高性能金属陶瓷刀具材料的研制及其切削性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属陶瓷刀具的硬度比硬质合金高,抗弯强度和断裂韧性比陶瓷刀具高,更适合加工淬硬钢、高强度钢。因此有必要研究高性能金属陶瓷刀具材料,促进其实际应用。
     微米和纳米改性金属陶瓷刀具材料是陶瓷材料研究的重要领域,本文利用微米级Ti(C,N)金属陶瓷为基体,分别添加了纳米级Al_2O_3和Ti(C,N)研制出了性能优良的纳米改性金属陶瓷刀具材料。研究了烧结工艺和添加剂(Cr_3C_2、VC、La_2O_3和Y_2O_3)对材料体系Ti(C,N)-Ni-Co显微组织和力学性能的影响。对高性能金属陶瓷刀具材料的力学性能、微观结构和切削性能进行了详细的研究。
     根据金属陶瓷的设计原则,确定了Ti(C,N)基金属陶瓷刀具材料的材料体系,以Ti(C,N)固溶体为基体,添加的粘结金属为Ni和Co或Ni和Mo,添加剂为VC、Cr_3C_2、La_2O_3、Y_2O_3、Al_2O_3和MgO等。优化了热压烧结工艺,确定了合适的烧结工艺:烧结温度为1450℃,压力为25MPa,保温时间为30min。
     系统研究了添加剂(Cr_3C_2、VC、La_2O_3和Y_2O_3)对材料体系Ti(C_(0.7)N_(0.3))-Ni-Co显微组织和力学性能的影响。结果表明:VC对金属陶瓷刀具材料Ti(C,N)-(Ni-Co)-Cr_3C_2-VC的力学性能的影响很大,随着VC含量的增加,材料的抗弯强度基本呈下降趋势,而硬度和断裂韧性呈上升趋势,VC的含量为0.8wt%时抗弯强度达到最大,为981MPa,VC的含量为16%的时硬度和断裂韧性达到最大,但是其综合力学性能最好。在烧结温度为1450℃,压力为25MPa,保温时间为30min的条件下,添加稀土氧化物(La_2O_3和Y_2O_3)可提高材料的断裂韧性,达到增韧效果,但没发现其增强效果。
     系统研究了纳米Al_2O_3和纳米Ti(C,N)改性Ti(C,N)基金属陶瓷刀具材料的显微结构和力学性能。结果表明,纳米Al_2O_3的添加可明显提高材料的硬度和断裂韧性,材料的综合力学性能得到提高,材料的体系为:Ti(C_(0.7)N_(0.3))-(Ni-Mo)-Cr_2C_3-Al_2O_3-MgO,Al_2O_3的含量为10%和12%(质量百分比),材料的综合力学性能最好:强度分别为925和900MPa,硬度分别为18.4和17.4GPa,断裂韧性分
Because cermet tool materials have higher hardness than cemented carbide tools and have higher flexural strength and fracture toughness than ceramic tools, they are suitable for cutting hardened steels and high-strength steels. Therefore, it is necessary to study the high mechanical property cermet tool materials and to promote their practical applications.Micro-scale and nano-scale modified cermet tool material is one of the most important research area of ceramic material. Nano-scale modified cermet tool materials have been successfully developed with the micro-scale Ti(C,N) as the matrix and nano-scale Al_2O_3 and nano-scale Ti(C,N) as the additives. The effect of the content of rare earth compounds (Cr_3C_2, VC, La_2O_3 and Y_2O_3) and fabrication technology on the microstructure and mechanical properties of material system Ti(C, N)-Ni-Co was investigated. The mechanical property, microstructure and cutting performance of the developed high mechanical property cermet tool materials were researched.According to the design principle for cermet tool materials, the basic material system of Ti(C,N) matrix cermet tool materials was proposed with the metal Ni, Co and Mo as the bonding phase and the phase VC, Cr_3C_2, La_2O_3, Y_2O_3, Al_2O_3 and MgO as the additives. The optimal fabrication technology is the fabrication temperature of 1450℃, the applied pressure of 25MPa and the fabrication time of 30min. The effect of additives such as Cr_3C_2, VC, La_2O_3 and Y_2O_3 on the microstructure and mechanical properties of material system Ti(C,N)-Ni-Co was researched. It is shown that the flexural strength of cermet tool material Ti(CN)-(Ni-Co)-Cr_3C_2-VC can decrease and the hardness and fracture toughness will increase with an increase in the
    content of VC. And the maximum flexural strength of 981MPa can be reached when content of VC is 0.8wt%, but the maximum hardness and fracture toughness can be reached when the content of VC is 16wt%. The addition of rare earth oxides (La2O3 and Y2O3) can result in toughening effect and increase the fracture toughness of the cermet tool materials at the fabrication conditions of 1450°C, 25MPa and 30min, but no strengthening effect is found.The microstructure and mechanical properties of Ti(C,N) matrix cermet tool materials modified by nano-scale A12O3 or nano-scale Ti(C,N) was systematically researched. It is shown that the addition of nano-scale AI2O3 can increase the hardness and the fracture toughness. The nano-scale A12O3 modified optimal material system is Ti(C0.7N03)- (Ni-Mo) -Cr2C3-Al2O3-MgO respectively modified by an amount of nano-scale A12O3 with the content of 10% or 12% in term of mass, the mechanical properties of which are the flexural strength of 925 and 900MPa, the hardness of 18.4 and 17.4Gpa, and the fracture toughness of 9.05 and 9.95MPa.m1/2. The nano-scale Ti(C, N) modified optimal material system is the tool material Ti(Co.7No.3)- (Ni-Mo) -VC-Cr2C3 modified by nano-scale Ti(C, N) with a content of 10% in term of mass. The mechanical properties of the modified cermet tool material n-VC8 with nano-scale Ti(C, N) are higher than those of the material VC8 without nano-scale Ti(C, N). The flexural strength, the hardness and the fracture toughness of the tool material n-VC8 are respectively improved from 623MPa to 808MPa, from 16.2Gpa to 17.7Gpa and from 8.78MPa.m1/2 to 9.79MPa.m1/2.The toughening mechanisms of Ti(C,N) matrix cermet tool materials modified by nano-scale A12O3 or nano-scale Ti(C, N) were systematically researched. The main toughening mechanisms are the transformation of fracture mode, microstructure change, microcracks, crack deflection and bridging, microcracks induced by residual stress, crack inflection and ductile grain toughening. The grain growth model for Ti (C,N) cermet tool material was established and primarily verified. The model is of important theoretical guidence for desinging the microstructure of cermet tool material.The cutting performance of the developed advanced Ti(C,N) cermet tools, cemented carbide tools (YG8 and YT14), and commercial ceramic tools (LT55 and
    SG-4) were researched when turning cast irons, annealed steel 45 , hardened steel 45# and high-hardness steel 40Cr respectively. It is shown that the developed cermet tools are not suitable for turning grey gast iron HT200. The wear resistance of the developed cermet tools such as n-Al2O36, n-Al2O312 and n-VC8 is stronger than that of YT14, LT55 and SG-4 when turning annealed steel 45#(12-16HRC). The cutting performance of the developed cermet tools such as n-Al2O312, n-VC8 and n-VC16 is better than that of YT14, and is the same as that of LT55 and SG-4 when turning hardened steel 45* at the cutting speed of v = 182m/min. The wear resistance of the nano-scale modified cermet tools is stronger than that of LT55 and SG-4 when turning 40Cr. And the wear resistance of the nano-scale modified cermet tool n-Al2O38 is the strongest one, and the optimal cutting conditions are the cutting speed v = 168/w/min, the feed rate / = O.lmm/r and the cutting depth ap = 0.2mm.The wear resistance of most nano-scale modified cermet tools is stronger than that of LT55 and SG-4 when turning conventional steel 45(25-30 HRC). And the wear resistance of the nano-scale modified cermet tool n-Al2O>8 and n-Al2O310 is thestrongest one at the cutting speed v=96-218m/min, the feed rate / = 0. \mm I r and the cutting depth ap = 0.2mm.The wear pattern and mechanisms were analyzed, and the main wear pattern is flank wear. The main wear mechanisms are abrasive, adhesion and dispersion wear.
引文
1.艾兴,萧红.陶瓷刀具切削加工[M].北京:机械工业出版社,1988
    2.肖诗纲.刀具材料及其合理选择[M].北京:机械工业出版社,1990.4
    3.肖诗纲.现代刀具材料[M].重庆:重庆大学出版社,1992
    4.韩荣第,于启勋.难加工材料切削加工[M].北京:机械工业出版社,1996.10
    5.于启勋.论现代刀具材料的新进展中国高校切削与先进制造技术研究会第六届年会论文集[C].北京:机械工业出版社,1999:7-13
    6.刘光复,刘志峰.绿色制造[M].北京:中国科学文化出版社,2002:153-178
    7.李元元.高强度耐磨铝青铜合金及其切削加工机理的研究[D].广州:华南理工大学博士学位论文,1998:19-20
    8.吴大维,付德军,刘传胜.RE-PEC VD法合成氮化碳超硬薄膜及其在麻花钻上的应用[J].工具技术,1997(增刊):188-192
    9.张伯霖.高速切削技术及应用[M].北京:机械工业出版社,2002.8:150-180
    10.贾成厂,李文霞,郭志猛.陶瓷基复合材料导论[M].北京:冶金工业出版社,1998
    11.文鹏.新型陶瓷刀具材料的发展趋势[J].佛山陶瓷,2004.14(2):36-37
    12. Mills B. Recent development in cutting tool materials [J]. Journal of Materials Processing Technology, 1996, (56): 16-23
    13. Ceramic source-incorporating company directory[J]. J. Am. Cerm, Soc, 1991-1992, (7)(副本)
    14.李荣久.陶瓷—金属复合材料[M].北京:冶金工业出版社,2002
    15.王零森.特种陶瓷[M].中南工业出版社,1996
    16.徐平坤,董应榜.刚玉耐火材料[M].北京:冶金工业出版社,1999
    17.E. B. Clark, B. Roebuck. Refractory Metals&Hard Materials[J]. 1992. 11(1): 23-33
    18.张伟,蒋勇.新一代金属陶瓷的制造、性能及应用[J].稀有金属和硬质合金,1997.6:55-60
    19.P.艾特梅尔,W.林戈.[J].硬质合金,1990.7(1):25-27
    20.李良福.钢结硬质合金在工业中的应用[J].硬质合金,2000.16(2):60-65
    21.杨宣增,范细东.多元硼化物系金属陶瓷的发展概况[J].稀有金属与硬质合 金,2000.6:49-52
    22.江玉和.非金属材料滑雪[M].北京:科学技术文献出版社,1992
    23.王盘鑫.粉末冶金学[M].北京:冶金工业出版社,1997
    24.徐强,张幸强,曲伟等.金属陶瓷研究进展[J].硬质合金,2002.19(4):221-225
    25.江玉和.非金属材料化学[M].北京:科学技术文献出版社,1992
    26. N. Froumin, N. Frage, M. Aizenshtein, M. P. Dariel. Ceramic-metal interaction and wetting phenomena in the B_4C/Cu system[J]. Journal of the European Ceramic Society, 2003(23): 2821-2828
    27. Frage N., Froumin N. and Dariel M. P.. Wetting of TiC by non-reactive liquid metals[J]. Acta Mater, 2002(2): 237-245
    28.王盘鑫.粉末冶金学[M].北京:冶金工业出版社,1997
    29.李良福.新型无钨硬质合金的研制状况[J].硬质合金,1999.16(2):65-69
    30.李振江,许育东,赵岳等.Ti(C,N)基金属陶瓷刀具切削性能及磨损机理[J].合肥工业大学学报,2001(12):1040-1045
    31. E Rudy. J. Less-Common Met, 1973, 33: 43-70
    32.张伟,蒋勇.新一代金属陶瓷的制造、性能及应用[J].稀有金属和硬质合金,1997.6:55-60
    33.黄虹,黄金昌.航空航天推进系统用铌基复合材料[J].稀有金属与硬质合金,1999(3),119:43
    34. H. Doi. In: Proc. 2nd Int, Conf. Science Hard Materials, Eds E. A. Almond;C. A. Brookes and R. Warren, Inst. phys. Cont. Ser. No. 75, Adam Hi lger, Bristol and Boston, 1986,: 489-523
    35. Shanv Ghang. Mnter Sci Eng, 1993, A163: 141
    36.陆庆忠,张福润,余立新.Ti(C,N)基金属陶瓷的研究现状及发展趋势[J].武汉科技学院学报,2002(10):42-46
    37. E. T. Jeon, J. Joardar, S. Kang. Microstructure and tribo-mechanical properties of ultrafme Ti(CN) cermets[J]. International Journal of Refractory Metals&Hard Materials, 2002(20): 207-211
    38.李华,刘宁,许育东等.Ti(C,N)基金属陶瓷刀具的失效机理及参数优化[J].合肥工业大学学报,2001(2):47-51
    39.兰俊思,丁培道,黄楠.SiC晶须和Ti(C,N)颗粒协同增韧Al_2O_3陶瓷刀具的研究[J].材料科学与工程学报,2004.22(1):59-64
    40.陈森凤,卢迪芬,刘富德等.Ti(C_(0.12),N_(0.88))粉末的高温合成[J].中国陶瓷,2000.36(10):4-5
    41. Kang S.. Stability of N in Ti(C, N) solid solution for cermets applications[J]. Power Metallurgy, 1997. 40(2): 139-142
    42. Junhui Xiang, Zhipeng Xie, Yong Huang, Hanning Xiao. Synthesis of Ti(C, N) ultrafine powders by carbothermal reduction of TiO_2 derived from sol-gel process[J]. Journal of the European Ceramic Society, 2000(20): 933-938
    43.李喜坤,修稚萌,孙旭东等.碳热还原法制备Ti(C,N)粉末[J].粉末冶金工业,2004.14(1):18-22
    44. Frederic Monteverde, Valentina Medri, Alida Bellosi. Microstructure of hot-pressed Ti(C, N)-based cermets[J]. Journal of the European Ceramic Society, 2002(22): 2587-2593
    45. S. Mun, S. Kang. Effect of HfC addition on microsture of Ti(C, N)-Ni cermet system[J]. Powder Metallurgy, 1999. 42(3): 251-256
    46.全朝海.Ti(C,N)基金属陶瓷刀片切削性能的研究[J].硬质合金,1997.14(3):154
    47. Ltif Rolander, Gerold Weinl, Marcus Zwinkels. Effect of Ta on structure and mechanical properties of (Ti, Ta, W)(C, N)-Co eermets[J]. Int. J. of Refractory Metals and Hard Materials, 2001(19): 325-328
    48.徐根应.含20%Ni金属基陶瓷的热冲击疲劳[J].稀有金属材料与工程,1997.26(3):9
    49. S. Bolognini, G. Feusier. High temperature mechanical behaviour of Ti(C, N)-Mo-Co cermet[J]. RM&HM, 1998(16): 257-268
    50.丰平,熊惟皓,余立新.Ti(C,N)基金属陶瓷烧结过程的冶金基础及显微组织特征:Ⅰ烧结过程的冶金基础[J].材料导报,2004.18(2):9-11
    51.康新婷,刘素英等.Ti(C,N)基金属陶瓷的制备与应用[J].硬质合金,1999.16(1):51
    52.刘宁.Ti(C,N)基金属陶瓷的组织性能及发展[J].硬质合金,1992.9(3):166-171
    53. George Levi, Wayne D. Kaplan, Menachem Bamberger. Structure refinement of titanium carbonitride (TiCN)[J]. Materials Letters, 1998. 35(6): 344-350
    54.丰平,熊惟皓,余立新.Ti(C,N)基金属陶瓷烧结过程的冶金基础及显微组织特征:芯-环结构的形成机理及烧结过程的脱气演化[J].材料导报, 2004.18(3):6-9
    55.谢峰,张崇高,刘宁等.Ti(C,N)基金属陶瓷刀具与纳米改性[J].中国机械工程,2002.13(12):1062-1065
    56.张立德,牟季美.纳米材料和纳米结构[M].北京:科学技术出版社,2002:2-75
    57.陈艾.纳米科技与纳米材料:新世纪的跨学科研究热点[J].电子科技导报,1998(12):19-24
    58.严东生,冯端.材料新星—纳米材料科学[M].长沙:湖南科学技术出版社,199R:9-15
    59. Halperin W P. Rev. of Modem Phys., 1986. 58: 532
    60. Kubo R, KawabataA, Kobayashi S. Annu. Rev. Mater. Sci., 1984. 14: 49
    61. N. Liu, Y. D. Xu, H. Li. Effect of nano-micro TiN addition on the microstructure and mechanical properties of TiC based cermets[J]. Journal of European Ceramic Society, 2002(22): 2409-2414
    62.许育东,刘宁,曾庆梅等.纳米改性金属陶瓷的组织和力学性能[J].复合材料学报,2003.20(1):33-37
    63.许育东,刘宁,曾庆梅等.纳米TiN改性金属陶瓷刀具的磨损性能研究[J].机械工程材料,2002.26(6):28-31
    64.田春艳,姜海,刘宁.纳米TiN改性TiC基金属陶瓷刀具切削性能的研究[J].工具技术,2003.37(2):8-10
    65.熊继,沈保罗.超细金属陶瓷的研究现状[J].工具技术,2003.37(4):10-13
    66.熊继,张亚昆等.超细Ti(C,N)金属陶瓷的制备及性能[J].粉末冶金术,2003.21(2):92-95
    67.郑勇,汪胜祥,袁泉等.纳米复合Ti(C,N)基金属陶瓷烧结晶粒长大的特性[J].三峡大学学报,2003.25(2):105-107
    68.刘文俊,郑勇,游敏.烧结温度对细晶粒Ti(C,N)基金属陶瓷组织和性能的影响[J].三峡大学学报,2003.25(2):114-117
    69.陈献迁.硬质合金使用手册[M].北京:冶金工业出版社,1986
    70.蔺启恒.金属切削实用刀具技术[M].北京:机械工业出版社,2002
    71.潘金生等.材料科学基础[M].北京:清华大学出版社,2000
    72. World Directory and Handbook of Hard metals and Had Materials Sixth Edition. 1996
    73. H. Pastor. [J]. International Journal of Refractory Metals and Hard Materials, 1987(6):196
    74.熊继.高性能超细Ti(C,N)金属陶瓷刀具材料的研究[D].四川:四川大学博士学位论文,2003
    75.曾德麟主编.粉末冶金材料[M].北京:冶金工业出版社,1989:190
    76.刘宁,胡镇华,崔昆.颗粒型复合材料金属陶瓷的研究[J].稀有金属材料与工程,1994,23(3):45
    77.刘宁,徐应根,许育东等.YG8硬质合金热冲击疲劳裂纹的萌生机制[J].硬质合金,1997,21(4):74
    78. S. Ahn, S. Kang. [J]. International Journal of Refractory Metals and Hard Materials, 2001(19): 539
    79. P. Lindahl, U. Rolander. [J]. International Journal of Refractory Metals and Hard Materials, 1994(12): 115
    80.铃木寿,林宏尔,寺田修.TiC-Ni合金的诸性质及他炭化无添加影响[J].粉体粉末冶金,1986,133(4):19
    81.株洲硬质合金厂著.硬质合金的生产[M].北京:冶金工业出版社,1974
    82. H. Yoshimura, J. Sugizawa, K. Nishigaki, H. Doj. [J]. International Journal of Refractory Metals and Hard Materials, 1983. 3(4): 170
    83. J. Zackrissun, H. O. Andren. [J]. International Journal of Refractory Metals and Hard Materials, 1999(17): 265
    84. P. Ettmayer, H. Kolaska. [J]. International Journal of Refractory Metals and Hard Materials, 1995(13): 343
    85. Ryshkewitsch E. Compression strength of porous sintered alumina and zirconia[J]. Amer. Ceram. Soc, 1953(36): 65-72
    86. Feng Ping, Xiong weihao, Zheng Yong, Yu Lixin, Xia Yanghua. Properties of ultrafrne Ti(C, N)-based cermet[J]. Journal of Spark plasma sintering Wuhan University of Technology-Mater. Sci, Ed, 2004. 19(1): 69-72
    87.李沐山.国外钢结硬质合金新进展[J].硬质合金,1994(5):377
    88.植木等.粉体粉末冶金,1991(38):72
    89. T. Nishimura, K. Murayama, T. Kitada, Y Takashma. [J]. International Journal of RefractoryMetals and Hard Materials, 1985. 35(1): 31
    90. T. Igrashi, M. Kobayashi, S. Takatsu. in: Proc. 2nd int. Conf: Science Hard Materials, Eds E. A. Almond, C. A. Brookes and R. Warren, Inst. Phys: Conf. Ser, No:75;Adam Hilger, Bristol and Boston, 1986:537
    91. T. Cutard, T. Viatte, et al.. [J]. Materials Science and Engineering, 1996,A209:218
    92.日本公开特许公报,昭57-174433
    93.英国专利文献,No.1478606
    94.何林.新型陶瓷轴承套圈的研制及其应用基础研究[D].济南:山东大学博士学位论文,2003
    95.许崇海.复相陶瓷刀具材料设计、仿真及其应用研究[D].济南:山东工业大学博士学位论文,1998
    96.郭庚辰.液相烧结粉末冶金材料[M].北京:化学工业出版社,2003
    97.郑勇,游敏,刘文俊等.细晶粒金属陶瓷制备技术的研究进展[J].机械工程材料,2004.32(4):422-428
    98.何林,黄传真,刘玉先等.Ti(C,N)基金属陶瓷的力学性能与显微结构的研究[J].硅酸盐学报,2003.31(3):324-328
    99. Laoui T, Biest O V D. Effect of TiC addition on the microstructure and properties of Ti(C, N)-WC-Co-Ni cermets[J]. Materials Science Letters, 1994(13): 1530-1532
    100. Zackrisson J, Andren H O. Effect of carbon content on the microstructure and mechanical properties of (Ti, w, Ta, Mo)(C, N)-(Co, Ni) cermets[J]. Refractory Metals & Hard Materials, 1999(17): 165-273
    101.郑勇,刘文俊,游敏等.Cr_2C_3和VC对Ti(C,N)基金属陶瓷中环行相的价电子结构和性能的影响[J].硅酸盐学报,2004.32(4):422-428
    102.羊建高,熊继.稀土硬质合金的研究现状及发展趋势[J].稀土,1993.13(4):45-47
    103.穆柏春,孙旭东.稀土对Al_2O_3陶瓷烧结温度、显微组织和力学性能的影响[J].中国稀土学报,2002.20(增刊):104-107
    104.吕杰,张立同,成来飞等.La_2O_3-Y_2O_3自增韧氮化硅的相转变与晶体生长[J].中国稀土学报,1997.15(4):371-374
    105.揭晓华,程秀,蔡莲淑等.稀土对SiC纳米粉体机械合金化形成的影响[J].材料科学与工程学报,2004.22(1):55-58
    106.穆柏春,孙旭东.稀土氧化物对钛酸铝陶瓷显微组织和力学性能的影响[J].耐火材料,2003.37(5):274-276,281
    107.李鹏,胡耀波,熊惟皓等.稀土元素Y对Ti(C,N)基金属陶瓷性能的影响[J].硬质合金,2000.17(2):65-68
    108.穆柏春等.陶瓷材料的强韧化[M].北京:冶金工业出版社,2002
    109. J. Zackrisson, U, Rolander, H.-O.Anderen. Development of Microstructure during Sintering[J]. Metallurgical and Materials Transactions A, 2001.86(32A): 85-94
    110. Ma Qian, L. C. Lim. On the disappearance of Mo2C during low-temperature sintering of Ti(C,N)-Mo2C-Ni cermets[J], of Mater. Sci., 1999(34): 3677-3684
    111.李湘洲.纳米陶瓷材料的现状与前景[J].佛山陶瓷,2002.12(1):36-38
    112.梁忠友,王介峰,韩丽.纳米陶瓷成型、烧结方法研究进展[J].佛山陶瓷,2001.11(3):8-10
    113.闫联生,余惠琴,宋春丽等.纳米陶瓷复合材料研究进展[J].宇宙材料工艺,2003(1):6-10
    114. K Kajihara, Y Yoshizawa, T Sakuma. [J]. Scripta. Metal. Mater, 1993(28): 559
    115. Niihara.K. New design of structural ceramics-ceramic nanocomposites[J]. Cerm.Soc.Jpn, 1991 (99): 974-984
    116. Sun-Yong Ahn, Shinhoo Kang. Formation of Core/Rim Structures in Ti(C,N)-WC-Ni cermets via a Dissolution and Reprecipition Process[J]. Am. Ceram. Soc., 2000.83(6): 1489-1494
    117.沃丁柱.复合材料大全[M].北京:化学工业出版社,2000
    118.刘阮英.增韧陶瓷的设计[J].科技情报开发与经济,1999(6):40-41
    119.郝春成,崔作林,尹衍升等.颗粒增韧陶瓷的研究进展[J].材料导报,2002.16(2):28-30
    120.王昕,谭训彦,尹衍升等.纳米复合陶瓷增韧机理分析[J].陶瓷学报,2000.21(2):107-111
    121.龚江宏.陶瓷材料断裂力学[M].北京:清华大学出版社,2001
    122.梁晓峰,杨世源,尹光福.氧化锆增韧氧化铝陶瓷复合粉体的研究进展[J].山东陶瓷,2004.27(1):13-16
    123. A. G. Evans. Prospective on the development of high-toughness ceramics[J]. Am. Ceram.Soc, 1990.73(2): 187-206
    124.张国军,金宗哲.颗粒增韧陶瓷的增韧机理[J].硅酸盐学报,1994.22(3):259-268
    125.M.F.Ashby et al..Acta Metall.1989,37(7):847
    126.宋世学,艾兴,赵军等.Al_2O_3/TiC纳米复合刀具材料的力学性能与增韧强化 机理[J].机械工程材料,2003.27(12):35-38
    127.丁子上等.硅酸盐物理化学[M].北京:中国建筑工业出版社,1987
    128.果世驹.粉末烧结理论[M].北京:冶金工业出版社,2002
    129.高瑞平等.先进陶瓷物理与化学原理及技术[M].北京:科学出版社,2001
    130.李久立.机械制造技术基础[M].济南:济南出版社,1998
    131.邓建新.添加TiB_2的新型陶瓷刀具材料的开发及摩擦磨损行为和应用研究[D].山东:山东工业大学博士学位论文,1995
    132.田春艳,姜海,刘宁.纳米TiN提高金属陶瓷刀具耐磨损性能的机理研究[J].现代制造工程,2004(2):86-87
    133.宋世学,艾兴,赵军等.Al_2O_3/Ti(CN)复合刀具材料的制备及切削性能研究[J].工具技术,2002.36(6):11-14
    134.熊继,沈保罗,龚邦明.超细TiC_(0.7)7N_(0.3)基金属陶瓷的切削性能研究[J].工具技术,2004.38(5):16-19
    135.苗赫濯,齐龙浩,曾照强等.新型陶瓷刀具在机械工程中的应用[J].机械工程学报,2002.38(2):152-155
    136. Miao HZ, Qi LH, Zeng ZQ. Si_3N_4- based and TiC_xN_x-based ceramic cutting tools[J]. Ceramics: Getting into the 2000 s, Part D, 1999:165-172
    137.苗赫濯.新型陶瓷刀具的发展与应用[J].中国有色金属学报,2004.14(5):237-242

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700