陶瓷基纳米复合材料.复合材料学报.1994,11(1): 1-7
    
    56 陈大明.纳米陶瓷复合材料的制备与性能.材料导报.1997,11(5):67-71
    
    57 韩顺昌.纳米材料(NSM)的制作方法及其应用.材料开发与应用.1998,13(2): 31-39
    
    58 潘颐,吴希俊.纳米材料制备、结构及性能.材料科学与工程.1993,11(14): 16-25
    
    59 Joseph Cesarano and Ilhan A. Aksay, Stability of aqueous Al_2O_3 suspensions with poly (methacrylic acid) polyelectrolyte, J. Am. Ceram. Soc., 1988, 71(4): 250-255
    
    60 Johnny Widegren, Lennart Bergstrom. The effect of acids and bases on the??dispersion and stabilization of ceramics particles in ethanol. Journal of European Society, 2000, 20:659-665
    
    61 魏明坤,王苹.高固相含量陶瓷浆料的制备方法的研究.陶瓷学报.2001, 22(1):44-47
    
    62 雷燕,熊惟皓.陶瓷材料纳米烧结研究进展.材料导报.2003,17(5),28-30
    
    63 中华人民共和国国家技术监督局.GB6596-1986.中华人民共和国国家标准- 工程陶瓷弯曲强度试验方法.北京:中国标准出版社,1986
    
    64 中华人民共和国国家技术监督局.GB/T 16534-1996.中华人民共和国国家标 准-工程陶瓷维氏硬度试验法.北京:中国标准出版社,1996
    
    65张立德,牟季美著.纳米材料和纳米结构.北京:科学出版社,2001
    
    66 A. H. Chokshia, A. Rosenb, J. Karchc and H. Gleiter. On the validity of the hall-petch relationship in nanocrystalline materials. Scripta Metallurgica. 1989, 23(10): 1679-1683
    
    67 赵宏,金宗哲.颗粒增强复相陶瓷残余应力和增韧机制分析.硅酸盐学报. 1996,24(5):491-497
    
    68 J. Zhao, X. Ai. Failure Modes and Mechanisms of Functionally Gradient Ceramic Tools with High Thermal Shock Resistance. 2006 ASME International Conference on Manufacturing Science and Engineering, Ypsilanti, MI, 2006
    
    69 刘献礼.聚晶立方氮化硼刀具切削性能及制造技术的研究.哈尔滨工业大学 博士学位论文,1999
    
    70 萧虹.陶瓷刀具端铣淬硬钢的研究.山东工学院研究生毕业论文,1983
    
    71 樊宁.梯度功能陶瓷刀具的应力设计及切削性能研究.山东工业大学硕士学 位论文,1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700