梯度纳米复合陶瓷刀具材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在纳米陶瓷刀具材料的基础上引入梯度功能概念,成功制备出新型的Al_2O_3基梯度纳米复合刀具材料。研究了其力学性能、微观结构、压痕裂纹扩展形态。采用有限元法对其抗热震性能和切削过程进行了仿真研究,并通过316L不锈钢切削试验,研究了Al_2O_3基梯度纳米复合刀具的切削性能及失效机理。
     通过合理选择制备工艺参数,当基体Al_2O_3的体积含量为54%、TiCN含量为45%、MgO和NiO各为5%时,在烧结温度1650℃、烧结压力30MPa、保温时间10min,获得综合性能较好的梯度纳米复合陶瓷材料,抗弯强度为810MPa、硬度19.5GPa、断裂韧性6.6MPa·m~(1/2)。断口微观结构分析表明,梯度纳米复合陶瓷刀具为主要以穿晶断裂为主;在压痕扩展路径上存在裂纹偏转、桥联和裂纹分叉现象,这些都有利于提高材料的力学性能。
     采用有限元软件ANSYS仿真了Al_2O_3基梯度纳米复合刀具材料的瞬态温度场及热应力场,分析了层厚比、体积分数组成等结构参数对抗热震性的影响。通过仿真研究优化了梯度结构参数。
     采用有限元软件DERORM-2D对Al_2O_3基梯度纳米复合刀具切削加工316L不锈钢的过程进行建模和仿真,研究了温度场、应力场、切削力与切削速度的关系。结果表明:Al_2O_3基梯度纳米复合刀具温度随着切削速度的增加而增大,切削温度低于均质陶瓷刀具;刀具应力随着切削速度的增加也增大,在较大速度范围内比均质陶瓷刀具应力小。切削力随着削速度的增加而减小,与均质陶瓷刀具相比,切削力相差不大。
     通过连续切削316L不锈钢,研究了Al_2O_3基梯度纳米复合刀具的切削力、切削温度及刀具失效机理。加工316L不锈钢时,随着切削速度升高,主切削力减小,切削温度升高。在相同的试验条件下,梯度纳米陶瓷刀具的使用寿命优与其他陶瓷刀具。较低速度下,刀具的失效形式主要以前、后刀面磨损及微剥落为主,磨损机理是磨粒磨损,剥落由机械疲劳造成;较高速度下,刀具的失效形式主要以前、后刀面磨损以及边界磨损为主,磨损机理是磨粒磨损和粘结磨损。
By introducing functionally graded composite into Nano-composite ceramic tool material,an Al_2O_3/TiCN graded Nano-composite ceramic tool material was fabricated successfully.The mechanical properties,microstructure and fracture extension pattern of the ceramics were studied.Thermal shock resistance and cutting process were studied by FEM.By cutting AISI316L,cutting performance and fool failure mechanisms were detailed studied.
     When the volume fractions of Al_2O_3,TiCN,MgO and NiO are 54%,45%,5%and 5%,Al_2O_3/TiCN graded Nano-composite ceramic with strength of 810 MPa,hardness of 19.5GPa and touchness of 6.6 MPa·m~(1/2) can be obtained by hot-press sintering under the temperature of 1650℃,pressure of 30MPa and holding time of 10 minutes.The microstructure of the Al_2O_3/TiCN graded Nano-composite ceramic is mainly characterized by transgranular fracture;the crack deflection,crack bridging and crack branching in the crack extension path also contribute to the improvement of mechanical properties.
     Thermal shock resistance of Al_2O_3/TiCN graded Nano-composite ceramic was simulated using ANSYS.The influence of Layer-thickness ratio and compositional distribution on thermal shock resistance were analyzed,and consequently the graded structure parameters were optimited.
     The cutting process of Al_2O_3/TiCN graded Nano-composite ceramic tool when machining AISI316L was simulated by DEFORM-2D.The influences of cutting speed on cutting temperature field,thermal stress field and cutting force were studied.With the speed increased,the tool temperature is higher.Compared with homogeneous ceramic tools,it has good thermal shock resistance.With the speed increased,tool stress also increased,the tool stress is lower than homogeneous ceramic tools at high cutting speeds.The cutting force decreased with the speed increased,which is equvilent to that of other ceramic tools.
     As for the maching of AISI316L steel,cutting force,temperatue,tool failure mechanisms of Al_2O_3/TiCN graded Nano-composite ceramic tool were studied.The cutting force decreased and temperature increased with the speed increased. Al_2O_3/TiCN graded Nano-composite ceramic tool has longer life than other ceramic tools under the same condition.The main failure mode is rake wear,flank wear and spalling when speed is low,because of abrasive and mechanical fatigue.The main failure mode is rake wear,flank wear and notch wear when speed is high,because of abrasive and adhesive.
引文
1.Mills B,Recent development in cutting tool materials,Journal of Materials Processing Technology,1996,56:16-23
    2.吕志杰.高性能Si_3N_4/TiC纳米复合陶瓷刀具材料的研制与性能研究.山东大学博士学位论文.2005
    3.邹斌.新型自增韧氮化硅基纳米复合陶瓷刀具及性能研究.山东大学博士学位论文.2006
    4.宋世学.高性能Al_2O_3系陶瓷刀具材料的研制及其性能研究.山东大学博士学位论文.2002
    5.黄传真.新型复相陶瓷刀具材料的研制及切削可靠性研究.山东工业大学博士学位论文.1994
    6.邓建新.添加TiB_2的新型陶瓷刀具材料的开发及其摩擦磨损行为和应用研究.山东工业大学博士学位论文.1995
    7.赵军.新型梯度功能陶瓷刀具材料的设计制造与切削性能研究.山东工业大学博士学位论文.1998
    8.艾兴,高效加工技术及其应用研究.中国工程科学,2002(11):40-51
    9.许崇海.复相陶瓷刀具材料设计、仿真及其应用研究.山东工业大学博士学位论文.1998
    10.刘含莲.多元多尺度纳米复合陶瓷刀具材料的研制及其切削性能研究.山东大学博士学位论文.2005
    11.周咏辉,艾兴,赵军,袁训亮,薛强.Al_2O_3/(W,Ti)C纳米复合陶瓷材料的力学性能与强韧化机理.山东大学学报(工学版).2008,38(1):1-5
    12.艾兴等.高速切削加工技术.北京:国防工业出版社,2003
    13.尹衍升,李嘉.氧化锆陶瓷及其复合材料.北京:化学工业出版社,2004
    14.徐利华等.ZrO_2增韧Al_2O_3—TiC系陶瓷复合材料的力学性能及其耐磨性能.硅酸盐通报.1995,2:12-16
    15.钟金豹.纳米氧化锆增韧氧化铝基陶瓷刀具及切削性能研究.山东大学硕士学位论文.2007
    16.刘炳强.原位生长晶须增韧氧化铝陶瓷刀具及切削性能研究.山东大学博士学位论文.2007
    17.董倩,唐清.燃烧合成—热压制备Al2O_3—TiC—ZrO_2纳米复合陶瓷的力学性能与显微结构.金属学报.2001,37(12)
    18.黄政仁,谭寿洪,江东亮.SiC晶须增强Al_2O_3—TiC复相陶瓷的研究.硅酸盐学报.1993,21(4):349-355
    19.兰俊思,丁培道,黄楠.SiC晶须和Ti(C,N)颗粒协同增韧Al_2O_3陶瓷刀具的研究.材料科学 与工程学报.2004,22(1):59-64
    20.L.Mariappan,T.S.Kannan,A.M.Umarji.In situ synthesis of Al2O_3-ZrO_2-SiC_w ceramic matrix composites by carbothermal reduction of natural silicates.Materials Chemistry and Physics.2002,75(1-3):284-290
    21.葛启录,雷廷权,周玉.Al2O_3-ZrO_2-SiC_w陶瓷复合材料的断裂特点和韧化机理.材料科学进展.1992,6(2):180-184
    22.许并社.纳米材料及应用技术.北京:化学工业出版社,2003
    23.陈津等.纳米非金属功能材料.北京:化学工业出版社,2006
    24.#12
    25.T.N.Tiegsand P.F.Becher,Thermal Shock Behavior of Alumina-SiC Whisker Composite,J.Am.Ceram.Soc.1987,70(5):109-111
    26.Lu T.J,Fleck N A,The thermal shock resistance of solids.Acta Material,1998,46(13):4755-4768
    27.Kingery W.D,Factors affecting thermal shock resistance of ceramic materials.J.Am.Ceram.Soc.1955,38(1):3-15
    28.E.H.Lutz,M.V.Swain,Claussen,Thermal Shock Behavior of Duplex Ceramics.J.Am.Ceram.Soc.1991(74):19
    29.Y.W.Mai,Thermal shock and Fracture-Strength Behavior of Two tool carbides.J.Am,ceram.Soc.1976,59(11-12):491-494
    30.Hasselman D.P.H,Elastic energy at fracture and surface energy as design criteria for thermal shock.J.Am.Ceram.Sot.,1963,46(11):535-540
    31.Hasselman D.P.H,Unified theory of thermal shock fracture initiation and crack propagation in brittle ceramics.J.Am.Ceram.Soc.1969,52(11):600-604
    32.Gerold A.Schneider and Gunter Petzow,Thermal shock Testing of Ceramics-A new Testing Method.J.Am.Ceram.Soc.1991,74(1):98-102
    33.George C Wei and John Waish,Hot-Gas-Jet Method and Apparatus for Thermal-shock Testing.J.Am.Ceram.Soc.1989,72(7):1286-1289
    34.Gabriel H M,Kloos H K,Morphology and structure of iron plated TiN,TiC and Ti(C,N)coatings[J].ThinSolidFilms,1984,118:243-254.
    35.J.H.Gong,Z.D.Guan,and D.C.Jiang,Analysis for strength Degradation of Indented Specimens Due to Thermal Shock..pp.605-610 in Fracture Mechanics of Ceramics,Vol,10
    36.V.R.Vedula,D.J.Green,J.R.hellman,A.E.Segall.Test Methodology for the thermal shock Characterization of Ceramics.J.Mater.Sci.1998,33;5427-5432
    37.Ceram.Soc.Japan,Mechanical Properties of Ceramics,Japan Ceram.Soc.,1988,pp.23-25.
    38 新野正之.功能梯度材料研究[J].日本复合材料学会志.1987,14(5):257.
    39.AI X,ZHAO J,HUANG C Z,etal.Development of an advanced ceramic tool material-functionally gradient cutting ceramics.Mater Sci Eng A,1998,248(1-2):25-131.
    40.赵军,艾兴,张建华,邓建新,黄传真.对称型梯度功能陶瓷材料抗热震性的研究.中国陶瓷.2002,4,38(2)
    41 赵军,艾兴等.Al_2O_3/TiC系梯度功能陶瓷刀具的设计.机械工程学报.1998,34(4)
    42.赵军,艾兴,张建华,邓建新,黄传真.对称型梯度功能陶瓷材料的非定常热应力.机械工程学报.2001,11,37(11)
    43.赵军,邓建新,艾兴,王朝霞等.对称型梯度功能陶瓷材料的抗热震参数.硅酸盐学报.2003,31(10)
    44.Sasahara H,Obikawa T,shirakashi T.FEM analysis of cutting sequence effect on mechanical characteristics in machined layer[J].Journal of Materials processing Technology,1996,62:448-453
    45.Ceretti E,Fallbohmer P,Wu W T,Altan T.Application of 2D FEM to chip formatiom in orthogonal cutting[J].Journal of Materials processing Technology,1996,59
    46.Ceretti E,lucchi M,Altan T.FEM simulation of orthogonal cutting;serrated chip formation[J].Journal of Materials processing Technology,199,95:17-26
    47.Ceretti E,Lazzaroni C,Menegardo L,Altan T.Turning simulation using a three-dimension FEM code[J].Journal of Materials processing Technology,2000,98:99-103
    48.Ceretti E,Taupin E,Altan T.simulation of metal flow and fracture application in orthogonal cutting,blanking and cold extrusion[J].Annal of CIRP,1997,46(1):187-190
    49.Zhang L C.On the separation criteria in the simulation of orthogonal metal cutting using the finite element method[J].Journal of Materials processing Technology,1988:88-89
    50 Huang J M,Black J T.An evaluation of chip separation Criteria for the FEM simulation of machining[J].ASME.Journal of Materials processing Technology,1996,118:118-545
    51 Lin Zone-Ching,Lai Wun-Ling,Lin H Y,Liu C R.The study of ultra-precision machining and residual stress for NiP alloy with different cutting speeds and depth of cut[J].Journal of Materials processing Technology,2000,97:200-210
    52.张立德,牟季美著,纳米材料和纳米结构.北京:中国标准出版社,1996
    53.中华人民共和国国家技术监督局.GB/T16534-1986.中华人民共和国国家标准-工程陶瓷弯曲强度试验法.北京:中国标准出版社,1986
    54.中华人民共和国国家技术监督局.GB/T16534-1996.中华人民共和国国家标准-工程陶瓷维氏硬度试验法.北京:中国标准出版社,1996
    55 Y.Ji and J.A.Yemans,Processing and mechanical properties of Al_2O_3-5vol%Cr nano-composites, Journal of the European Ceramic Society,2002(22):1927-1936
    56.洪长青,韩杰才,张幸红等,TiB_2-Cu复合材料热冲击损伤行为的数值模拟,稀有金属材料与工程,2006年1月第1期
    57.熊智军,赵熹华,李永强等,激光深熔焊接热源模型的研究进展[J].焊接,2006(12):12-16
    58.莫立春,钱百年,国旭明等,焊接热源计算模式的研究进展[J].焊接学报,2001,22(3):93-96
    59.蔡志鹏,赵海燕,鹿安理等,焊接数值模拟中分段移动热源模型的建立及应用[J].机械工程学报,2002,13(3):208-210
    60.薛忠明,顾兰,张彦华,激光焊接温度场数值模拟[J].焊接学报,2003,24(2):79-82
    61.曾祥呈,黄健文,张庆茂,激光焊接过程温度场的模拟,应用激光,2008年28卷3期
    62.Shigreru Akiyama,Shigeyasu Amada.The thermal shock strength of Al_2O_3 by laser irradiation method.Ceramics International 27(2001):171-177
    63.I.Tanishita,Heat Transfer,shoukabo press,Japan,1988,pp:155-156
    64.Ceram.Soc.Japan,Mechanical properties of ceramics,Japanese Ceram.Soc,1988,PP.23-25
    65.M.Itou,K.Ueda,T.sugita,Fracture mechanics analysis of thermal shock cracking of ceramics in laser heating,J.Soc.prec.Eng.1990(58):1487-1492
    66.王瑁成,有限单元法[M].北京:清华大学出版社,2003,7
    67.刘建生,陈慧琴,郭晓霞,金属塑性加工有限元模拟技术与应用[M].北京:冶金工业出版社,2003,1
    68.Johnson G R,Cook W H.A constitutive model and data for metals subjected to largest strains,high strain rates and high temperatures[A].Proceeding of the Swventh International Symposium on Ballistics[C],The hangue,1983:541-547
    69.K.Maekawam,H.Ohhata,T.kitagawa,T.H.C.Childs.Simulation analysits of machinability of leaded Cr-Mo and Mn-B structural steel.Journal of Materials Processing and Technology,1996,62:363-369
    70.M.A.Elbestawi,A.K.Srivatava,T.I.E12Wardany.A model for chip formation during machining of hardended steel.Annals of the CiRP.1996,45(1):71-76
    71.D.Umbrello,R.M'Saoubi,J.C.Outeiro,The influence of Johnson-Cook material constens on finite element simulation of machining of AISI 316L steel.Iternational Journal of Machine Tools & Manufacture 2007(47):462-470
    72.L.Filice.F.Micari,S.Rizzuti,D.Umbrello,A critical analysis on the friction modelling in orthogonal machining.Iternational Journal of machine Tools & Manufacture.In press,doi:10.1016/j.ijmachtools.2006.05.007
    73.A.Gocmen.P.Ssrtkulvanich,T.Atlan.Effects of flow stress and friction models in finite element simulation of orthogonal cutting-a sensitivity analysis.Machining Science and Technology.2005(9):1-26
    74.L.Filice,F.Micari,L.Pagnotta,D.Umbrello,Pressure distribution on the tool in cutting:prediction and measurement,Iternational Journal of Forming Processes.2003(6):327-341
    75.L.Filice,D.Umbrello,S.Beccari,F.Micari,On the FE codes capability for tool temperature calculation in machining processes,Journal of Materials Processing and Technology,2006(174):186-292
    76.周泽华.金属切削理论[M].北京:机械工业出版社,1992,5:165-195
    77.臼井英治.切削磨削加工学[M].北京:机械工业出版社,1982(12):58-85
    78.E.Usui,M.Hirota,A.Masuko,Analytical prediction of three dimensional cutting process:Part 1basic cutting model and energy approach,ASME Journal of Engineering for Industry.1978(100):222-235
    79.艾兴,萧虹,陶瓷刀具切削加工.北京:机械工业出版社,1988(1):174-191
    80.艾兴,葛革,萧虹,陶瓷刀具加工淬硬钢和高强钢的研究.山东机械,1982(3)
    81.P.Lacombe,B.Baroux,G Beranger(Eds),Les Aciers Inoxidables.Les Ulis,Franca,Les Editions de Physique,1990
    82.Deform-User Manual,SFTC-Columbus(OH),USA,2004
    83.H.Chandrasekaran,R.M'aoubi,H.chazal,Modelling of material flow stress in chip formation process from orthogonal milling and split Hopkinson bar tests.Machining Science and Techology,2005(9):131-145
    84.R.M'aoubi,Aspects Thermiques et Microstructuraux de la coupe.Application a la coupe orthogonale des aciers austenitiques,Ph.D Thesis,ENSAM-Paris,1998.2
    85.B.Changeux,M.Touratier,J.L Lebrun,T.Tomas,J.Chson,High-speed shear tests for the identification of the Johnson-Cook law,in:Fourth International ESAFORM conference on Liege Belgium,2001.4:603-606
    86.N.Tounsi,J.Vincenti,A.Otho,M.A.Elbestawi,From the basics of orthogonal metal cutting toward the identification of the constitutive equation,Iternational Journal of Machine Tools &Manufacture,2002.42(2):1373-1383

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700