氧化石墨烯/聚合物纳米复合材料的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石墨烯是具有单原子厚度的碳原子层,C-C之间通过共价键相连接,它可以包裹形成零维的富勒烯,卷曲形成一维的碳纳米管,也可以叠加形成三维的石墨。石墨烯的出现改变了人们对二维物质在常温下无法存在的观点,它在电学、力学以及热学等方面都表现出优异的性能,从而引起人们广泛的关注,并在晶体管、纳米电子器件以及新型高性能电池等方面具有广泛的应用。本文通过超声分散方法制备了具有单层结构的氧化石墨烯,并分别与聚乙烯醇和壳聚糖通过物理化学相互作用制备出性能良好的纳米复合材料
     (1)对比热解膨胀和超声分散两种制备氧化石墨烯的方法。结果表明,热解氧化石墨后不能完全实现单层的剥离,片层中仍存在大量多片层结构,且得到的膨胀石墨中化学活性基团大大减少,限制了其在高分子复合材料中的应用;而超声剥离后则能够在不破坏其化学活性的基础上,大量制备出剥离比较完全的单片层氧化石墨烯,拓宽了石墨烯在复合材料中的应用。
     (2)通过层层自组装方法制备聚乙烯醇/氧化石墨烯纳米复合超薄膜。聚乙烯醇和氧化石墨烯通过氢键相结合,XRD和UV结果均表明,GO在溶液中分散良好,并能与聚乙烯醇之间发生层层吸附,按照一定的结构构筑单元表现出规律性变化,实现了氧化石墨烯在聚乙烯醇基体中的高度取向,成功获得了(PVA/GO)n纳米复合超薄膜。
     (3)通过溶液共混法制备了壳聚糖/氧化石墨烯的纳米复合材料。TEM以及拉伸测试等结果均表明,氧化石墨烯纳米粒子在壳聚糖基体中能够分散良好,且氧化石墨烯的加入能够使壳聚糖纳米复合材料的拉伸强度和模量显著提高,但另一方面,却也使复合材料的断裂伸长率或韧性下降。
Graphene sheets, two-dimensional one-atom-thick layers of sp2-bonded carbon, have attracted tremendous attention from the experimental and theoretical communities. It can form zero-dimensional fullerenes, one-dimensional carbon nanotube and three-dimensional graphite. Graphene has changed the opinion that two-dimensional material can not exist at room temperature. It has a wide application in the transistors, nano-electronic devices, batteries for the outstanding electrical, mechanical and thermal properties. In this thesis, a single-layer structure of graphene oxide was prepared by sonicating and two different types of nanocomposites based on graphene were respectively obtained with poly(vinyl alcohol) and chitosan.
     (1)By comparing thermal expansion and ultrasonication methods, it can be observed that pyrolytic graphite can not be exfoliated to single layer graphene. The chemically active groups were greatly reduced due to the thermal expansion process and thus the applications of graphene in polymer composites were limited. After sonicating, however, graphene oxide was exfoliated to single layer with the chemically active groups, which can find wide applications in polymer nanocomposites.
     (2) (PVA/GO)n ultrathin film composites were prepared via layer-by-layer (LBL) self-assembly technique. UV-vis and XRD results indicated that GO could readily form ordered ultrathin films with PVA at molecular level owing to strong hydrogen bonding interaction between them. High orientation of graphene oxide in PVA matrix was achieved through such a self-assembly. Therefore, it offers an approach to fabricate a plenty of composite films based on water-soluble polymers and graphene oxide.
     (3) Chitosan/graphene oxide composites were prepared by solution blending. TEM and tensile test results showed that the graphene oxide was well dispersed in chitosan. Tensile strength and modulus of the nanocomposites were significantly increased, while the elongation at break of the nanocomposites was decreased.
引文
[1]Kroto, H. W.,Heath, J. R., O'Brien, S.C.,et al. C60:Buck minster fullerene. Nature,1985,318,162-163.
    [2]Iijima, S.Helical microtubules of graphitic carbon. Nature,1991,354,56-58.
    [3]Peierls, R. E. Quelques proprietes typiques des corpses solides. Ann. I. H. Poincare,1935,5,177-222.
    [4]Mermin, N. D. Crystalline order in two dimensions. Phys. Rev.,1968,176, 250-254.
    [5]Kyotani, T.,Sonobe, N., Tomita, A. Formation of highly orientated graphite from polyacrylonitrile by using a two-dimensional space between montmorillonite lamellae. Nature,1988,33,331-333.
    [6]Novoselov, K. S.,Geim, A. K., Morozov, S. V., et al. Electric field effect in atomically thin carbon films. Science,2004,306,666-669.
    [7]Meyer, J. C.,Geim, A. K., Katsnelson, M. I.,et al. The structure of suspended graphene sheets. Nature,2007,446,60-63.
    [8]Mcallister, M. J.,Li, J. L., Adamson, D. H.,et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater.,2007,19, 4396-4404.
    [9]Paci, J. T., Belytschko, T., Schatz, G C.Computational studies of the structure, behavior upon heating, and mechanical properties of graphite oxide. J. Phys. Chem. C, 2007,111,18099-18111.
    [10]Stankovich, S.,Dikin, D. A., Dommett, G H. B.,et al. Graphene-based composite materials. Nature,2006,442,282-286.
    [11]Dikin, D. A., Stankovich, S.,Zimney, E. J., et al. Preparation and characterization of graphene oxide paper. Nature,2007,448,457-460.
    [12]Geim, A. K., Novoselov, K. S.The rise of graphene. Nature Materials,2007,6, 183-191.
    [13]杨全红.纳米孔“炭”与纳米孔“碳”.新型炭材料,2007,22,4,289-294.
    [14]Kang, F.,Inagaki, M. Carbon Materials Science and Engineering-From Fundamentals to Applications [M].Beijing:Tsinghua University Press,2006:7214.
    [15]成会明.纳米碳管制备、结构、物性及应用.化学工业出版社,2002,10-15.
    [16]Kaczmarek, H., Podgorski, A. Photochemical and thermal behaviours of poly(vinyl alcohol)/graphite oxide composites. Polym. Degrad. Stabil.,2007,92, 939-946.
    [17]Boehm, H. P.,Scholz, W. New results on the chemistry of graphite oxide. Carbon, 1968,6,226.
    [18]Szabo,T.,Tombacz, E., Illes, E.,et al. Enhanced acidity and pH-dependent surface charge characterization of successively oxidized graphite oxides. Carbon, 2006,44,537-545.
    [19]Lerf, A.,Buchsteiner, A., Pieper, J., et al. Hydration behavior and dynamics of water molecules in graphite oxide.J. Phys. Chem. Solids,2006,67,1106-1110.
    [20]Novoselov, K. S.,Jiang, D., Schedin, F. Two-dimensional atomic crystals[J]. Proc. Natl.Acad. Sci.,2005,102,10451-10453.
    [21]Avouris,P.,Chen, Z.,Perebeinos, V. Carbon-based electronics. Nature Nanotechnology,2007,2,605-615.
    [22]Kane, C. L. Erasing electron mass. Nature,2005,438,168-169.
    [23]Novoselov, K. S.,Geim, A. K., Morozov, S.V., et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature,2005,438,197-200.
    [24]Novoselov, K. S.,Jiang, Z., Zhang, Y.,et al. Room-temperature quantum Hall efect in graphene. Science,2007,315,1379-1379.
    [25]Qqiumzadeh, A., Arabchi, N., Asgari, R. Quasiparticle properties of graphene in the presence of disorder. Solid State Commun.,2008,147,172-177.
    [26]Lee, C.,Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science,2008,5887,358-388.
    [27]黄桂荣,陈建.石墨烯的合成与应用.炭素技术,2009,28,35-39.
    [28]Bunch, J. S.,Yaish, Y., Brink, M., et al. Coulomb oscillations and hall effect in quasi-2D graphite quantum dots. Nano Lett.,2005,5,287-290.
    [29]Zhang, Y. B.,Small, J. P.,Pontius, W. V., et al. Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices. Appl. Phys. Lett.,2005,86,073-104.
    [30]Berger, C., Song, Z. M., Li, X. B., et al. Electron confinement and coherence in patterned epitaxial graphene. Science,2006,312,1191-1196.
    [31]Berger, C.,Song, Z., Li, T., et al. Ultrathin epitaxial graphite:2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B,2004, 108,19912-19916.
    [32]Sutter, P. W.,Flege, J. Sutter, E. A. Epitaxial graphene on ruthenium. Nature Materials,2008,5,406-411.
    [33]Srivastava, S.K., Shukla, A. K., Vankar, V.,et al. Growth, structure and field emission characteristics of petal like carbon nano-structured thin films. Thin Solid Films,2005,492,124-130.
    [34]Zhu, M. Y.,Wang, J. J., Outlaw, R. A.,et al. Direct current discharge plasma chemical vapor deposition of nanocrystalline graphite films on carbon fibers. Diamond Related Materials,2007,16,196-201.
    [35]Wang, J. J.,Zhu, M. Y.,Outlaw, R. A.,et al. Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition. Carbon,2004,42,2867-2872.
    [36]Berger, C., Song, Z.,Li, X., et al. Electronic confinement and coherence in patterned epitaxial graphene. Science,2006,312,1191-1196.
    [37]Berger, C., Song, Z., Li, T., et al. Ultrathin epitaxial graphite:2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B,2004, 108,19912-19916.
    [38]Heer, W., Berger, C.,Wu, X. S.,et al. Epitaxial graphene. Solid State Commun., 2007,143,92-94.
    [39]康飞宇.石墨层间化合物GIC.炭素科技,2000,10,16-19.
    [40]Teplykh, A. E., Bogdanov, S.G.,Dorofeev, Y. A.,et al. Structural state of expanded graphite prepared from intercalation compounds. Crystallogr. Rep.,2006, 51,S62-S66.
    [41]Shioyama, H. Cleavage of graphite to graphene. J.Mater. Sci. Lett.,2001,20, 499-500.
    [42]Schniepp, H. C.,McAllister, M. J., et al.Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide. J. Phys. Chem. B,2006,110,8535-8539.
    [43]Li, X. Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors. Science,2008,319,1229-1232.
    [44]McAllister, M. J., Li, J. L., Adamson, D. H.,et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater.,2007,19, 4396-4404.
    [45]Wu, Y. R.,Phillips, J. A., Liu, H. P.,Yang, R. H.,Tan, W. H. Carbon Nanotubes Protect DNA Strands during Cellular Delivery[J].ACS Nano,2008,2,2023-2028.
    [46]Subrahmanyam, K. S.,Vivekchand, S. R. C.,Govindaraj,A., Rao, C. N. R. A study of graphenes prepared by different methods:characterization, properties and solubilization[J].J. Mater. Chem.,2008,18,1517-1523.
    [47]Chen, G H.,Weng, W. G,Wu, G, Lu, G R., Wang, P. P., Chen, X. F. Preparation and characterization of graphite nanosheets from ultrasonic powdering technique. Carbon,2004,42,753-759.
    [48]Chanbon, F.,Winter, H. H. Linear viscoelasticity at the gel point of a crosslinking PDM S with imbalanced stoichiometry. J. Rheol.,1987,31,683-697.
    [49]Ramesh, P., Bhagyalakshmi, S.,Sampath, S.Preparation and physicochemical and electrochemical characterization of exfoliated graphite oxide. J. Colloid Interface Sci.,2004,274,95-102.
    [50]Li, X. B.,et al. Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors[J].Science,2008,319,1229-1231.
    [51]Stankovich, S.,Dikin, D. A.,Piner, R. D.,et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon,2007,45, 1558-1565.
    [52]Hirata, M., Ohba, T. G. M. Thin-film particles of graphite oxide 2:Preliminary studies for internal micro fabrication of single particle and carbonaceous electronic circuits[J].Carbon,2005,43,503-510.
    [53]Horiuchi, S.,et al. Carbon Nanofilm with a New Structure and Property [J].J. Appl. Phys.,2003,42,L1073-L1076.
    [54]Dekany, R.K., Weiss, G A. Selective liquid sorption properties of hydrophobized graphite oxide nanostructures[J].Colloid Polym. Sci.,1998,276,570-576.
    [55]Li, D.,Gijie, S.,Kaner, R. B.,Gordon G Wallace.Processable aqueous dispersions of graphene nanosheets[J].Nature Nanotechnology,2007,3,101-105.
    [56]Trepanier, M., Tavasoli, A.,Dalai, A. K., Abatzoglou, N., Co, Ru and K loadings effects on the activity and selectivity of carbon nanotubes supported cobalt catalyst in Fischer-Tropsch synthesis [J].Applied Catalysis a General,2009,353,193-202.
    [57]Marian, M. US [P].0054995,2002.364-367.
    [58]Zhang, Y. B., Tan, Y.W.,Stormer, H. L., et al. Experimental observations of the quantum Hall effect and Berry's phase in graphene. Nature,2005,438,201-204.
    [59]Zhou, S.Y, Gweon, G H.,Fedorov, A. V.Substrate-induced band gap opening in epitaxial graphene. Nature Materials,2007,6,770-775.
    [60]Ostinga, J. B.,Heersche, H. B., Liu, X. L., et al. Gate-induced insulating state in bilayer graphene devices. Nature Materials,2007,7,151-157.
    [61]Chen, G, Wang, W.,Wu, D., Wu, C., Lu, J., Wang, P.,et al.Preparation and characterization of graphite Nanosheets from ultrasonic powdering technique. Carbon, 2004,42,73-79.
    [62]Kwon, O., Choir, S.,Park, K., Kwon, Y, The preparation of exfoliated graphite by using microwave. J. Ind. Eng. Chem.,2003,9,743-747.
    [63]Editorial. Graphene calling. Nature Materials,2007,6,169.
    [64]McCann, E., Kechedzhi, K., Fal'ko, V.I., et al. Weak localization magnetoresistance and valley symmetry in graphene. Phys. Rev. Lett.,2006,97, 146805.
    [65]Uhl, F. M., Wilkie, C. A. Preparation of nanocomposites from styrene and modified graphite oxides [J].Polym. Degrad Stabil.,2004,84,215-226.
    [66]Ding, R.,Hu, Y, Gui, Z., et al. Preparation and characterization of polystyrene/graphite oxide nanocomposite by emulsion polymerization [J].Polym. Degrad. Stabil.,2003,81,473-476.
    [67]Wang W. P.,Pan, C. Y.Preparation and characterization of polystyrene/graphite composite prepared by cationic grafting polymerization [J].Polymer,2004,45, 3987-3995.
    [68]杨建国,牛文新,李建设,等.聚苯乙烯/氧化石墨纳米复合材料的制备与性能[J].高分子材料科学与工程2005,21,55-58.
    [69]Seredych, M., Pietrzak, R.,Bandosz, T. J. Role of graphite oxide (GO) and polyaniline (PANI) in NO2 reduction on GO-PANI composites [J].Ind. Eng. Chem. Res.,2007,46,6925-6935.
    [70]Bissessur, R., Liu, P. K.,White, W., et al. Encapsulation of polyanilines into graphite oxide[J].Langmuir,2006,22,1729-1734.
    [71]Zou, Y. H., Wu, J., Liu, H. B.,et al. Preparation of polyaniline-intercalated graphite oxide composite and ITS application in detecting DNA [J].New Carbon Materials,2005,20,360-364.
    [72]胡源,张蕤,徐加艳,等.聚丙烯酰胺/氧化石墨纳米复合材料的研究[J].材料科学与工艺2003,11,337-339.
    [73]徐加艳,胡源,宋磊,等.聚丙烯酰胺/氧化石墨纳米复合材料的制备及其表征[J].火灾科学,2001,10,92-94.
    [74]Xu, J.,Hu, Y, Song, L.,et al. Preparation and characterization of polyacrylamide-intercalated graphite oxide [J].Mater. Res. Bull.,2001,36, 1833-1836.
    [75]Xu, J.,Hu, Y, Song, L.,et al. Thermal analysis of poly(vinyl alcohol)/graphite oxide intercalated composites[J].Polym. Degrad. Stabil.,2001,73,29-31.
    [76]Xu, J. Y,Hu, Y,Song, L., et al. Preparation and characterization of poly(vinyl alcohol)/graphite oxide nanocomposite[J].Carbon,2002,40,450-451.
    [1]Jang, B.Z.,Zhamu, A. Processing of nanographene platelets (NGPs) and NGP nanocomposites:a review [J].J. Mater. Sci.,2008,43,5092-5101.
    [2]Gholipour, Y.,Nonami, H., Balsells, R. In situ analysis of plant tissue underivatized carbohydrates and on-probe enzymatic degraded starch by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry by using carbon nanotubes as matrix. Anal. Biochem.,2008,383,159-167.
    [3]Ting,J. H.,Lyu,J. Y., Huang,F. Y.,Li,T.L.,Hsu C. L. and Liu, C.W. Synthesis of Single Wall Carbon Nanotubes by Atmospheric Thermal CVD [C].2008,17th Biennial University/Government/Industry Micro-Nano Symposium, Proceedings, 2008,157-160.
    [4]Yang, M. H., Kostov,Y, Bruck, H. A., Rasooly, A. Carbon Nanotubes with Enhanced Chemiluminescence Immunoassay for CCD-Based Detection of Staphylococcal Enterotoxin B in Food[J].Anal. Chem.,2008,80,8532-8537. [5] Matsuo, Y. Preparation of intercalation compounds of graphite oxide. TANSO, 2007,228,209-214.
    [6]Schniepp, H. C., Li, J. L., McAllister, M.. J.,et al. Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B,2006,110,8535-8539.
    [7]Hummer, W. Preparation of Graphitic Oxide. J. Am. Chem. Soc.,1958,80,1339.
    [8]Nakajima, T., Matsuo, Y.Formation process and structure of graphite oxide. Carbon,1994,32,469-475.
    [9]Peckett, J. W.,Trens, P., Gougeon, R. D.,et al. Electrochemically oxidised graphite:Characterisation and some ion exchange properties. Carbon,2000,38, 345-353.
    [10]Hudson, M. J., Hunter-Fujita, F. R., Peckett, J. W., et al. Electrochemically prepared colloidal, oxidised graphite.J. Mater. Chem.,1997,7,301-305.
    [11]Schniepp, H. C.,McAllister, M. J., et al.Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide. J. Phys. Chem. B,2006,110,8535-8539.
    [12]Meyer, J. C.,Geim, A. K., Katsnelson, M. I.,et al. The structure of suspended graphene sheets. Nature,2007,446,60-63.
    [13]Mcallister, M. J., Li, J. L., Adamson, D. H., et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater.,2007,19, 4396-4404.
    [14]Paci, J. T., Belytschko, T., Schatz, G. C. Computational studies of the structure, behavior upon heating,and mechanical properties of graphite oxide. J. Phys. Chem. C, 2007,111,18099-18111.
    [15]Stankovich, S.,Dikin, D. A., Dommett,G.H. B., et al. Graphene-based composite materials. Nature,2006,442,282-286.
    [16]Boehm, H. P.,Scholz, W. New results on the chemistry of graphite oxide. Carbon, 1968,6,226.
    [17]Szabo, T., Tombacz, E., Illes, E., et al. Enhanced acidity and pH-dependent surface charge characterization of successively oxidized graphite oxides. Carbon, 2006,44,537-545.
    [18]Lerf, A., Buchsteiner, A.,Pieper, J., et al. Hydration behavior and dynamics of water molecules in graphite oxide. J. Phys. Chem. Solids,2006,67,1106-1110.
    [19]Kane, C. L. Erasing electron mass. Nature,2005,438,168-169.
    [20]Novoselov, K. S.,Geim, A. K., Morozov, S.V.,et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature,2005,438,197-200.
    [21]Novoselov, K. S.,Jiang, Z.,Zhang, Y, et al. Room-temperature quantum Hall effect in graphene. Science,2007,315,1379-1379.
    [22]Qqiumzadeh, A.,Arabchi, N., Asgari, R. Quasiparticle properties of graphene in the presence of disorder.Solid State Commun.,2008,147,172-177.
    [23]黄桂荣,陈建.石墨烯的合成与应用.炭素技术,2009,28,35-39.
    [24]Bunch, J. S.,Yaish, Y, Brink, M., et al. Coulomb oscillations and hall effect in quasi-2D graphite quantum dots. Nano Lett.,2005,5,287-290.
    [25]Zhang, Y B.,Small, J. P., Pontius, W. V., et al. Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices. Appl. Phys. Lett.,2005,86,073-104.
    [26]Berger, C.,Song, Z.,Li, T., et al. Ultrathin epitaxial graphite:2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B, 2004,108,19912-19916.
    [27]Heer, W., Berger, C.,Wu, X. S.,et al. Epitaxial graphene. Solid State Commun., 2007,143,92-94.
    [28]康飞宇.石墨层间化合物GIC.炭素科技,2000,10,16-19.
    [29]Schniepp, H. C.,McAllister, M. J., et al.Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide. J. Phys. Chem. B,2006,110,8535-8539.
    [30]Chen, G. H.,Weng,W. G, Wu, G, Lu,G. R.,Wang, P. P., Chen, X. F. Preparation and characterization of graphite nanosheets from ultrasonic powdering technique. Carbon,2004,42,753-759.
    [1]Decher, G., Hong, J. D., Schmitt, J. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films,1992, 210,831-835.
    [2]Kleinfeld, E. R., Ferguson, G. S.Stepwise formation of multilayered nanostructural films from macromolecular precursors. Science,1994,265,370-373.
    [3]Pastoriza-Santos, I., Koktysh, D. S.,Mamedov, A. A., Giersig, M., Kotov, N. A., Liz-Marzan, L. M. One-pot synthesis of Ag/TiO2 core-shell nanoparticles and their layer-by-layer assembly. Langmuir,2000,16,2731-2735.
    [4]Hammond, P. T. Recent explorations in electrostatic multilayer thin film assembly. Curr. Opin. Colloid Interface Sci.,2000,4,430-442.
    [5]Langmuir, I. The constitution and fundamental properties of solids and liquid. Ⅱ. Liquids. J. Am. Chem. Soc.,1917,39,1848.
    [6]Bigelow, W. B., Langmuir, I. Built-up films of barium stearate and their optical properties. Phys. Rev.,1937,57,964.
    [7]Sagiv, J., Organized monolayers by adsorption.1.Formation and structure of oleophobic mixed monolayers on solid surfaces:J. Am. Chem. Soc.,1980,102, 92-98.
    [8]Nuzzo, R. G.,Allara, D. L.,Adsorption of bifunctional organic disulfides on gold surfaces. J. Am. Chem. Soc.,1983,105,4481.
    [9]McNally, H., Pingle, M.,Lee, S. W., et al. Self-assembly of micro-and nano-scale particles using bioinspired events [J].Appl. Surf. Sci.,2003,214,109-119.
    [10]Li, X. Q., Gao, X. B.,Mu, J. A new type of self-assembly film of water-soluble porphyrin alternating CdSe nanoparticles[J].Mater. Lett.,2005,59,53-55.
    [11]Yilmaz, S.Thermal mismatch stress development in Cu2ZrW2O8 composite investigated by synchrotron X-ray diffraction [J].Compos. Sci. Technol.,2002,62, 1835-1839.
    [12]Matsumoto, A., Kobayashi, K., Nishio, T., Ozaki, K. Fabrication and thermal expansion of Al2ZrW2O8 composites by pulse current sintering [J].Mater. Sci. Forum,2003,426,2279.
    [13]Yao, G.,Dong, Y., Cao, T.,et al. Self-assembled film of poly(4-carboxyphenyl) acetylene and diazoresin and its photoelectric conversion property [J].J. Colloid Interface. Sco.,2003,257,263-267.
    [14]Lin, Y.,BEker, A., He, J. B.,et al. Self-directed self-assembly of nanoparticle /copolymer mixtures[J].Nature,2005,434,55-59.
    [15]Decher, G., Hong, J. D., Schmitt, J., Buildup of ultrathin multilayer films by a self-assembly process:Ⅲ. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces [J].Thin Solid Films,1992,210-211, 831-835.
    [16]吴涛,张希.自组装超薄膜:从纳米层装构筑到功能组装[J].高等学校化学学报2001,22,1057-1065.
    [17]邱键斌,刘云珍,陈朝晖,等.三氧化钨与双季铵盐超薄有序分子沉积膜的制备及其结构研究[J].化学研究与应用,2000,12,193-195.
    [18]高芒来,孙祥兴,沈家骢,等.[J].高等学校化学学报,1993,14,1182-1183.
    [19]Barry, C. R.,Hoon, C. J.,Jacobs, H. O. Approaching Programmable Self-Assembly from Nanoparticle-Based Devices to Integrated Circuits [C]. Proceedings of the Foundations of Nanoscience, Utah, April 21-23,2004.
    [20]孙俊奇.纳米结构三维组装与功能化研究[D].长春:吉林大学,2001.
    [21]Advincula, R. C., Baba, A., Kaneko, F. Polymer Ultrathin Films via Alternate Self-Assembly Adsorption of Polyelectrolyte And AZO-Dye Molecules: Photo-Induced Alignment and LC Display Properties [C].MRS Proceedings,1999, 155-160.
    [22]Cao, T. B., Chen, J.Y., Yang, C. H, et al. Fabrication of photoactive self-assembled ultra-thin films from diazoresin and poly(4-vinylphenol) via H-bonding [J].New J. Chem.,2001,25,305-307.
    [23]Ben, J. M., Biron, Y. Magnetically Programmable Transport and Assembly of Colloidal Particles [D].Drexel University, August 2004.
    [24]Olsvik, O., Popovic, T., Skjerve, E.,et al. [J].Clinical Microbiology Reviews, 1994,7,43-54.
    [25]Lin, W. B.,Lin, W. P., Wang, G. K., et al. [J].J. Am. Chem. Soc.,1996,118, 8034-8042.
    [26]Wei T. X.,Huang C. H., Yu X. F., et al. Effect of different metal ions in a new kind of functionalized self-assembled films of trinary complexes on its photoinduced electron transfer property[J].Science In China,2000,43,609-616.
    [27]Service,R. F. Science,1998,279,1135-1135.
    [28]沈容,王聪,王天民.“负热膨胀”氧化物材料ZrW208的研究进展[J].无机材料学报,2002,17,1089-1094.
    [29]Graham, J.,Wadsley, A. D., Weymouth, J. H., et al. [J].J. Am. Ceram. Soc., 1959,42,570.
    [30]Martinek,C.,Hummel, F. A.[J].J. Am. Ceram. Soc.,1968,51,227-228.
    [31]Chang, L. L. Y., Scrober, M. G., Phillips, B. Condensed phase relations in the systems ZrO2-WO2-WO3 and HfO2-WO2-WO3 [J].J. Am. Ceram. Soc.,1967,50, 211-216.
    [32]程晓农,孙秀娟,杨娟,徐桂芳.固相法合成负热膨胀性粉体ZrW208[J].江苏大学学报(自然科学版),2005,26,350-353.
    [33]Yilmaz, S.,Dunand, D. C. Finite-element analysis of thermal expansion and thermal mismatch stresses in a Cu60vol%-ZrW2O8 composite [J].Compos. Sci. Technol.,2004,64,1895-1898.
    [34]Holzer, H., Dunand, D. C. Phase transformation and thermal expansion of CuPZrW2O8 [J].J. Mater. Res.,1999,14,780-789.
    [35]Yilmaz, S.Thermal mismatch stress development in Cu2ZrW2O8 composite investigated by synchrotron X-ray diffraction[J].Compos. Sci. Technol.,2002,62, 1835-1839.
    [36]Matsumoto, A.,Kobayashi, K., Nishio, T., Ozaki, K. Fabrication and thermal expansion of Al2ZrW2O8 composites by pulse current sintering [J].Mater. Sci. Forum,2003,426,2279.
    [37]关振铎,张中太,焦金生.无机材料物理性能[M].北京:清华大学出版社,1992,127.
    [38]Nishiyama, S.,Yoshida, H., Hattori, T. [C].Ann Meet.of the Ceram. Soc. Jap., 2002,205.
    [39]Baughman, R. H.,Zakhidov, A. A.,de Heer, W. A. Carbon nanotubes-The route toward applications. Science,2002,297,787-792.
    [40]Bahr, J. L., Tour, J. M. Covalent chemistry of single-wall carbon nanotubes. J. Mater. Chem.,2002,12,1952-1958.
    [41]Sun, Y. P., Fu, K. F., Lin, Y., Huang, W. J. Functionalized carbon nanotubes:Properties and applications. Acc. Chem. Res.,2002,35,1096-1104.
    [42]Carr, K. E. Electron microscope study of the formation of graphite oxide. Carbon, 1970,8,245-246.
    [1]梁宏斌,倪靖滨等.聚合物/纳米复合材料研究进展.化学工程师.2001.3,26.
    [2]严满清,王平华.高分子/无机纳米复合材料的研究进展.现代塑料加工应用.2002,14,63.
    [3]夏和生.纳米技术进展.高分子材料科学与工程2001.17.
    [4]Rifby, G. W.,1934, U.S.Patent 2,040,880.
    [5]Rifby, G. W.,1934, U.S.Patent 2,040,879.
    [6]Clark, G. L. X-ray Diffraction Studies of Chitin. Chitosan and Dervatives, J. Phys. Chem.,1936,40,863-879.
    [7]Muxxaelli, R. A. A. Chitin, Toronto, Pergamon of Canada Led,1977.
    [8]Crini,G. Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog. Polym. Sci.,2005,30,38-70.
    [9]Park, S.I., Zhao, Y. Y. Incorporation of a High Concentration of Mineral or Vitamin into Chitosan-Based Films. J., Agric. Food Chem.,2004,52,1933-1939.
    [10]Lee, Y.M.,Park, Y. J. Platelet derived growth factor releasing chitosan sponge for periodontal bone regeneration. Biomaterials,2000,21,153-159.
    [11]Hu, Y,Jiang, X. Q., Ding, Y,et al. Core-template-free strategy for preparing hollow nanospheres. Adv. Mater.,2004,16,933-937.
    [12]Chen, L. Y, Tian, Z. G., Du, Y. M. Synthesis and pH sensitivity of carboxymethyl chitosan-based polyampholyte hydrogels for protein carrier matrices. Biomaterials, 2004,25,3725-3732.
    [13]Ding, Y, Hu, Y, Jiang, X. Q.,et al. Polymer-monomer Pair as a Reaction System for the Synthesis of Magnetic Fe3O4-polymer Hybrid Hollow Nanospheres [J].Angew. Chem. Int. Ed.,2004,4,6369-6372.
    [14]Ruoff, R. Graphene:Calling all chemists [J].Nature Nanotechnol.,2008,3, 10-11.
    [15]Stankovich, S.,Dikin, D. A., Dommett,G. H. B.,Kohlhaas, K. M.,Zinmey, E. J., Stach, E. A., Piner, R. D.,Nguyen, S. T.,Ruoff,R.S.Graphene-based composite materials[J].Nature,2006,442,282-286.
    [16]Dikin,D. A., Stankovieh, S.,Zimney, E. J., Piner, R. D.,Dommett, G H. B., Evmenenko, G, Nguyen, S.T.,Ruoff, R. S.Preparation and characterization of graphene oxide paper[J].Nature,2007,448,457-460.
    [17]康飞宇.石墨层间化合物GlC[J]. 炭素科技,2000,10,16-19.
    [18]Shioyama,H. Cleavage of graphite to graphene[J].J. Mater. Sci. Lett.,2001,20, 499-500.
    [19]Avouris, P., Chen, Z., Perebeinos, V.Carbon-based electronics. Nature Nanotechnology,2007,2,605-615.
    [20]Zhang,M. G, Smith, A.,Gorski, W. Carbon Nanotube-Chitosan System for Electrochemical Sensing Based on Dehydrogenase Enzymes. Anal. Chem.,2004,76, 5045-5050.
    [21]Zhang, M. G, Gorski, W. Electrochemical sensing based on redox mediation at carbon nanotubes. Ana;. Chem.,2005,77,3960-3965.
    [22]Zhang, M. G,Gorski, W. Electrochemical Sensing Platform Based on the Carbon Nanotubes/Redox Mediators-Biopolymer System. J. Am. Chem. Soc.,2005,127, 2058-2059.
    [23]Zhang, M. G, Mullens, C.,Gorski,W. Insulin oxidation and determination at carbon electrodes. Anal. Chem.,2005,77,6396-6401.
    [24]Jiang, L. Y.,Liu, C. Y., Jiang, L. P., et al. A multiwall carbon nanotube-chitosan modified electrode for selective detection of dopamine in the presence of ascorbic acid. Chin. Chem. Lett.,2005,16,229-232.
    [25]Jiang, L. Y,Liu, C. Y, Jiang, L. P., et al. A chitosan-multiwall carbon nanotube modified electrode for simultaneous detection of dopamine and ascorbic acid. Anal. Sci..,2004,20,1055-1059.
    [26]Jiang, L. Y,Wang, R. X.,Li, X. M., et al. Electrochemical oxidation behaviour of nitrite on a chitosan-carboxylated multiwall carbon nanotube modified electrode. Electrochem. Commun.,2005,7,597-601.
    [27]Liu, Y, Wang, M. K., Zhao, F.,et al. The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix. Biosens. Bioelectron.,2005,21,984-988.
    [28]Li, J.,Liu, Q., Liu, Y. J., et al. DNA biosensor based on chitosan film doped with carbon nanotubes. Anal. Biochem.,2005,346,107-114.
    [29]Yang, M. H., Yang, Y, Yang, H.F., et al. Layer-by-layer self-assembled multilayer films of carbon nanotubes and platinum nanoparticles with polyelectrolyte for the fabrication of biosensors. Biomaterials,2006,27,246-255.
    [30]封伟,袁晓燕,冯奕钰等.CN 10 014 826.4,2005.
    [31]Wang, S. F.,Shen, L., Zhang, W. D., et al. Preparation and mechanical properties of chitosan/carbon nanotubes composites. Biomacromolecules,2005,6,3067-3072.
    [32]Luo, X. L.,Xu, J.J.,Wang, J. L.,et al. Electrochemically deposited nanocomposite of chitosan and carbon nanotubes for biosensor application. Chem. Commun.,2005,16,169-2171.
    [33]Xu, Z. A., Gao, N., Chen, H. J.,et al. Biopolymer and Carbon Nanotubes Interface Prepared by Self-Assembly for Studying the Electrochemistry of Microperoxidase-11.Langmuir,2005,21,10808-10813.
    [34]Ge, J. J.,Hou, H. Q., Li, Q.,et al. Assembly of Well-Aligned Multiwalled Carbon Nanotubes in Confined Polyacrylonitrile Environments:Electrospun Composite Nanofiber Sheets. J.Am. Chem. Soc.,2004,126,15754-15761.
    [35]Sen, R.,Zhao, B., Perea, D., et al. Preparation of single-walled carbon nanotube reinforced polystyrene and poly-urethane nanofibers and membranes by electrospinning. Nano Lett.,2004,4,459-464.
    [36]Ohkawa, K.,Cha, D. I., Kim, H., et al. Electrospinning of Chitosan. Macromol. Rapid Commun.,2004,25,1600-1605.
    [37]封伟,袁晓燕,冯奕钰.CN1 730 740 A,2006.
    [38]Wang, G, Xu, J. J., Chen, H. Y, et al. Amperometric hydrogen peroxide biosensor with sol-gel/chitosan network-like film as immobilization matrix. Biosens. Bioelectron.,2003,18,335-343.
    [39]谭学才,王健伟,徐健君等.固载葡萄糖氧化酶的壳聚糖二氧化硅杂化膜的制备及表征.中山大学学报(自然科学版),2004,43,50-53.
    [40]Tan, X. C.,Li, M. J., Cai, P. X., et al. An amperometric cholesterol biosensor based on multiwalled carbon nanotubes and organically modified sol-gel/chitosan hybrid composite film. Anal. Biochem.,2005,337,111-120.
    [41]Liu, Y. Y., Tang, J.,Chen, X. Q., et al. Decoration of carbon nanotubes with chitosan. Carbon,2005,43,3178-3180.
    [42]Tsang, S.C.,Chen, Y. K., Green, M. L. H.,et al. A simple chemical method of opening and filling carbon nanotubes. Nature,1994,372,159-162.
    [43]Pompeo,F.,Resasco, D. E. Water solubilization of single-walled carbon nanotubes by functionalization with glucosamine. Nano Lett.,2002,2,369-373.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700