陶瓷刀具材料微观尺度有限元模拟模型及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
陶瓷刀具材料具有高硬度、高耐磨性、良好的高温性能和化学稳定性,在高速切削和难加工材料加工领域具有传统刀具无法比拟的优势,但陶瓷刀具的脆性大,极大地限制了陶瓷刀具的推广和应用。传统的开发陶瓷刀具的方法多采用“试凑法”,这种方法不仅费时费力,而且在提高断裂韧度的同时,有时还会降低材料的硬度和耐磨性,因此寻找全新的开发方法对陶瓷刀具的研制和发展具有重要的意义。由于计算机模拟技术的应用,使得陶瓷刀具材料的研究从半经验定性描述逐渐进入到定量预测控制的更为科学的阶段。本文基于蒙特卡洛算法,建立了陶瓷刀具材料微观尺度有限元三维模拟模型,对陶瓷刀具材料的应力场、等效弹性模量和裂纹扩展行为进行了模拟。
     采用蒙特卡洛算法建立了陶瓷刀具材料三维微观组织模拟模型;集成蒙特卡洛算法和有限元法,建立了陶瓷刀具材料的微观尺度有限元三维模拟模型。利用C++语言编写了单相和复相陶瓷刀具材料的晶粒生长演化程序,建立了陶瓷刀具材料三维微观组织蒙特卡洛模拟模型。通过本文开发的接口程序,将蒙特卡洛三维模拟模型演变后的微观组织成功地导入有限元分析软件ABAQUS/CAE模块之中,建立了单相氧化铝陶瓷刀具材料和复相Al2O3/TiB2陶瓷刀具材料的微观尺度有限元三维模拟模型。
     分别建立了单相和复相陶瓷刀具材料机械应力、残余热应力、等效弹性模量的微观尺度有限元三维模拟模型。模拟研究了单相氧化铝陶瓷刀具材料和复相Al2O3/TiB2陶瓷刀具材料在单轴压力作用下的线弹性机械应力场;结果表明,晶界处的应力较大,在外载荷作用下,容易产生沿晶断裂;在复相陶瓷刀具材料内,由于第二相颗粒的存在,晶界处的最大拉应力等值线分布密度降低,使材料内部整体应力分布趋于均匀,在一定程度上缩小了应力集中,可提高材料的断裂韧度。模拟研究了复相A1203陶瓷刀具材料的残余热应力场及其增韧效应;结果表明,第二相颗粒内主要是残余压应力,基体内主要是残余拉应力,在第二相与基体的界面处,应力产生突变,由第二相到基体,残余压应力逐渐减小,残余拉应力逐渐’本研究得到了国家自然科学基金(50975161)和济南市高校自主创新计划(200906013)资助增大;最大残余拉应力随着第二相体积含量的增大而增大,最大残余压应力则是先增大后降低,由于残余压应力可以促使裂纹尖端闭合,产生增韧作用,因此第二相组份存在一个最优的体积含量。建立了等效弹性模量的微观尺度有限元计算模型,计算了复相Al2O3陶瓷刀具材料的等效弹性模量,并与通过经验模型获得的等效弹性模量进行了对比;结果表明,有限元计算结果与经验模型获得的结果相符合,并介于经验模型计算的等效弹性模量上限值和下限值之间,证明了等效弹性模量的微观尺度有限元计算模型的正确性。
     分别建立了单相陶瓷刀具材料中Ⅰ型裂纹和复合型裂纹(同时存在Ⅰ型和Ⅱ型裂纹)扩展行为的微观尺度扩展有限元三维模拟模型。模拟结果表明,Ⅰ型裂纹和复合型裂纹的模拟扩展路径与实际扩展路径相符,而且在裂纹尖端存在应力集中效应,这是导致材料真实断裂强度小于理论断裂强度的原因之一。
Ceramic tool materials have the advantages of high hardness, high wear resistance, good high-temperature property and chemical stability, which are better than those of traditional cutting tool materials in high-speed machining and in cutting difficult-to-cut materials. But the brittleness of ceramic cutting tools greatly limits the popularization and application of ceramic cutting tools. The traditional method for developing ceramic cutting tools is "trial and error method", which is not only laborious and time-consuming, but also will reduce the hardness and wear resistance sometimes. So there is great significance in search of new methods for the research and development of ceramic cutting tools. The application of computer simulation technology causes the research approach of ceramic tool materials changing gradually from the semiempirical qualitative description to a stage of scientific quantifiable prediction.
     Based on the Monte Carlo algorithm, a microscale finite element three-dimensional simulation model of ceramic tool materials is established, and then the stress field, the equivalent elastic modulus as well as the crack propagation behaviors of ceramic tool materials are analyzed in this thesis.
     The three-dimensional microstructure simulation model of ceramic tool materials is established using the Monte Carlo algorithm. The microscale finite element three-dimensional simulation model of ceramic tool materials is built by integrating the Monte Carlo algorithm and the Finite Element Method. The evolution program of grain growth in single-phase and composite ceramic tool materials are compiled using C++ language, and the three-dimensional microstructure Monte Carlo simulation model of ceramic tool materials is built. By the interface code developped in this study, the microstructure after evolution of Monte Carlo three-dimensional simulation model is imported successfully into ABAQUS/CAE module of finite element analysis software, and then the microscale finite element three-dimensional simulation model of single-phase alumina ceramic tool materials and Al2O3TiB2 composite ceramic tool materials are built.
     The microscale finite element three-dimensional simulation model of single-phase and composite ceramic tool materials' mechanical stress, residual thermal stress and equivalent elastic modulus are created in the thesis. The linear elastic mechanical stress field of the single-phase alumina ceramic tool materials and Al2O3/TiB2 composite ceramic tool materials are simulated by applying uniaxial pressure. The results show that the mechanical stress on grain boundary is bigger and the intergranular failure will be generated under the external applied load. In the composite ceramic tool materials, the contour distribution density of maximum tensile stress on grain boundary is reduced due to the existence of second phase particles, which makes the integral stress distribution in materials more uniformer and reduces partly the stress concentration zone to improve the fracture toughness. Residual thermal stress field and toughening effect of Al2O3TiB2 composite ceramic tool materials are simulated. The results show that there are mainly residual compressive stress in the second phase particles and residual tensile stress in matrix, and the stress mutates strongly between the second phase particles and the matrix. The residual compressive stress reduces gradually, while the residual tensile stress increases, from the second phase to matrix. The maximum residual tensile stress increases with an increase in the volume content of second phase. The maximum residual compressive stress increases at first and then decreases. The residual compressive stress can close crack tip and result in toughening effect, so there is the best value of the second phase volume content. Microscale finite element computation model of equivalent elastic modulus is also created, and the equivalent elastic modulus of Al2O3/TiB2 composite ceramic tool materials is computed and compared with the calculated results by the empirical models. It can be concluded that the results calculated by finite element simulation model are consistent with the results obtained by empirical models, and they lies between the upper and lower limit value obtained by empirical models. These results verify the validity of microscale finite element computation model of equivalent elastic modulus.
     Microscale extended finite element three-dimensional simulation model of modeⅠcrack's and mixed mode crack's(modeⅠcrack and modeⅡcrack) propagation behaviors in single-phase ceramic tool materials are created respectively. The results show that the crack propagation path of modeⅠcrack's and mixed mode crack's match the actual crack propagation path, and there are stress concentration effects near the crack tip. This is one of the reason leading to the actual fracture strength of ceramic tool materials less than the theoretical fracture strength.
引文
[1]艾兴,萧虹.陶瓷刀具切削加工[M].北京:机械工业出版社,1988:1-10.
    [2]Becher P F.. Microstructural Design of Toughened Ceramics[J]. Journal of the American Ceramic Society.1991,74(2):255-269.
    [3]郭景坤.关于先进结构陶瓷的研究[J].无机材料学报.1999,14(2):193-202.
    [4]Mills B.. Recent Developments in Cutting Tool Materials[J]. Journal of Materials Processing Technology.1996,56(4):16-23.
    [5]Choi S M, Awaji H.. Nanocomposites-A New Material Design Concept[J]. Science and Technology of Advanced Materials.2005,6(1):2-10.
    [6]周玉.陶瓷材料学[M].哈尔滨:哈尔滨工业大学出版社,1995:317-322,332-355.
    [7]Weiping S, Changchun G, Ling B, Qingzhi Y.. Research and Development of Ceramic Cutting Tools in China [J]. Digital Design and Manufacturing Technology. 2007, 1-25(z1):333-341.
    [8]孙有社,尤伦超.国内外刀具材料的发展及应用前景[J].机械工程师.2002,(3):10-12.
    [9]张玉军,张伟儒.结构陶瓷材料及其应用[M].北京:化学工业出版社,2005:1-3.
    [10]钟声,苗忠.氧化铝系陶瓷刀具材料性能及应用[J].机械工程师.1995,(5):21-22.
    [11]艾兴,刘战强,赵军,邓建新,宋世学.高速切削刀具材料的进展和未来[J].制造技术与机床.2001,(8):21-25.
    [12]姜涛,薛向欣,杨建东.Sialon陶瓷材料的结构、性质及应用[J].耐火材料.2001,35(4):229-232.
    [13]郭俊梅,潘健生.计算材料学与材料设计[J].贵金属.1999,20(4):62-68.
    [14]高英俊,刘慧,钟夏平.计算机模拟技术在材料科学中的应用[J].广西大学学报.2001,26(4):291-294.
    [15]Raabe D.计算材料学[M].项金钟,吴兴惠译.北京:化学工业出版社,2002: 59-63.
    [16]高力明.计算材料学与材料结构的层次[J].陶瓷学报.2004,25(2):69-74.
    [17]Zienkiewicz O C, Taylor R L.. Finite Element Method Volume 1:the Basis[M].5ed. Oxford:Butterworth-Heinemann,2000:1-4.
    [18]胡于进,王璋奇.有限元分析及应用[M].北京:清华大学出版社,2009:24.
    [19]Cubric D, Lencova B, Read F H, Zlamal J.. Comparison of FDM, FEM and BEM for Electrostatic Charged Particle Optics[J]. Nuclear Instruments and Methods in Physics Research.1999,427:357-362.
    [20]文玉华,朱如曾,周富信,王崇愚.分子动力学模拟的主要技术[J].力学进展.2003,33(1):65-73.
    [21]Allen M P.. Introduction to Molecular Dynamics Simulation[J]. Computational Soft Matter:From Synthetic Polymers to Proteins.2004,23:1-28.
    [22]Gibson J B, Goland A N, Milgram M, Vineyard G H.. Dynamics of Radiation Damage[J]. Physical Review.1960,120(4):1229-1253.
    [23]Wunderlich W, Awaji H.. Molecular Dynamics-Simulations of the Fracture Toughness of Sapphire[J]. Materials and Design.2001,22(1):53-59.
    [24]Matsui M.. Molecular Dynamics Study of the Structures and Bulk Moduli of Crystals in the System CaO-MgO-Al2O3-SiO2[J]. Physics and Chemistry of Minerals.1996,23(6):345-353.
    [25]赵凤娟,谢泉.现代材料计算与设计的理论方法概述[J].黑龙江科技信息.2009,(2):54.
    [26]张明涛.纳米陶瓷刀具材料微观组织模拟研究[D].山东大学硕士学位论文,2010:52-55.
    [27]Kutrib M, Vollmar R, Worsch T.. Introduction to the Special Issue On Cellular Automata[J]. Parallel Computing.1997,23(11):1567-1576.
    [28]吕凯.元胞自动机的研究及模型的建立[D].哈尔滨理工大学硕士学位论文,2007:11,32.
    [29]高成锴,王斌,许凤叶,冯林.元胞自动机在图像修补中的应用研究[J].计算 机工程与应用.2008,44(11):196-198.
    [30]焦宪友,关小军,刘运腾,关宇昕,张继祥,申孝民,麻晓飞.基于元胞自动机法的晶粒长大模拟[J].山东大学学报:工学版.2005,35(6):24-28.
    [31]贾德昌.无机非金属材料性能[M].北京:科学出版社,2008:432.
    [32]张金升.陶瓷材料显微结构与性能[M].北京:化学工业出版社,2007:5-19.
    [33]杨桂通.弹性力学[M].北京:高等教育出版社,1998:14,44,49.
    [34]Callister W D.. Materials Science and Engineering: An Introduction[M].7th. New York:John Wiley & Sons, Inc.,2007:139.
    [35]Frost H J, Ashby M F.. Deformation Mechanism Maps[M]. Oxford: Pergamon Press,1982:135.
    [36]Wachtman J B.. Elastic Deformation of Ceramics and Other Refractory Materials[M]. Washington:NBS special publication,1969:139-141.
    [37]Mackenzie J K, Shuttleworth R.. A Phenomenological Theory of Sintering[J]. Proceedings of the Physical Society. Section B.1949,62(12):833-852.
    [38]Voigt W.. Uber Die Beziehung Zwischen Den Beiden Elastiziatskonstanten Isotroper Korper[J]. Wied Ann.1889,38:573-587.
    [39]Reuss A Z.. Berchung Der Fiessgrenze Von Mischkristallen Auf Grund Der Plastiziatsbedingung Fur Einkristalle[J]. Z Angew Math Mech.1929, (9):49-58.
    [40]Orowan E.. Fracture and Strength of Solids[J]. Reports On Progress in Physics. 1949,12:185-232.
    [41]Griffith A A.. The Phenomena of Rupture and Flow in Solids[J]. Philos. Trans. R. Soc. London. Series a.1921,221:163-198.
    [42]Brown W F, Srawley J E.. Plane Strain Crack Toughness Testing of High Strength Metallic Materials[C]. ASTM,1966:408-410.
    [43]龚江宏.陶瓷材料断裂力学[M].北京:清华大学出版社,2001:5-9,12-16,23.
    [44]Hall E O.. The Deformation and Ageing of Mild Steel:III Discussion of Results[J]. Proceedings of the Physical Society. Section B.1951,64:747-753.
    [45]Petch N J.. The Cleavage Strength of Polycrystals[J]. Iron Steel Inst.1953,174(1): 25-28.
    [46]Irwin G R... Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate[J]. Journal of Applied Mechanics.1957,24:361-364.
    [47]Lange F F.. Relation Between Strength, Fracture Energy, and Microstructure of Hot-Pressed Si3N4[J]. Journal of the American Ceramic Society.2006,56(10): 518-522.
    [48]黄启震.中国冶金百科全书[M].北京:冶金工业出版社,2004:63-64.
    [49]刘苏Al2O3/TiB2复相陶瓷刀具的力学性能及切削特性[J].机械工程材料.1998,22(1):48-50.
    [50]宋世学,艾兴,赵军,吴齐Al2O3/TiC纳米复合刀具材料的力学性能与增韧强化机理[J].机械工程材料.2003,27(12):35-37.
    [51]侯铁翠,李智慧,卢红霞.蒙特卡罗方法模拟陶瓷晶粒生长研究进展[J].材料科学与工艺.2007,15(6):816-818.
    [52]Ohno K, Esfarjani K, Kawazoe Y.. Computational Materials Science:From ab Initio to Monte Carlo Methods[M]. Munich:Springer Verlag,1999:312-345.
    [53]Holm E A, Battaile C C. The Computer Simulation of Microstructural Evolution[J]. Journal of the Minerals Metals & Materials Society.2001,53(9): 20-23.
    [54]方斌.烧结过程中陶瓷刀具材料微观组织结构演变模拟研究[D].山东大学博士学位论文,2007:20-22.
    [55]Kunaver U, Kolar D.. Computer Simulation of Anisotropic Grain Growth in Ceramics[J]. Acta Metallurgica Et Materialia.1993,41(8):2255-2263.
    [56]宋晓艳,谷南驹.一个新的三维材料晶粒长大的图像仿真算法[J].计算机辅助设计与图形学学报.2000,12(2):85-89.
    [57]方斌,黄传真,许崇海,刘增文,王景海.材料微观组织演变的蒙特卡洛仿真原理及应用[J].材料导报.2007,21(2):75-78.
    [58]任淮辉,李旭东,李俊琛.三维多晶体材料微结构的力学响应计算[J].兰州理工大学学报.2008,34(1):1-5.
    [59]Eshelby J D.. The Continuum Theory of Lattice Defects[J]. Solid State Physics. 1956,3:79-144.
    [60]Mindlin R D.. Influence of Rotatory Inertia and Shear On Flexural Motions of Isotropic Elastic Plates[J]. J. Appl. Mech. Asme.1951,18(1):31-38.
    [61]仲政,杨卫,黄克智.均值自洽理论与多晶本构模拟[J].中国科学.1992,(5):496-504.
    [62]Whitney J M.. The Effect of Transverse Shear Deformation On the Bending of Laminated Plates[J]. J. Compos. Mater.1969,3(3):534-547.
    [63]Benveniste Y.. A New Approach to the Application of Mori-Tanaka's Theory in Composite Materials[J]. Mechanics of Materials.1987,6(2):147-157.
    [64]Zienkiewicz O C, Taylor R L, Too J M.. Reduced Integration Technique in General Analysis of Plates and Shells[J]. International Journal for Numerical Methods in Engineering.1971,3(2):275-290.
    [65]Chawla N, Patel B V, Koopman M, Chawla K K, Saha R, Patterson B R, Fuller E R, Langer S A.. Microstructure-Based Simulation of Thermomechanical Behavior of Composite Materials by Object-Oriented Finite Element Analysis[J]. Materials Characterization.2002,49(5):395-407.
    [66]Vedula V R, Glass S J, Saylor D M, Rohrer G S, Carter W C, Langer S A, Fuller Jr E R.. Residual-Stress Predictions in Polycrystalline Alumina[J]. Journal of the American Ceramic Society.2001,84(12):2947-2954.
    [67]Lippmann N, Steinkopff T, Schmauder S, Gumbsch P..3D Finite Element Modelling of Microstructures with the Method of Multiphase Elements[J]. Computational Materials Science.1997,9(1-2):28-35.
    [68]Zhang K S, Wu M S, Feng R.. Simulation of Microplasticity Induced Deformation in Uniaxially Strained Ceramics by 3D Voronoi Polycrystal Modeling[J]. International Journal of Plasticity.2005,21(4):801-834.
    [69]闫超,周慎杰.纳米复合陶瓷残余热应力的有限元模拟[J].工具技术.2007,41(1):53-55.
    [70]庄茁,由小川,廖剑晖.基于ABAQUS的有限元分析和应用[M].北京:清华大学出版社,2009:63-66.
    [71]石亦平,周玉蓉ABAQUS有限元分析实例详解[M].北京:机械工业出版社,2006:55.
    [72]李海燕.混合陶瓷角接触球轴承的有限元动态模拟及旋滚比分析[D].天津大学硕士学位论文,2007:20.
    [73]Djohari H, Derby J J.. Transport Mechanisms and Densification During Sintering: Ⅱ. Grain Boundaries[J]. Chemical Engineering Science.2009,64(17):3810-3816.
    [74]徐芝纶.弹性力学[M].北京:高等教育出版社,2006:6,245.
    [75]王敏中.高等弹性力学[M].北京:北京大学出版社,2002:120-125.
    [76]曹金凤,石亦平ABAQUS有限元分析常见问题解答[M].北京:机械工业出版社,2009:16.
    [77]Ku T W, Kang B S.. FE Approach and Experiments for an Axisymmetric Micro-Yoke Part Forming Using Grain Element and Grain Boundary Element[J]. Journal of Materials Processing Technology.2003,140(1-3):65-69.
    [78]李少峰,刘维良,彭牛生Ti (C, N)基金属陶瓷的显微结构和力学性能研究[J].陶瓷学报.2009,30(4):495-498.
    [79]田启川,潘泉,王峰,张洪才.基于Metropolis准则的BP神经网络学习算法研究[J].自动化技术与应用.2003,22(5):15-17.
    [80]Shokrieh M M, Mohammadi A R G.. Finite Element Modeling of Residual Thermal Stresses in Fiber-Reinforced Composites Using Different Representative Volume Elements[J]. Proceedings of the World Congress On Engineering.2010,2: 1612-1617.
    [81]张文静,李银俊,崔洪芝.燃烧合成法制备TiB2-Al2O3复相陶瓷的研究[J].现代技术陶瓷.2005,26(1):3-4.
    [82]Taya M, Hayashi S, Kobayashi A S, Yoon H S.. Toughening of a Particulate-Reinforced Ceramic-Matrix Composite by Thermal Residual Stress[J]. Journal of the American Ceramic Society.1990,73(5):1382-1391.
    [83]陈勇国,张东明,刘晶,何芬,张联盟.钛合金基体上TiN涂层的残余热应力分析[J].人工晶体学报.2009,38(1):251-254.
    [84]高希光,宋迎东,孙志刚.陶瓷基复合材料高精度宏细观统一本构模型研究[J].航空动力学报.2008,23(9):1617-1622.
    [85]王连生.细观力学有限元法预测微米短纤维复合材料的有效弹性性能[D].中北大学硕士学位论文,2009:27-30.
    [86]赵刚.材料成型的物理冶金学基础[M].北京:冶金工业出版社,2009:13.
    [87]Zhang Z, Chen D L.. Consideration of Orowan Strengthening Effect in Particulate-Reinforced Metal Matrix Nanocomposites:A Model for Predicting their Yield Strength[J]. Scripta Materialia.2006,54(7):1321-1326.
    [88]Giner E, Sukumar N, Tarancon J E, Fuenmayor F J.. An Abaqus Implementation of the Extended Finite Element Method[J]. Engineering Fracture Mechanics.2009, 76(3):347-368.
    [89]Benson D J, Bazilevs Y, De Luycker E, Hsu M C, Scott M, Hughes T, Belytschko T.. A Generalized Finite Element Formulation for Arbitrary Basis Functions:From Isogeometric Analysis to XFEM[J]. International Journal for Numerical Methods in Engineering.2010,83(6):765-785.
    [90]谢秀峰,李俊林,杨维阳.正交异性复合材料Ⅰ型裂纹尖端应力场研究[J].科学技术与工程.2008,8(7):1780-1782.
    [91]尹奇志,吕运冰.孔边应力集中和裂纹尖端应力强度因子的有限元分析[J].武汉理工大学学报.2002,26(1):47-50.
    [92]王昕,于薛刚,单妍,孙勇,范文涛,刘子峰.纳米Zr02与微米A1203复合陶瓷的断裂模式[J].材料研究学报.2007,21(5):482-486.
    [93]张国军,岳雪梅.颗粒增韧陶瓷裂纹扩展微观过程[J].硅酸盐学报.1995,23(4):365-372.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700