块体金属玻璃复合、晶化与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
块体金属玻璃(BMG)具有优异的力学性能和物理性能,为新型结构材料和功能合金的发展开辟了新的领域。然而,BMG在室温下发生灾难性脆性断裂,已经成为制约该材料规模化工程应用的瓶颈。因此,BMG室温脆性已经成为亟需解决的关键问题。
     已有研究表明,铸态内生微米尺度的塑性固溶体/BMG复合材料是改善BMG室温脆性的有效手段,并认为内生微米尺度第二相本身为塑性相是BMG复合材料增塑的必要条件。本文基于BMG室温脆性的本质,认为只要第二相能够阻碍单一剪切带的扩展,使剪切带增殖就能提高室温塑性,无论第二相本身是否是塑性相。据此设计并成功制备出铸态内生金属间化合物/BMG复合材料,其不但具有高的断裂强度,也具有显著的室温塑性(塑性变形达到4.4%)。进一步的分析研究发现,第二相尺寸不同,对BMG塑性影响不同:纳米尺度的第二相诱发剪切带大量形核而增塑;尺寸大于剪切带间距的第二相可以有效阻碍剪切带的扩展、诱发多剪切带的形成而提高塑性;而尺寸小于剪切带间距又大于纳米尺度的第二相对BMG塑性没有显著影响。
     BMG的热稳定性与晶化行为是BMG研究领域普遍关注的基础问题。本文的研究发现,高密度电脉冲能够促进BMG的晶化,并改变晶体析出相的类型。以V1合金为例,常规等温退火时晶化发生于过冷液相区内(400-450℃),而以电流密度为1410A/mm2的电脉冲退火时,在玻璃转变温度以下(338℃)就可以发生显著的晶化。与常规等温晶化析出BeNi、Be2Zr、Zr2Cu等相不同,电脉冲作用下,在析出Be2Zr、Zr2Cu相的同时,还发现有NiTi2相和未知亚稳晶体相析出。电脉冲后等温晶化过程中,延长等温时间,非晶馒头峰的半高宽(FWHM)变窄,表明BMG内短程有序程度增加。连续加热过程中施加5Gpa的高压可以抑制V1合金晶化,发生晶化的温度为410-430℃,远高于相同加热速率下的起始晶化温度(393℃)。等温晶化过程中施加12T的强磁场,能够显著提高Fe基BMG中晶化相的体积分数,而磁场施加方向对析出相体积分数没有明显影响。
     迄今为止,块体NdFeB永磁材料由于缺乏有效的磁性取向控制方法,在工业生产中不得不采用破碎与制粉——磁场取向与成型——烧结或粘结——充磁与检测的工艺来制备,不仅工序繁杂、生产成本高,而且还无法获得完全致密的永磁体,造成不耐蚀等缺点。本文采用Fe基BMG进行磁场晶化,试图诱导磁性晶体相在形核长大过程中实现磁性取向,以期为摒弃制粉过程、直接由非晶固体或液体制备完全致密的各向异性永磁体探索可能途径。实验采用去除形状各向异性的(Fe71B21Nd8)96Nb4样品,在12T的强磁场下进行700℃晶化退火,发现施加平行磁场的内禀矫顽力和最大磁能积(BH)max均显著高于施加垂直磁场的样品,而不加磁场的介于两者之间,证明强磁场可以在晶化过程中诱发磁性各向异性,为短流程直接制备块体NdFeB永磁体探明了可能性,具有重大的科学价值和应用潜力。
Bulk metallic glasses (BMGs) with excellent mechanical and physical properties open a new research field for structural and functional materials. However, the catastrophic brittle fracture at room temperature has restricted the extensive application of BMGs. The brittleness of BMGs at room temperature is one of the key problems to be resolved in the near future.
     Previous researches showed that the formation of plastic solid solution phase in micrometer scale in the BMG matrix during casting is very effective to improve the plasticity of BMGs at room temperature. It is normally deemed that the in situ formed second phase in micrometer scale should be plastic to improve the plasticity of the BMG-based composites. Based on the understanding of brittleness of BMGs at room temperture, a new route to improve plasticity is proposed in this dissertation, i.e. the second phase in the composite is effective to improve the plasticity of BMGs as long as it can block the propagation of single shear band and induce the formation of multiple shear bands, in despite of the plasticity of the second phase. Following this idea, in situ formed intermetallic/BMG composite was designed and fabricated. This composite showed both high fracture strength and remarkable plasticity at room temperature (plastic strain 4.4%). Further study showed that the second phase with different sizes can affect the plasticity of BMG-based composites with different mechanism: if the second phase is in nanometer range, it can induce the aboundant nucleation of shear bands and improve the plasticity of the composite; if the second phase is in micrometer range and larger than the shear band spacing, it can block the propagation of single shear band and induce the multiplication of shear bands effectively, resulting in an improved plasticity; if the second phase is larger than nanometer range, but smaller than shear band spacing, it does not affect the plasticity obviously.
     The thermal stability and crystallization behavior of BMGs is a well concerned basic problem. In this dissertation, the high density electric pulse was found to be effective to induce the crystallization and alter the type of crystalline phases in BMGs. ForⅥalloy, the crystallization started in the supercooled liquid region (400-450℃) during the isothermal annealing. However, obvious crystallization reaction was found at a temperature well below the glass transition temperature (338℃) after annealing under an electric pulse with a density of 1410A/mm2. After crystallization under high density electric pulse, the crystalline phases included NiTi2 and an unknown metastable crystalline phase, besides Be2Zr and Zr2Cu phases which precipitated after isothermal annealing. Prolonging the holding time of the electric pulse annealing, the full wave at half maximum (FWHM) of the halo peak for amorphous phase became narrow, indicating an enhanced short range order. During the continuous heating, the high pressure up to 5Gpa supressed the crystallization ofⅥalloy. The crystallization under 5Gpa started at about 410-430℃, which is much higher than the value of onset temperature for crystzllization (393℃) found in DSC at a same heating rate. During isothermal annealing, the application of a magnetic field of 12T increased the volume fraction of crystallized phases in Fe-based BMGs, while the direction of magnetic field did not affect the volume fraction distinctly.
     Up to now, because of the lack of effective method to control magnetic orientation, a complicated and costly work flow including ingot crushing and powder preparation-magnetic orientation and molding-mintering or bonding-magnetization and inspection is necessary to fabricate bulk permanent magnets. However, the magnets fabricated with sinitering or bonding methods are not fully compact, resulting in some disadvantages such as low corrosive resistance. In this dissertation, magnetic annealing of Fe-based BMGs was proposed to attempt to induce the orientation of magnetic phases during the nucleation and growth of these crystalline phases. It might be a new approach to fabricate fully density anisotropic permanent magnets from the BMG solids or melts directly, avoiding the powder preparation process. (Fe71B21Nd8)96Nb4 BMG samples were annealed at 700℃under a magnetic field with a density of 12T. After excluding the shape anisotropy, it was found that the inherent coercive and maxium energy product (BH)max for samples annealed with a parallel magnetic field were much higher than those with a perpendicular field, while the values for samples annealed without a field ranged between them. These results demonstrated that the application of high density magnetic filed was effective to induce anisotropic magnetic properties during the crystallization of BMGs. Magnetic annealing of Fe-based BMGs precursor is feasible to fabricate bulk NdFeB permanent magnets with a short workflow, indicating great scientific significance and application potential.
引文
[1]F.E.卢博斯基.非晶态金属合金.第1版.北京:冶金工业出版社,1989
    [2]J.扎齐斯基.玻璃与非晶态材料.第1版.北京:科学出版社,2001
    [3]W. Klement, R. H. Willens, P. Duwez. Non-crystalline structure in solidified gold-silicon alloys. Nature.1960 187:869-870
    [4]H. S. Chen, D. Turnbull. Formation, stability and structure of palladium-silicon based alloy glasses. Acta Metallurgica, 1969 17 (8):1021-1031
    [5]H. W. Kui, A. L. Greer and D. Turnbull. Formation of bulk metallic glass by fluxing. Appl. Phys. Lett.,1984 45 (6):615-616
    [6]A. Kojima, A. Makino and A. Inoue. Hard magnetic properties of nanocrystalline Fe-rich Fe-Nd-B bulk alloys produced by consolidating amorphous powders. Nanostructured Materials,1997 8 (8):1015-1024
    [7]A. Inoue. Materials science foundation. Switzerland:Trans Tech Publications,1998
    [8]A. Peker and W. L. Johnson. A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5.Appl. Phys. Lett.,1993 63 (17):2342-2344.
    [9]R. Busch. Thermophysical properties of bulk metallic glass forming liquids. JOM,2000 52 (7):39-42
    [10]W. L. Johnson, Bulk glass-forming metallic alloys science and technology. MRS Bulletin, 1999:42-56
    [11]J. Schroers and W. L. Johnson. Highly processable bulk metallic glass-forming alloys in the Pt-Co-Ni-Cu-P system. Appl. Phys. Lett.,200484 (18):3666-3669
    [12]E. S. Park and D. H. Kim. Effect of atomic configuration and liquid stability on the glass-forming ability of Ca-based metallic glasses. Appl. Phys. Lett.,2005 86:201912-1-3
    [13]E.S. Park and D.H. Kima. Formation of Ca-Mg-Zn bulk glassy alloy by casting into cone-shaped copper mold. J. Mater. Res.,200419(3):685-688
    [14]A. Inoue, T. Zhang, A. Takeuchi and W. Zhang. Hard magnetic bulk amorphous Nd-Fe-Al alloys of 12 mm in diameter made by suction casting. Materials Transactions. JIM,199637 (4):636-640
    [15]L. Q. Xing and P. Ochin. Bulk glass formation in the Zr-Ti-Al-Cu-Ni system. J. Mater. Sci. Lett.1991 16 (15):1277-1280
    [16]A. Inoue. Preparation of 16 mm diameter rod of amorphous Zr65Al7.5Ni10Cu17.5 alloy. Mater. Trans. JIM,1993 34:1234-1237
    [17]A. Inoue and T. Zhang. Thermal stability and glass-forming ability of amorphous Nd-Al-TM (TM= Fe, Co, Ni or Cu) alloys. Mater. Sci. Eng.1997 A226-228:393-396
    [18]Y. He, R. B. Schwarz and J. I. Archuleta. Bulk glass formation in the Pd-Ni-P system. Appl. Phys. Lett,1996 69 (13):1861-1863
    [19]A. Inoue. Fabrication of bulk glassy Zr55Al10Ni5Cu30 alloy of 30 mm in diameter by a suction casting method. Mater. Trans. JIM,1996 37 (2):185-187
    [20]D. Xu, G. Duan and W. L. Johnson. Unusual glass-forming ability of bulk amorphous alloys based on ordinary metal copper. Phys. Rev. Lett.2004 92 (24):245504-1-4
    [21]Z. P. Lu, C. T. Liu, J. R. Thompson and W. D. Porter. Structural amorphous steels. Phys. Rev. Lett.2004 92 (24):245503-1-4
    [22]J. Shen, Q. Chen, J. Sun, H. Fan and G. Wang. Exceptionally high glass-forming ability of an FeCoCrMoCBY alloy. Appl. Phys. Lett.2005 86 p.151907-1-3
    [23]Q. Zhang and J. Xu. High glass-forming ability correlated with fragility of Mg-Cu (Ag)-Gd alloys. J. Appl. Phys.2007 102:113519-1-5
    [24]郭贻诚,王震西.非晶态物理学.第1版.北京:科学出版社,1984
    [25]A. Inoue. Bulk glassy and nonequilibrium crystalline alloys by stabilization of supercooled liquid fabrication, functional properties and application (Part1). Pro Japan Acad,2005 81B:156-171
    [26]惠希东,陈国良.块体非晶合金.第1版.北京:化学工业出版社,2007
    [27]X. R. Liu, S. M. Hong and S. J. Lu. Preparation of La68Al10Cu20Co2 bulk metallic glass by rapid compression. Appl. Phys. Lett.2007 91:081910-1-3
    [28]陈光,傅恒志.非平衡凝固新型金属材料.第1版.北京:科学出版社,2004
    [29]N. Nishiyama and A.Inoue. Flux treated Pd-Cu-Ni-P amorphous alloy having low critical cooling rate. Mater. Trans. JIM.1997 38 (5):464-472
    [30]A. Inoue, N. Nishiyama and H. Kimura. Extremely low critical cooling rates of new Pd-Cu-P base amorphous alloys. Mater. Sci. Eng.1997 A226-228 (15):401-405
    [31]K. F. Yao, F. Ruan, Y. Q. Yang and N. Xie. Superductile bulk metallic glass. Appl. Phys. Lett.2006 22:122106-1-3
    [32]K. F. Yao, C. Q. Zhang. Fe-based bulk metallic glass with high plasticity. Appl. Phys. Lett.2007 90:061901-1-3
    [33]T. D. Shen and R.B. Schwarz. Bulk ferromagnetic glasses prepared by flux melting and water quenching. Appl. Phys. Lett.1999 75 (1):49-51
    [34]Z. P. Lu, H. Bei and C. T. Liu. Recent progress in quantifying glass-forming ability of bulk metallic glasses. Intermetallics,2007 15:618-624
    [35]H. A. Davies and B. G. Lewis. A generalised kinetic approach to metallic glass formation. Scripta Metallurgica,1975 9 (10):1107-1112
    [36]Z. P. Lu, H. Tan, Y. Li and S. C. Ng. The correlation between reduced glass transition temperature and glass forming ability of bulk metallic glasses. Scripta Mater.2000 42:667-673
    [37]H. A. Czech. Evaluation of glass-forming tendency by means of DTA. Czechoslovak. J. Phys.1972 B22:1187
    [38]M. Saad and M. Poulain. Glass forming ability criterion. Mater. Sci. Forum,1987 19-20:11
    [39]M. Marcus and D. Turnbull. On the correlation between glass-forming tendency and liquids temperature in metallic alloys. Mater. Sci. Eng.1975 23 (2-3):211-214
    [40]Z. P. Lu, C. T. Liu. A new glass-forming ability criterion for bulk metallic glasses. Acta Meterialia,2002 50:3501-3512
    [41]X. H. Du, J. C. Huang, C. T. Liu and Z. P. Lu. New criterion of glass forming ability for bulk metallic glasses. J. Appl. Phys.2007 101:086108-1-3
    [42]G. J. Fan, H. Choo and P. K. Liaw. Anew criterion for the glass-forming ability of liquids. J. Non-Cryst. Solids.2007 353:102-107
    [43]I. W. Donald and H. A. Davies. Prediction of glass-forming ability for metallic systems. J. Non-Cryst. Solids.1978 30 (1):77-85
    [44]E. S. Park, D. H. Kim and W. T. Kim. Parameter for glass forming ability of ternary alloy systems. Appl. Phys. Lett.2005 86:061907-1-3
    [45]Q. J. Chen, J. Shen, D. L. Zhang, H. B. Fan, J. F. Sun, and D. G. Mccartney. A new criterion for evaluating the glass-forming ability of bulk metallic gllasses. Mater. Sci. Eng.2006 A433:155-160
    [46]A-H. Cai, H. Chen, W-K. An, J-Y. Tan, Y. Zhou. Y. Pan, and G-X. Sun. Melting enthalpy AHm for describing glass forming ability of bulk metallic glasses. Journal of Non-Crystalline Solids,2008 354:1808-1816
    [47]J. Guo, F. Zu, Z. H. Chen, X. F. Li, Y. Xi, R. R. Shen, and Y. Zhang. Attempt to depict glass forming ability of bulk metallic glasses using the criterion of the total relaxation time at the glass transition. J. Non-Cryst. Solids.2006 352:3859-3863
    [48]A. Inoue, B. L. Shen, H. koshiba, K. Hidemi, Y. Alain. Cobalt-based bulk glassy alloy with ultrahigh strength and soft magnetic properties. Nature Materials,2003 2:661-663
    [49]王一禾,杨膺善.非晶态合金.第1版.北京:冶金工业出版社,1989
    [50]J. Das, M. B. Tang, K. B. Kim, R. Theissmann, F. Baier, W. H. Wang, J. Eckert. "Work-Hardenable" ductile bulk metallic glass. Phys. Rev. Lett,2005 94:205501
    [51]G. Y. Wang, P. K. Liaw, W. H. Peter, B. Yang, Y. Yokoyama, M. L. Benson, B. A. Green, M. J. Kirkham, S. A. White, T. A. Saleh, R. L. McDaniels, R. V. Steward, R. A. Buchanan, C. T. Liu, and C. R. Brooks. Fatigue behavior of bulk metallic glasses. Intermetallics,200412:885-892
    [52]C. J. Gilbert, J. W. Ager, V. Schroeder, R. O. Ritchie, J. P. Lloyd, J. R. Graham. Light emission during fracture of a Zr-Ti-Ni-Cu-Be bulk metallic glass. Appl. Phys. Lett.1999 74 (25):3809-3811
    [53]P. Lowhaphandu, L. A. Ludrosky, S. L. Montgomery, J. J. Lewandowski. Deformation and fracture toughness of a bulk amorphous Zr-Ti-Ni-Cu-Be alloy. Intermetallics,2000 8:487-492
    [54]J. J. Lewandowsk, A. L. Greer. Temperature rise at shear bands inmetallic glasses. Nature Materials,20065:15-18
    [55]F. Spaepen. Must shear bands be hot? Nature Materials,2006 5:7-8.
    [56]F. Spaepen. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta. Mater.1977 25:407-415
    [57]L. H. Dai, M. Yan, L. F. Liu and Y. L. Bai. Adiabatic shear banding instability in bulk metallic glasses. Appl. Phys. Lett.2005 87:141916-1-3
    [58]L. H. Dai, Y. L. Bai. Basic mechanical behaviors and mechanics of shear banding in BMGs. Int. J. Impact. Eng.2008 35 (704-716)
    [59]F. Delogu. Strain localization in metallic amorphous/amorphous composites. Intermetallics,2008 16:904-909
    [60]Y. Zhang, W. H. Wang, and A. L. Greer. Making metallic glasses plastic by control of residual stress. Nature Materials,20065:857-860
    [61]J. Schroers, W. L. Johnson. Ductile bulk metallic glass. Phys. Rev. Lett.2004 93:255506-1-4
    [62]B. Zhang, D. Q. Zhao, M. X. Pan, W. H. Wang, A. L. Greer. Amorphous metallic plastic. Phys. Rev. Lett.2005 94:205502-1-4
    [63]Y. H. Liu, G Wang, R. J. Wang, D. Q. Zhao, M. X. Pan, W. H. Wang. Super plastic bulk metallic glasses at room temperature. Science,2007 315:1385-1388
    [64]L. Y Chen, Z. D. Fu. G. Q. Zhang, X. P. Hao, Q. K. Jiang, X. D. Wang, Q. P. Cao, H. Franz, Y. G. Liu, H. S. Xie, S. L. Zhang, B. Y Wang, Y. W. Zeng, J. Z. Jiang. New class of plastic bulk metallic glass. Phys. Rev. lett.2008 100:075501-1-4
    [65]X. L. Fu, Y. Li and C. A. Schuh. Mechanical properties of bulk metallic glasses and composites. J. Mater. Res.2007 22 (2):285-301
    [66]C. Fan. The world of bulk metallic glasses and their composites.led. Kerala India: Research Signpost,200
    [67]C. Fan, R. T. Ott and T.C. Hufnagel. Metallic glass matrix composite with precipitated ductile reinforcement. Appl. Phys. Lett.2002 81:1020-1022
    [68]C. Fan and A. Inoue. Ductility of bulk nanocrystalline composites and metallic glasses at room temperature. Appl. Phys. Lett.2000 77 (1):46-48
    [69]C. C. Hays, C. P. Kim and W. L. Johnson. Improved mechanical behavior of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Mater. Sci. Eng.2001 A304-306:650-655
    [70]G. Chen, H. Bei, Y. Cao, A. Gali, C. T. Liu, and E. P. George. Enhanced plasticity in a Zr-based bulk metallic glass composites with in situ formed intermetallic phases. Appl. Phys. Lett.2009 95:081908-1-3.
    [71]L. Granasy. Diffuse interface model of volume nucleation in glasses. Thermochimica Acta.1996 280-281:83-100
    [72]L. Granasy, T. Pusztai and E. Hartmann. Diffusion interface model of nucleation. J. Non-cryst. Growth.1996 167:756-765
    [73]C. K. Bagdassarian, D. W. Oxtoby. Crystal nucleation and growth from the undercooled liquid:a nonclassical piecewise parabolic free-energy model. J. Chem. Phys.,1994 100 (3):2139-2148
    [74]H. Assadi, J. Schroers. Crystal nucleation in deeply undercooled melts of bulk metallic glass forming systems. Acta. Mater.2002 50:89-100.
    [75]陈国良,姚可夫,寇宏超,惠希东.非经典结晶理论和液态多组元化学短程序问题.自然科学进展.2003 13(10):1022-1030
    [76]H. S. Chen, L. C. Kimerling, J. M. Poate and W. L. Brown. Diffusion in a Pd-Cu-Si metallic glass. Appl. Phys. Lett.1978 32 (8):461-463
    [77]K. Knorr, M.-P. Macht, K. Freitag and H. Mechrer. Self-diffusion in the amorphous and supercooled liquid state of the bulk metallic glass Zr46.75Ti8.25Cu7.5Ni10Be27.5. J. Non-cryst. solids.1999 250-252:669-673
    [78]X. P. Tang, Y. Wu, U. Geyer, R. Busch, W. L. Johnson. Diffusion mechanisms in metallic supercooled liquid and glasses. Nature,1999 402 (11):160-162
    [79]V. Koster, P. Weiss. Glassy Metals I.led. Heidelberg:Springer,1981
    [80]刘平,陈显求,许淑惠.玻璃的分相与析晶(一).玻璃与搪瓷,1994 22(1):23-32
    [81]刘平,陈显求,许淑惠.玻璃的分相与结晶(二).玻璃与搪瓷,1994 22(2):28-32
    [82]刘平,陈显求,许淑惠.玻璃的分相与结晶(三).玻璃与搪瓷,1994 22(3):28-3
    [83]刘平,陈显求,许淑惠.玻璃的分相与析晶(四).玻璃与搪瓷,1994 22(4):36-41
    [84]刘平,陈显求,许淑惠.玻璃的分相与析晶(五).玻璃与搪瓷,1994 22(5):38-41
    [85]刘平,陈显求,许淑惠.玻璃的分相与析晶(六).玻璃与搪瓷,1994 22(6):21-23
    [86]刘平,陈显求,许淑惠.玻璃的分相与析晶(七).玻璃与搪瓷,1995 23(1):31-33
    [87]刘平,陈显求,许淑惠.玻璃的分相与析晶(八).玻璃与搪瓷,1995 23(2):34-38
    [88]L. E. Tanner, R. Ray. Phase seperation in Zr-Ti-Be metallic glasses. Scr. Metallurgica. 1980 14:657-662
    [89]D. Nagahama, T. Ohkubo, K. Hono. Crystallization of Ti36Zr24Be40 metallic glass. Scr. Mater.2003 49:729-734
    [90]A. Calka, M. Madhava, D. E. Polk. Trasition-metal-free amorphous alloy:Mg70Zn30. Scr. Metallurgica. 1977 11 (1):65-70
    [91]W. L.Johnson, S. J. Poon. Enhanced superconductivity and lattice instability in Nb-Rh alloys. J.Appl.Phys.1975 46 (5):2325-2326
    [92]H. S. Chen. Glass transition temperature in glassy alloys:effect of atomic sizes and the heat of mixing.Acta. Metallurgica. 1974 122 (7):897-900
    [93]A. Inouee. High strength bulk amorphous alloys with low critical cooling rates (overview). Mater. Trans. JIM.1995 36 (7):866-875
    [94]J. Schroers, A. Masuhr, W. L. Johnson, R. Busch. Pronounced asymmetry in the crystallization behavior during constant heating and cooling of a bulk metallic glass-forming liquid. Phys. Rev.1999 B60 (17):11855-11858
    [95]J. Z. Jiang, K. Saksl, N. Nishiyama and A. Inoue. Crystallization in Pd4oNi4oP2o glass. J. Appl. Phys.200292 (7):3651-3656
    [96]L. L. Sun, Q. Wu, L. M. Wang, M. Zhang, D. Y. Dai, Z. X. Bao, W. K. Wang. Phase transition of Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass at pressures up to 27 Gpa. Philos. Mag. Lett.2000 80 (12):793-796
    [97]L. L. Sun, Q.Wu, L. M. Wang, Y. S. Yao, D. Y. Dai, J. Zhang, W K. Wang. Dependence of High Pressure on Phase Transformation in Zr41.2Ti13.8Cu12.5Ni10Be22.5. Mater. Trans. JIM.200142 (4):579-582
    [98]M. Kopcewicz, U. Gonser, H. G. Wagner. Radio-frequency annealing effects in amorphous Fe40Ni40B20. Appl. Phys. Lett.1980 23 (1):1-6
    [99]J. Jang, J. Y. Oh, S. K. Kim. Electric-field-enhanced crystallization of amorphous silicon. Nature,1998 395 (1):481-483
    [100]Y. X. Zhuang, S. S. Yi and W. H. Wang. Electric-field-enhanced Crystallization of Zr41Ti14Cu12.5Ni10Be22.5 Bulk Metallic Glass. Mater. Trans. JIM.200142 (4):583-586
    [101]C. Fan, D. V. Louzguine, C. Li, A. Inoue. Nanocrystalline composites with high strength obtained in Zr-Ti-Ni-Cu-Al bulk amorphous alloys. Appl. Phys. Lett.1999 75 (3):340-342
    [102]S. Wu, T. Chin, K. Su. Crystallization behavior of a bulk amorphous Mg62Cu26Y12 alloy. Jpn. J. Appl. Phys.1994 33 (7A):4021-4024
    [103]A. Inoue. Bulk glassy and nonequilibrium crystalline alloys by stabilization of supercooled liquid fabrication, functional properties and application (Part2). Pro. Japan. Acad.2005 B81:172-188
    [104]A. S. Bakai, H. Hermann, N. P. Lazarev. Diffusion-limited crystallization of heterogeneous glasses. Philos. Mag. A,2002 82 (8):1521-1539
    [105]N. Nishiyama, K. Amiya and A. Inoue. Novel applications of bulk metallic glass for industrial products. J. Non-Cryst. Solids.2007 353:3615-3621
    [106]J. Schroers, B. Lohwongwatana, W. L. Johnson and A. Peker. Precious bulk metallic glasses for jewelry applications. Mater. Sci. Eng.2007 A449-451:235-238
    [107]Z. P. Lu, C. T. Liu and W. D. Porter. Role of yttrium in glass formation of Fe-based bulk metallic glasses. Appl. Phys. Lett.2003 83 (13):2581-2583
    [108]蔡正千.热分析.第1版.北京:高等教育出版社,1993
    [109]D. Turnbull. Under what condition can a glass be formed? Contemp. Phys.1969 10 (5):473-488
    [110]R. M. Srivastava, J. Eckert, W. Loser, B. K. Dhindaw, L. Schutlz. Cooling rate evaluation for bulk amorphous alloys from eutectic microstructures in casting processes. Mater. Trans.2002 43 (7):1670-1675
    [111]J. Zhang, K. Y. Lim, Y. P. Feng and Y. Li. Fe-Nd-B-based hard magnets from bulk amorphous precursor. Scr. Mater.2007 56:943-946.
    [112]A. Inoue, T. Zhang and T. Masumoto. Glass-forming ability of alloys. J. Non-Cryst. solids.1993 157-158:473-480
    [113]A. Inoue. Bulk amorphous and nanocrystalline alloys with high functional properties. Mater. Sci. Eng.2001 A304-306:1-10
    [114]A. Inoue, Bulk amorphous alloys. Switzerland:Trans Tech Publishions Ltd,1998
    [115]皋萍.Fe68.35B22.08Nd5.57Nb4块体非晶合金晶化及磁性能研究.南京:南京理工大学硕士学位论文,2007
    [116]Y. J. Kim, R. Busch, W. L. Johnson, A. J. Rulison, W. K. Rhim. Metallic glass formation in highly undercooled Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 during containerless electrostatic levitation processing. Appl. Phys. Lett.1994 65:2136-2138
    [117]W. H. Wang. Roles of minor additions in the formation and properties of bulk metallic glasses. Prog. in Mater. Sci.2007 52 (4):540-596
    [118]W. H. Wang, Z. Bian, P. Wen, Y. Zhang, M. X. Pan, D. Q. ZHao. Role of addition information and properties of Zr-based bulk metallic glasses. Intermetallics,2002 10:1249-1257
    [119]H. Ma, L. L. Shi, J. Xu, Y. Li. E. Ma. Discovering inch-diameter metallic glasses in three-dimensional composition space. Appl. Phys. Lett.2005 87:181915 1-3
    [120]S. Pang, T. Zhang, K. Asami, N. Ohtsu, A. Inoue. Formation, corrosion behavior, and mechanical properties of bulk glassy Zr-Al-Co-Nb alloys. J. Mater. Res.2003 18 (7):1652-1658
    [121]V. R. Raju, U. Kiihn, U. Wolff, F. Schneidera, J. Eckerta, R. Reichea and A. Gebert. Corrosion behavior of Zr-based bulk glass-forming alloys containing Nb or Ti. Mater. Lett.2002 57:173-177
    [122]C. C. Hays, J. Schroers, U. Geyer, S. Bossuyt, N. Stein,| W. L. Johnson. Glass forming ability in the Zr-Nb-Ni-Cu-Al bulk metallic glasses. Mater. Sci. Forum.2000 343-346:103-108
    [123]H. Choi-Yim, W. L. Johnson. Bulk metallic glass matrix composites. Appl. Phys. Lett., 1997 71 (26):3808-3810
    [124]C. C. Hays, C. P. Kim, W. L. Johnson. Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Phys. Rev. Lett.2000 84:2901-2904
    [125]孙民,柳林,王敬丰,刘兵.Nb对Zr基块体非晶合金热稳定性、非晶形成能力及机械性能的影响.金属学报,200541(5):534-538
    [126]李喜峰,杨元政,赵德强,唐德文,谢致薇,匡同春,白晓军.Zr57Nb5Cu15.4Ni12.6Al10大块非晶合金的晶化动力学及显微硬度.热加工工艺2003(2):9-11
    [127]J. Schroners, R. Busch, A. Masuhr, W. L. Johnson. Continuous refinement of the microstructure during crystallization of supercooled Zr41Ti14Cu12Ni10Be23 melts. Appl. Phys. Lett,1999 74 (19):2806-2809
    [128]庄艳歆,赵德乾,张勇,汪卫华,潘明祥.锆基大块非晶合金玻璃转变和晶化的动力学效应.中国科学(A辑),200030(5):44-450
    [129]S. B. Qiu, K. F. Yao. Crystallization behavior of Zr41Ti14Cu12.5Ni10Be22.s bulk metallic glass under the action of high-density pulsing current. J. Non-Cryst. Solids.2008 354:3520-3524
    [130]Y. Zhang, Y. F. Ji, D. Q. Zhao, Y. X. Zhuang, R. J. Wang, M. X. Pan, Y. D. Dong and W. H. Wang. Glass forming ability and properties of Zr/Nb-based bulk metallic glasses. Scr. Mater.2001 44:1107-1112
    [131]A. L. Greer. Confusion by design. Nature,1993 366:303-304
    [132]K. Lu, J. T. Wang. Activation energies for crystal nucleation and growth in amorphous alloys. Mater. Sci.Eng.1991 A133:500-503
    [133]F. Jiang, G. Chen, W. L. Li, Z. H. Wang, G. L. Chen. Thermal stability, glass-formation ability, and mechanical properties of (Zr41.2Ti13.8Cu12.5Ni10Be22.5)100-xNbx amorphous alloys. Metall. Mater. Trans.2008 39A:1812-1816
    [134]J. Saida, A.Inoue. Icosahedral quasicrystalline phase formation in Zr-Al-Ni-Cu glassy alloys by the addition of V, Nb and Ta. J. Non-Cryst. Solids.2002 312-314:502-507
    [135]Y. R. Zhang, R. V. Ramanujan. Characterization of the effect of alloying additions on the crystallization of an amorphous Fe73.5Si13.5B9Nb3Cu1 alloy. Intermetallics.2006 14:710-714
    [136]C. A. Schuh, T. C. Hufnagel, U. Ramamurty. Mechanical behavior of amorphous alloys. Acta. Mater.2007 55:4067-4109
    [137]J. Eckert, J. Das, S. Pauly, C. Duhamel Mechanical properties of bulk metallic glasses and composites. J. Mater. Res,2007 22 (2):285-301
    [138]X. Hu, S. C. Ng, Y. P. Feng, Y. Li. Glass forming ability and in-situ composite formation in Pd-based bulk metallic glasses. Acta. Mater.2003 51:561-572
    [139]H. Tan, Y. Zhang and Y. Li. Synthesis of La-based in-situ bulk metallic glass matrix composite. Intermetallics.200210:1203-1205.
    [140]J. Das, A. Guth. Effect of casting conditions on microstructure and mechanical properties of high-strength Zr73.5Nb9Cu7Ni1Al9.5 in situ composites. Scripta. Mater.2003 49:1189-1195
    [141]W. Loser, J. Das. Effect of casting conditions on dendrite-amorphous/nanocrystalline Zr-Nb-Cu-Ni-Al in situ composites. Intermetallics,2004 12:1153-1158
    [142]G. Y. Sun, G. Chen, C. T. Liu, G. L.Chen. Innovative processing and property improvement of metallic glass based composites. Scripta. Mater.2006 55:375-378
    [143]G. Y. Sun, G Chen, G. L. Chen. Comparison of microstructures and properties of Zr-based bulk metallic glass composites with dendritric and spherical bcc phase precipitates. Intermetallics,2006 15 (5-6):632-634
    [144]U.Kuhn, J. Eckert, N. Mattern, L. Schultz. ZrNbCuNiAl bulk metallic glass matrix composites containing dendritic bcc phase precipitates. Appl. Phys. Lett.2002 80 (14):2478-2481
    [145]G He, Z. F. Zhang,, W. Loser, J. Eckert, L. Schultz. Effect of Ta on glass formation, thermal stability and mechanical properties of a Zr52.25Cu28.5Ni4.75Al9.5Ta5 bulk metallic glass. Acta. Mater.2003 51:2383-2395
    [146]J. Das, K. B. Kim, W. Xu, B. C. Wei, Z. F. Zhang, W. H. Wang. Ductile metallic glasses in supercooled martensitic alloys. Mater. Trans.2006 47 (10):2606-2609
    [147]H. Fu, H. Zhang, H. Wang, H. Wang, Q. Zhang and Z. Hua. Synthesis and mechanical properties of Cu-based bulk metallic glass composites containing in-situ TiC particles. Scripta. Mater.2005 52:669-673
    [148]F.Szuecs, C. P. Kim, W. L. Johson. Mechanical properties of Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5 ductile phase reinforced bulk metallic glass composite. Acta. Mater.2001 49:1507-1513
    [149]H. Ma, J. Xu, E. Ma. Mg-based bulk metallic glass composites with plasticity and high strength. Appl. Phys. Lett.2003 83:2793-2795
    [150]Z. Bian, H. Kato, C. Qin, C. Qin, W. Zhang, A. Inoue. Cu-Hf-Ti-Ag-Ta bulk metallic glass composites and their properties. Acta. Mater.2005 53:2037-2048
    [151]Y.F. Sun, C. H. Shek, B. C. Wei, W. H. Li, Y. R. Wang. Effect of Nb content on the microstructure and mechanical properties of Zr-Cu-Ni-Al-Nb glass forming alloys. J. Alloys. Compd.2005 403:239-244
    [152]M. L. Lee, Y. Li, C. A. Schuh. Effect of a controlled volume fraction of dendritic phases on tensile and compressive ductility in La-based metallic glass matrix composites. Acta Mater.2004 52:4121-4131
    [153]U. Kuhn, J. Eckert, N. Mattern, and L. Schultz. Microstructure and mechanical properties of slowly cooled Zr-Nb-Cu-Ni-Al composites with ductile bcc phase. Mater. Sci. Eng.2004 A375-377:322-326
    [154]Y. F. Sun, B. C. Wei, Y. R. Wang, W. H. Li. T. L. Cheung, C. H. Shek. Plasticity-improved Zr-Cu-Al bulk metallic glass matrix composites containing martensite phase. Appl. Phys. Lett.2005 87:051905-1-3
    [155]C. L. Qin, W. Zhang, K. Asami, H. Kimura, X.M. Wang and A. Inoue. A novel Cu-based BMG composite with high corrosion resistance and excellent mechanical properties. Acta Mater.2006 54:3713-3719
    [156]J. G. Lee, H. S. Kim, S. Lee, and N. J. Kim. Deformation behavior of strip-cast bulk amorphous matrix composites containing various crystalline particles. Mater. Sci. Eng. 2006 449-451:176-180
    [157]M. Kusy, U. Kuhn, A. Concustell, A. Gebert, J. Das, J. Eckert, L. Schultz and M. D. Baro. Fracture surface morphology of compressed bulk metallic glass-matrix-composites and bulk metallic glass. Intermetallics.2006 14:982-986
    [158]X. Hui, W. Dong, M. Wang, X. J. Liu, J. L. Yu, G. L. Chen. In-situ Mg77Cu12Zn5Y6 bulk metallic glass matrix composite with extraordinary plasticity. Chin. Sci. Bull.2006 51 (2):229-234
    [159]Z. Bian, G. L. Chen, G. He, X. D. Hui. Microstructure and ductile-brittle transition of as-cast Zr-based bulk glass alloys under compressive testing. Mater. Sci. Eng.2001 A316:135-144
    [160]R. D. Conner, R. B. Dandliker, V. Scruggs, W. L. Johnson. Dynamic deformation behavior of tungsten-fiber/metallic-glass matrix composites. Int. J. Impact. Eng.2000 24:435-444
    [161]W. Dong, H. Zhang, J. Cai, W. Sun, A. Wang, H. Li and Z. Hu. Enhanced plasticity in a Zr-based bulk metallic glass containing nanocrystalline precipitates. J. Alloys Compd. 2006 425:L1-L4
    [162]R. D. Conner, Y. Li, W. D. Nix, W. L. Johnson. Shear band spacing under bending of Zr-based metallic glass plates. Acta Mater.2004 52:2429-2434
    [163]Y. H. Liu, W. H. Wang. Shear bands evolution in bulk metallic glass with extended plasticity. J. Non-Cryst. Solids.2008 354:5570-5572
    [164]范金辉,瞿启杰.物理场对金属凝固组织的影响.中国有色金属学报,2002 12(S1):11-16
    [165]M.-P. Macht, N. Wanderka, A. Wiedenmann, H. Wollenberger, Q. Wei, H. J. Fecht, S. G. Klose. Decomposition of the supercooled liquid of the bulk amorphous alloy Zr41Ti14Cu12.5Ni10Be22.5. Mater. Sci. Forum.1996 225-227:65-70
    [166]裴光文,岳书彬.单晶、多晶和非晶物质的X射线衍射.第1版.济南:山东大学出版社,1989
    [167]J. Z. Jiang, W. Roseker, M.Sikorski, Q. P. Cao, and F. Xu. Pressure effect of glass transition temperature in Zr46.8Ti8.2Cu7.5Ni10Be27.5 bulk metallic glass. Appl. Phys. Lett. 200484 (11):1871-1873
    [168]X. Li, Z. Ren, Y. Fautrelle. Effect of a high axial magnetic field on the microstructure in a directionally solidified Al-Al2Cu eutectic alloy. Acta Mater.2006 54:5349-5360
    [169]M. Tejedor, J. A. Garcia, J. Carrizo, L. Elbaile, J. D. Santos, J. Mira, and J. Rivas. Analysis of the magnetic anisotropy induced by applying a magnetic filed during the quenching process in amorphous ribbons. J. Appl. Phys.2004 96 (10):5658-5662
    [170]M. Tejedor, J. A. Garcia, J. Carrizo, L. Elbaile, J. D. Santos. Induced magnetic anisotropy in amorphous ribbons by applying a magnetic field during the quenching process. Appl. Phys. Lett.2003 82 (6):937-939
    [171]T. M. Zhao, Y. Y. Hao, X. R. Xu, Y. S. Yang, Z. Q. Hu. Promotion of crystallization and magnetic property improvement enhancement of the energy production in Nd5.5Fe66B18.5Cr5Co5 by magnetic field heat treatment. J. Appl. Phys.1999 85 (1):518-521
    [172]Q. G. Ji, B. X. Gu, S. L. Tang, Y. W. Du. Effect of magnetic heat-treatment on magnetic properties and microstructure of Nd10Fe84-xB6Inx (x=0,1) nanocomposite. J Magn. Magn. Mater.2003 257:146-150
    [173]周寿增,董清飞.超强永磁体.第2版.北京:冶金工业出版社,2004
    [174]胡壮麒,宋启洪,张海峰,刘正.亚稳金属材料.第1版.北京:科学出版社,2006
    [175]曹兴国,黄金亮.铁基块体金属玻璃软磁合金近期研发进展概况.钢铁研究学报,200820(02):1-8
    [176]A. Inoue, A. Makino, T. Mizushima. Ferromagnetic bulk glassy alloys. J Magn. Magn. Mater.2000 215-216:246-252
    [177]T. D. Shen, R. B. Schwarz. Bulk ferromagnetic glasses in the Fe-Ni-P-B system. Acta Mater.2001 49:837-847
    [178]T. Mizushima, A. Makino, A. Inoue. Structure and magnetic properties of Fe-based glassy alloys. Mater. Sci. Eng.1997 A226-228:721-725
    [179]B. Shen, C. Chang, A. Inoue. Formation, ductile deformation behavior and soft-magnetic properties of (Fe,Co,Ni)-B-Si-Nb bulk glassy alloys. Intermetallics,2007 15:9-16
    [180]M. Marinescu, H. Chiriac, M. Grigoras. Magnetic properties of bulk nanocomposite permanent magnets based on NdDyFeB alloys with additions. J. Magn. Magn. Mater. 2005291:1267-1269
    [181]W. Zhang, A. Inoue. Bulk nanocomposite permanent magnets produced by crystallization of (Fe,Co)-(Nd,Dy)-B bulk glassy alloy. Appl. Phys. Lett.2002 80 (9):1610-1612
    [182]W. Zhang, A. Inoue. Crystallization and hard magnetic properties of Fe-Co-Nd-Dy-B amorphous alloys with glass transition. J. Appl. Phys.200087 (9):6122-6124
    [183]D.-X. Chen, J. A. Brug. Demagnetizing factors for cylinders. IEEE Trans Magn.1991 27 (4):3601-3619
    [184]L. Q. Xing, J. Eckert, W. Loser, S. Roth, L. Schultz. Atomic ordering and magnetic properties in Nd57Fe20B8Co5Al10 solids. J. Appl. Phys.2000 88 (6):3565.
    [185]B. C. Wei, W. H. Wang, M. X. Pan, B. S. Han, Z. R Zhang, W. R. Hu. Domain structure of a Nd60Al10Fe20Co10 bulk metallic glass. Phys. Rev. B.2000 64:012406
    [186]R. C. O'Hendley. Physics of ferromagnetic amorphous alloys. J. Appl. Phys,1987 62 (10):R15-R49
    [187]D. Dragoi, E. Ustundag, B. Clausen, M. A. M. Bourke. Investigation of thermal residual stresses in tungsten-fiber/bulk metallic glass matrix composites. Scripta Mater.2002 45:245-252
    [188]C. C. Aydiner, E. Ustundag, M. B. Prime, and A. Peker. Modeling and measurement of residual stresses in a bulk metallic glass plate. J. Non-Cryst. Solids.2003 316:82-95
    [189]R.Boll.软磁金属与合金.第1版.北京:科学出版社,2001
    [190]张湘义,关颖,张静武.a-Fe/Nd2Fe14B各向异性复合纳米晶永磁材料的制备方法.ZL(CN1385869A),2002
    [191]潘振东.稀土铁系纳米复合永磁合金粉末及其制造方法.ZL(CN1347124A),2002
    [192]T. M. Zhao, Y. Y. Hao, X. R. Xu, Y. S. Yang, Z. Q. Hu. Promotion of crystallization and magnetic property improvement enhancement of the energy production in Nd5.5Fe66B18.5Cr5Co5 by magnetic field heat treatment. J. Appl. Phys.1999 85 (1):518-521
    [193]C. J. Yang, E. B. Park. The effect of magnetic field treatment on enchanced exchange coupling of Nd2Fe14B/Fe3B magnet. IEEE Trans Magn.1996 32 (5):4428-4430
    [194]C. J. Yang, E. B. Park. The effect of magnetic field treatment on the enchanced exchange coupling of a Nd2Fe14B/Fe3B magnet. J. Magn. Magn. Mater.1997 166:243-248
    [195]E. F. Kneller, R. Hawig. The exchange-spring magnet:a new material principle for permanent magnets. IEEE Trans Magn.199127 (4):3588-3600
    [196]T. Harada, T. Ando, R. C. O'Handley, and N. J. Grant. Structures and magnetic properties of a Nd15Fe77B8 alloy produced by twin-roller quenching. J. Appl. Phys.1990 68:4728-4733
    [197]X. Y. Zhang, Y. Guan, L. Yang, and J. W. Zhang. Crystallographic texture and magnetic anisotropy of α-Fe/Nd2Fe14B nanocomposites prepared by controlled melt spinning. Appl. Phys. Lett.200179:2426-2428
    [198]T. S. Chin, S. H. Huang, and J. M. Yau. Anisotropic Nd-Fe-M-B flakes by single-roller melt spinning. Appl. Phys. Lett.2001 59:2046-2048
    [199]T. Kuji, R. C. O'Handley, and N. J. Grant. Magnetic anisotropy of Nd15Fe77B8 flakes made by twin-roller quenching. Appl. Phys. Lett.1989 54:2487-2489
    [200]R. W. Lee. Hot-pressed neodymium-iron-boron magnets. Appl. Phys. Lett.1985 46: 790-791
    [201]Y. G. Liu, L. Xu, Q. F. Wang, W. Li, and X. Y. Zhang. Development of crystal texture in Nd-lean amorphous Nd9Fe85B6 under hot deformation. Appl. Phys. Lett.2009 94: 172502-1-3
    [202]戴礼智.铁磁合金的磁场热处理及感生各向异性.金属学报,19658(1):108-127
    [203]P. Courtois, Rene Perrier de la Bathie, Robert Tournier. Exploration of the magnetic field effect on the orientation of Nd2Fe14B crystallites at high temperatures. J. Magn. Magn. Mater.1996 153 (1-2):224-230
    [204]B. Z. Cui, M. Q. Huang, R. H. Yu, A. Kramp, J. Dent, D. D. Miles, and S. Liu. Magnetic properties of (Nd,Pr,Dy) 2Fe14B/α-Fe nanocomposite magnets crystallized in a magnetic field. J. Appl. Phys.2003 93:8128-8130
    [205]B. Z. Cui, K. Han, H. Garmestani, J. H. Su, H. J. Schneider-Muntau, J. P.Liu. Enhancement of exchange coupling and hard magnetic properties in nanocomposites by magnetic annealing. Acta Mater.2005 53:4155-4161
    [206]B. Z. Cui, C. T. Yu, K. Han, J. P. Liu, H. Garmestani, M. J. Pechan, and H. J. Schneider-Muntau. Magnetization reversal and nanostructure refinement in magnetically annealed Nd2Fe14B/α-Fe-type nanocomposites. J. Appl. Phys.2005 97:10F308-1-3
    [207]C. Paduani, C. Ducruet, S. Rivoirard, P. de Rango, and R. Tournier. Investigation of polycrystalline Nd2Fe14B texturing by solidification in a magnetic field. J. Magn. Magn. Mater.2001 232:53-59
    [208]B. A. Legrand, D. Chateigner, R. Perrier de la Bathie, and R. Tournier. Orientation of samarium-cobalt compounds by solidification in a magnetic field. J. Alloys Compd. 1998 275-277:660-664
    [209]S. Rivoirard, V. M. T. S. Barthem, R. Bres, E. Beaugnon, P. E. de Miranda, D. Givord. Texturing Nd-Fe-B magnets under high magnetic field. J. Appl. Phys.2008 104: 043915-1-5
    [210]S. Rivoirard, V. M. T. S. Barthem, T. Garcinl, E. Beaugnon, P. E. V. de Miranda and D. Givord. Texturing hard Nd-Fe-B powdered ribbons in high magnetic field. J. Phys.: Confer. Series.2009 156:012009-1-7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700