稀土化合物纳米材料的调控合成与性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀土化合物纳米材料在催化、光学、生物分析等诸多领域有着广泛的应用前景。发展稀土化合物纳米材料的控制合成方法、探索其生长机制、深入研究其结构形貌与性能之间的关联具有重要的意义。本论文就液相调控合成稀土化合物纳米材料进行研究,探讨了稀土化合物纳米材料的结构、形貌和性质之间的关联,构建了乙二醇溶剂热体系合成稀土化合物及其复合功能材料纳米晶和纳米空心结构的新方法。
     通过油酸辅助的水热体系制备了不同形貌和晶体结构的NaYF4纳米晶;发展了水热法合成多枝状NaYF4纳米晶和NH4Ln2F7纳米空心球的方法。以稀土复合氟化物为模型,详细研究了反应参数对纳米晶的形貌和成相规律的影响,探讨了镧系收缩对稀土复合氟化物的晶体结构、物理性质和纳米晶形貌的影响;探索和总结了纳米晶的成核、生长以及相转变过程中的本质的物理化学规律。
     设计和发展了一种不添加其他表面活性剂,以乙二醇和水为混合溶剂,在溶剂热的条件下合成单分散稀土正钒酸盐纳米晶的新方法。
     将乙二醇溶剂热合成方法由稀土正钒酸盐纳米晶体系扩展到二氧化铈及其复合氧化物纳米晶体系。通过在体系中引入短链有机酸,制备了一系列不同形貌的CeO2的纳米结构(球型、多面体型、介孔纳米球、空心纳米球)。以CeO2纳米球为前驱体,构建了铈锆氧和铈钛氧固溶体空心球结构,提出并验证了空心球基于柯肯达尔效应的形成机制。CeO2及其复合氧化物是重要的助催化材料,采用本方法制备的一系列CeO2基纳米材料具有较高的比表面积和良好的热稳定性,在催化领域具有可期待的应用前景。
     进一步将乙二醇溶剂热合成方法的应用范围由稀土化合物纳米晶扩展到稀土复合功能纳米材料的合成。利用浓硝酸氧化乙二醇和催化乙二醇缩合的反应,发展了一步法制备多功能稀土有机无机杂化胶囊的新方法。该杂化胶囊具有可进行化学修饰和表面包覆的功能性表面,并表现出特征的光学和磁学特性,在生物分析、药物传送等领域具有一定的应用前景。将银离子在乙二醇中还原反应与其串联起来,构建了一系列银和稀土有机无机复合纳米结构;以其为前驱物,发展了一种制备银和稀土氧化物复合纳米空心球的新方法。
Rare earth compounds nanomaterials have intensive potential in various fields, such as catalysis, optics, biology analysis, and so on. Developing synthetic routes for rare earth compounds nanomaterials, exploring the formation mechanisms and investigating the relationship among the crystal structure, morphology and properties of nanomaterials have great significance. This dissertation explored new solution-based synthetic strategies for rare earth nanomaterials, emphasizing the relationship between structure and shape/properties manipulation of nanomaterials, and new strategies based on glycol systems for preparation of functional rare earth compounds and composites nanocrystals and hollow structures.
     NaYF4 nanocrystals with various morphologies and crystal structures have been synthesized via a hydrothermal approach assisted with oleic acid. Synthesis approaches have been developed for multi-armed NaYF4 nanocrystals and NH4Ln2F7 hollow spheres. By taking complex rare earth fluorides as an ideal system, we have carried out careful investigations on the influences of reaction parameters on the morphologies and phases of nanocrystals, explored the influence of lanthanide contraction on crystals structures, shape/properties of complex rare earth fluorides, discussed and summed up the underlying rules of the nucleation, growth and phase transition process of nanocrystals.
     Designing and developing a new surfactant free solvothermal synthetic strategy for monodisperse rare earth orthovanadate nanocrystals, with the use of glycol and water as mixed solvent.
     The glycol solvothermal method has been extended from rare earth orthovanadate to the system of ceria and related composite oxides. Series of CeO2 nanomaterials with controllable morphologies (spheres, polyhedrons, mesoporous spheres and hollow spheres) have been fabricated by introducing short-chain organic acids. By taking CeO2 as precursors, we constructed Ce1-xZrxO2 and Ce1-xTixO2 solid-solution hollow spheres. The formation mechanism based on kirkendall effect was proposed and verified. Ceria and related composite oxides are important catalytic promoters. As-prepared CeO2-based nanomaterials have high surface area and good thermal stability, which would have promising application potentials in the field of catalysis.
     For a further step, the application fields of this glycol-based solvothermal method were stretched from rare earth compound nanocrystals to functional rare earth composite nanomaterials. A one-step synthesis strategy for functional rare earth organic/inorganic hybrid capsules has been developed by using the reaction between strong oxidizing acid (HNO3) and glycol ethylene. The hybrid capsules have functional surface. And some distinctive optical and magnetic characteristics were found on the capsules, which would be of promising potentials in the fields such as biology analysis and drug deliver. Associating the reaction of Ag+ ions in glycol with this method, series of Ag and rare earth composites nanostructures have been constructed. By taking it as precursor, a new synthetic method for Ag and rare earth oxides composites hollow spheres have been developed.
引文
[1]张立德,牟季美.纳米材料和纳米结构.科学出版社. 2001.
    [2] El-Sayed M A. Some interesting properties of metals confined in time and nanometer space of different shapes. Accouts of Chemical Research, 2001, 34(4):257-264
    [3]刘光华.稀土材料学.化学工业出版社. 2007.
    [4] Wang L Y, Li Y D. Green upconversion nanocrystals for DNA detection. Chemical Communications, 2006: 2557-2559.
    [5] Li P, Peng Q, Li Y D. Dual-mode luminescent colloidal spheres from monodisperse rare-earth fluoride nanocrystals. Advanced Materials, 2009, 21: 1-4.
    [6] Klimov V I, Mikhailovsky A A, Xu S, et al. Optical gain and stimulated emission in nanocrystal quantum dots. Science, 2000, 290(5490): 314-317.
    [7] Dabbousi B O, Rodriguez V J, Mikulec F V, et al. (CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. Journal of Physical Chemistry B, 1997, 101(46): 9463-9475.
    [8] Nirmal M, Dabbousi B O, Bawendi M G, Macklin J J, Trautman J K, Harris T D, Brus L E, Fluorescence intermittency in single cadmium selenide nanocrystals. Nature, 1996, 383(6603): 802-804.
    [9] Bruchez M, Moronne M, Gin P, et al. Semiconductor nanocrystals as fluorescent biological labels. Science, 1998, 281(5385): 2013-2016.
    [10] Valden M, Lai X, Goodman D W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science, 1998, 281(5383): 1647-1650.
    [11] Hu J T, Odom T W, Lieber C M. Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes. Accounts of Chemical Research, 1999, 32: 435-445.
    [12] Dai H J. Carbon nanotubes: Synthesis, integration, and properties. Accounts of Chemical Research, 2002, 35: 1035-1044
    [13] Huang Y, Duan X F, Lieber C M. Nanowires for integrated multicolor nanophotonics. Small 2005, 1: 142-147
    [14] Kreft O, Skirtach A G, Sukhorukov G B, M?hwald H. Remote control of bioreactions in multicompartment capsules. Advanced Materials, 2007, 19: 3142-3145
    [15] Chen D Y, Jiang M. Strategies for constructing polymeric micelles and hollow spheres in solution via specific intermolecular interactions. Accounts of Chemical Research, 2005, 38: 494-502
    [16] Peng X G, Schlamp M C, Kadavanich A V, et al. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. Journal of the American Chemistry Society. 1997, 119: 7019-7029.
    [17] Steckel J S, Zimmer J P, Coe-Sullivan S, et al. Bule luminescence from (CdS)/ZnS core-shell nanocrystal. Angewandte Chemie International Edition, 2004, 43: 2154-2158.
    [18] Talapin D V, Rogach A L, Kornowski A, et al. Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphospine mixture. Nano Letters, 2001, 1: 207-211
    [19] Deng Y, Qi D, Deng C, et al. Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. Journal of the American Chemical Society, 2009, 2008, 130(1): 28-29
    [20] Qiu H, Peng H, Liang R. Ferrocene-modified Fe3O4@SiO2 magnetic nanoparticles as building blocks for construction of reagentless enzyme-based biosensors. Electrochemistry Communications, 2007, 9(11): 2734-2738
    [21] Zhou K B, Wang X, Sun X M, et al. Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes. Journal of Catalysis, 2005, 229(1): 206-212.
    [22] Hu L H, Peng Q, Li Y D, Selective synthesis of Co3O4 nanocrystal with different shape and crystal plane effect on catalytic property for methane combustion. Journal of the American Chemical Society, 2008, 130 (48): 16136-16136.
    [23] Wang X, Li Y D, Synthesis and characterization of lanthanide hydroxide single-crystal nanowires. Angewandte Chemie-International Edition, 2002, 41, (24): 4790-4793.
    [24] Wang X, Li Y D, Rare-earth-compound nanowires, nanotubes, and fullerene-like nanoparticles: Synthesis, characterization, and properties. Chemistry-a European Journal, 2003, 9(22): 5627-5635.
    [25] Wang X, Sun X M, Yu D P, Zou B S, Li Y D, Rare earth compound nanotubes. Advanced Materials, 2003, 15(17): 1442-1445.
    [26] Yang, S. W. Gao, L., Controlled synthesis and self-assembly of CeO2 nanocubes. Journal of the American Chemical Society, 2006, 128 (29): 9330-9331.
    [27] Masui T, Fujiwara K, Machida K, et al. Characterization of Cerium(IV) oxide ultrafine particles prepared using reversed micelles. Chemistry of Materials 1997, 9(10): 2197-2204.
    [28] Martinez-Arias A, Fernandez-Garcia M, Ballesteros V, et al. Characterization of high surface area Zr-Ce(1:1) mixed oxide prepared by a microemulsion method. Langmuir, 1999, 15(14): 4796-4802.
    [29] Zhang J, Ju X, Wu Z Y, Liu T, et al. Structural characteristics of cerium oxide nanocrystals prepared by the microemulsion method. Chemistry of Materials, 2001, 13(11): 4192-4197.
    [30] Bumajdad A, Zaki M I, Eastoe J, Pasupulety L, Microemulsion-based synthesis of CeO2 powders with high surface area and high-temperature stabilities. Langmuir, 2004, 20(25): 11223-11233.
    [31] Martin C R, Membrane-based synthesis of nanomaterials. Chemistry of Materials, 1996, 8(8): 1739-1746.
    [32] Hulteen J C, Martin C R, A general template-based method for the preparation of nanomaterials. Journal of Materials Chemistry, 1997, 7(7): 1075-1087.
    [33] Raman N K, Anderson M T, Brinker C J, Template-based approaches to the preparation of amorphous, nanoporous silicas. Chemistry of Materials, 1996, 8(8): 1682-1701.
    [34] Bocchetta P, Santamaria M, Di-Quarto F, Template electrosynthesis of La(OH)3 and Nd(OH)3 nanowires using porous anodic alumina membranes. Electrochemistry Communications, 2007, 9(4): 683-688.
    [35] Yan Y C, Faber A J, deWaal H, Kik P G, Polman A, Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 mu m. Applied Physics Letters, 1997, 71(20): 2922-2924.
    [36] Giesber H, Ballato J, Chumanov G, et al. Spectroscopic properties of Er3+ and Eu3+ doped acentric LaBO3 and GdBO3. Journal of Applied Physics, 2003, 93(11): 8987-8994.
    [37] Xia H R, Li L X, Zhang H J, Meng X L, et al. Raman spectra and laser properties of Yb-doped yttrium orthovanadate crystals. Journal of Applied Physics, 2000, 87(1): 269-273.
    [38] Braud A, Girard S, Doualan J L, Thuau M, Moncorge R, Tkachuk A M, Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3μm. Physical Review B, 2000, 61(8): 5280-5292.
    [39] Man S Q, Pun E Y B, Chung P S, Upconversion luminescence of Er3+ in alkali bismuth gallate glasses. Applied Physics Letters, 2000, 77(4): 483-485.
    [40] Corstjens P, Zuiderwijk M, Nilsson M, Feindt H, et al. Lateral-flow and up-converting phosphor reporters to detect single-stranded nucleic acids in a sandwich-hybridization assay. Analytical Biochemistry 2003, 312 (2): 191-200.
    [41] Stouwdam J W, van-Veggel F, Near-infrared emission of redispersible Er3+, Nd3+, and Ho3+ doped LaF3 nanoparticles. Nano Letters, 2002, 2 (7): 733-737.
    [42] Heer S, Kompe K, Gudel H U, Haase M, Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals. Advanced Materials, 2004, 16: 2102-2105.
    [43] Shan J N, Chem J B, Meng J, et al. Biofunctionalization, cytotoxicity, and cell uptake of lanthanide doped hydrophobically ligated NaYF4 upconversion nanophosphors, Journal of Applied Physics, 2008, 104(9): 094308.
    [44] Jalil R A, Zhang Y, Biocompatibility of silica coated NaYF4 upconversion fluorescent nanocrystals, Biomaterials, 2008, 29(30): 4122-4128.
    [45] Wang L Y, Yan R X, Hao Z Y, Wang L, et al. Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles. Angewandte Chemie-International Edition, 2005, 44(37): 6054-6057.
    [46] Yi G S, Lu H C, Zhao S Y, et al. Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4:Yb,Er infrared-to-visible up-conversion phosphors. Nano Letters, 2004, 4(11): 2191-2196.
    [47] Boaro M, Trovarelli A, Hwang J H, Mason T O, Electrical and oxygen storage/release properties of nanocrystalline ceria-zirconia solid solutions. Solid State Ionics 2002, 147(1-2): 85-95.
    [48] Colon G, Valdivieso F, Pijolat M, Baker R T, et al. Textural and phase stability of CexZr1-xO2 mixed oxides under high temperature oxidising conditions. Catalysis Today 1999, 50(2): 271-284.
    [49] Daturi M, Binet C, Lavalley J C, et al. Surface investigation on CexZr1-xO2 compounds. Physical Chemistry Chemical Physics, 1999, 1(24): 5717-5724.
    [50] Nelson A E, Schulz K H, Surface chemistry and microstructural analysis of CexZr1-xO2-y model catalyst surfaces. Applied Surface Science, 2003, 210(3-4): 206-221.
    [51] Kim S, Maier J, On the conductivity mechanism of nanocrystalline ceria. Journal of the Electrochemical Society, 2002, 149(10): J73-J83.
    [52] Lubke S, Wiemhofer H D, Electronic conductivity of Gd-doped ceria with additional Pr-doping. Solid State Ionics, 1999, 117(3-4): 229-243.
    [53] Mogensen M, Sammes N M, Tompsett G A, Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ionics, 2000, 129(1-4): 63-94.
    [54] Guzman J, Carrettin S, Fierro-Gonzalez J C, et al. CO oxidation catalyzed by supported gold: Cooperation between gold and nanocrystalline rare-earth supports forms reactive surface superoxide and peroxide species. Angewandte Chemie-International Edition 2005, 44(30): 4778-4781.
    [55]曹铁平李跃军,稀土纳米材料的特性及应用.长春师范学院学报2007, 26,(3): 54-57.
    [56] Ye Q, Gao Q, Zhang X R, Xu B Q., Cataluminescence and catalytic reactions of ethanol oxidation over nanosized Ce1-xZrxO2 (0 <= x <= 1) catalysts. Catalysis Communications, 2006, 7(8): 589-592.
    [57] Ye Q, Wang R P, Xu B Q, Structure and oxygen mobility of Ce1-xZrxO2 prepared by citric acid sol-gel method. Acta Physico-Chimica Sinica, 2006, 22(1): 33-37.
    [58] Rao C N R, Natarajan S, Vaidhyanathan R, Metal carboxylates with open architectures. Angewandte Chemie-International Edition 2004, 43(12): 1466-1496.
    [59] Sanchez C, Lebeau B, Chaput F, Boilot J P, Optical properties of functional hybrid organic-inorganic nanocomposites. Advanced Materials 2003, 15(23): 1969-1994.
    [60] Lebeau B, Sanchez C, Sol-gel derived hybrid inorganic-organic nanocomposites for optics. Current Opinion in Solid State & Materials Science, 1999, 4(1): 11-23.
    [61] Sanchez C, Lebeau B, Design and properties of hybrid organic-inorganic nanocomposites for photonics. Mrs Bulletin, 2001, 26(5): 377-387.
    [62] Dejneka M J, The luminescence and structure of novel transparent oxyfluoride glass-ceramics. Journal of Non-Crystalline Solids, 1998, 239(1-3): 149-155.
    [63] Dolbecq A, Mialane P, Lisnard L, Marrot J, Secheresse F, Hybrid organic-anorganic 1D and 2D frameworks with epsilon-Keggin polyoxomolybdates as building blocks. Chemistry-a European Journal 2003, 9(12): 2914-2920.
    [64] Soares-Santos P C R, Nogueira H I S, Felix V, et al. Novel lanthanide luminescent materials based on complexes of 3-hydroxypicolinic acid and silica nanoparticles. Chemistry of Materials, 2003, 15(1): 100-108.
    [65] Bernardi J, Schrefl T, Fidler J, et al. Preparation, magnetic properties and microstructure of lean rare-earth permanent magnetic materials. Journal of Magnetism and Magnetic Materials 2000, 219(2): 186-198.
    [66] Betancourt I, Davies H A, Influence of Zr and Nb dopant additions on the microstructure and magnetic properties of nanocomposite RE2(Fe,Co)14B/alpha(Fe,Co) (RE = Nd-Pr) alloys. Journal of Magnetism and Magnetic Materials, 2003, 261(3): PII S0304-8853(02)00366-9.
    [67] McCormick P G, Miao W F, Smith P A I, Ding J, Street R, Mechanically alloyed nanocomposite magnets (invited). Journal of Applied Physics, 1998, 83 (11): 6256-6261.
    [68] Tomita M, Murakami M, High-temperature superconductor bulk magnets that can trap magnetic fields of over 17 tesla at 29 K. Nature, 2003, 421(6922): 517-520.
    [69] Murray C B, Norris D J, Bawendi M G, Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) seminconductor nanocrystallites. Journal of the American Chemical Society, 1993, 115(19): 8706-8715.
    [70] Du Y P, Zhang Y W, Sun L D, Yan C H, Luminescent monodisperse nanocrystals of lanthanide oxyfluorides synthesized from trifluoroacetate precursors in high-boiling solvents. Journal of Physical Chemistry C, 2008, 112(2): 405-415.
    [71] Sun X, Zhang Y W, Du Y P, et al. From trifluoroacetate complex precursors to monodisperse rare-earth fluoride and oxyfluoride nanocrystals with diverse shapes through controlled fluorination in solution phase. Chemistry-a European Journal, 2007, 13(8): 2320-2332.
    [72] Zhang Y W, Sun X Si, R You, et al. Single-crystalline and monodisperse LaF3 triangular nanoplates from a single-source precursor. Journal of the American Chemical Society, 2005, 12(10): 3260-3261.
    [73] Mai H X, Zhang Y W, Si R, et al. High-quality sodium rare-earth fluoride nanocrystals: Controlled synthesis and optical properties. Journal of the American Chemical Society, 2006, 128(19): 6426-6436.
    [74] Wang X, Zhuang J, Peng Q, Li Y D, A general strategy for nanocrystal synthesis. Nature, 2005, 437(7055): 121-124.
    [75] Wang D S, Xie T, Peng Q, Li Y D, Ag, Ag2S, and Ag2Se nanocrystals: Synthesis, assembly, and construction of mesoporous structures. Journal of the American Chemical Society, 2008, 130(12): 4016-4022.
    [76] Ge J P, Chen W, Liu L P, Li Y D, Formation of disperse nanoparticles at the oil/water interface in normal microemulsions. Chemistry-a European Journal, 2006, 12(25): 6552-6558.
    [77] Liang X, Wang X, Zhuang J, et al. Synthesis of nearly monodisperse iron oxide and oxyhydroxide nanocrystals. Advanced Functional Materials, 2006 16(14): 1805-1813.
    [78] Wang D S, Zheng W, Hao C H, Peng Q, Li Y D, A Synthetic Method for Transition-Metal Chalcogenide Nanocrystals. Chemistry-a European Journal, 2009, 15(8): 1870-1875.
    [79] Huo Z Y, Chen C, Chu D, Li H H, Li Y D, Systematic synthesis of lanthanide phosphate nanocrystals. Chemistry-a European Journal, 2007, 13: 7708-7714.
    [80] Huo Z Y, Chen C, Li Y D, Self-assembly of uniform hexagonal yttrium phosphate nanocrystals. Chemical Communications, 2006: 3522-3524.
    [81] Liu, J. F. Li, Y. D., General synthesis of colloidal rare earth orthovanadate nanocrystals. Journal of Materials Chemistry 2007, 17, (18), 1797-1803.
    [82] Wang L Y, Li P, Li Y D, Down- and up-conversion luminescent nanorods. Advanced Materials, 2007, 19: 3304-3307.
    [83] Wang L Y, Li Y D, Na(Y1.5Na0.5)F6 single-crystal nanorods as multicolor luminescent materials. Nano Letters, 2006, 6(8): 1645-1649.
    [84] Wang L Y, Li Y D, Controlled synthesis and luminescence of lanthanide doped NaYF4 nanocrystals. Chemistry of Materials, 2007, 19(4): 727-734.
    [85] Li X L, Ge J P, Li Y D, Atmospheric pressure chemical vapor deposition: An alternative route to large-scale MoS2 and WS2 inorganic fullerene-like nanostructures and nanoflowers. Chemistry-a European Journal, 2004, 10(23): 6163-6171.
    [86] Li Y D, Li X L, Deng Z X, et al. From surfactant-inorganic mesostructures to tungsten nanowires. Angewandte Chemie-International Edition, 2002, 41(2): 333-335.
    [87] Li Y D, Li X L, He R R, et al. Artificial lamellar mesostructures to WS2 nanotubes. Journal of the American Chemical Society, 2002, 124(7): 1411-1416.
    [88] Lei Z B, Li J M, Ke Y X, et al. Two-step templating route to macroporous or hollow sphere oxides. Journal of Materials Chemistry, 2001, 11(12): 2930-2933.
    [89] Meyer U, Larsson A, Hentze H P, Caruso R A, Templating of porous polymeric beads to form porous silica and titania spheres. Advanced Materials, 2002, 14(23): 1768-1772.
    [90] Kawai T, Sekikawa H, Unuma H, Preparation of hollow hydroxyapatite microspheres utilizing poly(divinylbenzene) as a template. Journal of the Ceramic Society of Japan, 2009, 117(1363): 340-343.
    [91] Sun X M, Liu J F, Li Y D, Use of carbonaceous polysaccharide microspheres as templates for fabricating metal oxide hollow spheres. Chemistry-a European Journal, 2006, 12(7): 2039-2047.
    [92] Yada M. Mihara M, Mouri S, Kuroki M, Kijima T, Rare earth (Er, Tm, Yb, Lu) oxide nanotubes templated by dodecylsulfate assemblies. Advanced Materials, 2002, 14(4): 309-313.
    [93] Yu M, Lin J, Fang J, Silica spheres coated with YVO4:Eu3+ layers via sol-gel process: A simple method to obtain spherical core-shell phosphors. Chemistry of Materials, 2005, 17(7): 1783-1791.
    [94] Kompe K, Borchert H, et al. Green-emitting CePO4:Th/LaPO4 core-shell nanoparticles with 70% photoluminescence quantum yield. Angewandte Chemie-International Edition 2003, 42(44): 5513-5516.
    [95]胶体科学导论,郑忠,高等教育出版社,1989
    [96]胶体与表面化学原理,Paul C. Hiemenz著,周煮康,马季铭译。北京大学出版社,1986
    [97] Peng X G, Manna L, Yang W D, et al. Shape control of CdSe nanocrystals. Nature, 2000, 404(6773): 59-61.
    [98] Qu L H, Peng X G, Control of photoluminescence properties of CdSe nanocrystals in growth. Journal of the American Chemical Society, 2002, 124(9): 2049-2055.
    [99] Peng X G, Wickham J, Alivisatos A P, Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: "Focusing" of size distributions. Journal of the American Chemical Society, 1998, 120(21): 5343-5344.
    [100] Peng Z A, Peng X G, Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. Journal of the American Chemical Society, 2001, 123(1): 183-184.
    [101] Peng Z A, Peng X G, Mechanisms of the shape evolution of CdSe nanocrystals. Journal of the American Chemical Society, 2001, 123(7): 1389-1395.
    [102] Wang X, Zhuang J, Peng Q, Li Y D, Hydrothermal synthesis of rare-earth fluoride nanocrystals. Inorganic Chemistry, 2006, 45(17): 6661-6665.
    [103] Liu J F, Li Y D, Synthesis and self-assembly of luminescent Ln3+-doped LaVO4 uniform nanocrystals. Advanced Materials, 2007, 19(8): 1118-1122.
    [104] Fang Y P, Xu A W, Song R Q, et al. Systematic synthesis and characterization of single-crystal lanthanide orthophosphate nanowires. Journal of the American Chemical Society, 2003, 125: 16025-16034.
    [105] Yan R X, Sun X M, Wang X, et al. Crystal structures, anisotropic growth, and optical properties: Controlled synthesis of lanthanide orthophosphate one-dimensional nanomaterials. Chemistry-a European Journal, 2005, 11(7): 2183-2195.
    [106] Liang X, Wang X, Zhuang J, et al. Synthesis of NaYF4 nanocrystals with predictable phase and shape. Advanced Functional Materials, 2007, 17: 2757-2765.
    [107] Liang X, Wang X, Zhuang J, et al. Branched NaYF4 nanocrystals with luminescent properties. Inorganic Chemistry, 2007, 46(15): 6050-6055.
    [108] Liang X, Wang X, Wang L Y, et al. Synthesis and characterization of ternary NH4Ln2F7 (Ln = Y, Ho, Er, Tm, Yb, Lu) nanocages. European Journal of Inorganic Chemistry, 2006(11): 2186-2191.
    [109] Liang X, Wang X, Zhuang Y, et al. Formation of CeO2-ZrO2 solid solution nanocages with controllable structures via kirkendall effect. Journal of the American Chemical Society, 2008, 130(9): 2736-2737.
    [110] Liang X, Xu B, Kuang S M, Wang X, Multi-functionalized Inorganic-Organic Rare Earth Hybrid Microcapsules. Advanced Materials, 2008, 20(23): 4384-4384.
    [111] Bell T W, Molecular trees: A new branch of chemistry. Science, 1996, 271(5252): 1077-1078.
    [112] Huang M H, Mao S, Feick H, et al. Room-temperature ultraviolet nanowire nanolasers. Science, 2001, 292(5523): 1897-1899.
    [113] Kind H, Yan H Q, Messer B, Law M, Yang P D, Nanowire ultraviolet photodetectors and optical switches. Advanced Materials, 2002, 14(2): 158-160.
    [114] Law M, Kind H, Messer B, Kim F, Yang P D, Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature. Angewandte Chemie-International Edition, 2002, 41(13): 2405-2408.
    [115] Xia Y N, Yang P D, Sun Y G, et al. One-dimensional nanostructures: Synthesis, characterization, and applications. Advanced Materials, 2003, 15(5): 353-389.
    [116] Seeman N C, DNA in a material world. Nature, 2003, 421(6921): 427-431.
    [117] Lucas J, Infrared glasses. Current Opinion in Solid State & Materials Science, 1999, 4(2): 181-187.
    [118] Tanabe S, Rare-earth-doped glasses for fiber amplifiers in broadband telecommunication. Comptes Rendus Chimie, 2002, 5(12): 815-824.
    [119] Thiel C W, Sun Y, Cone R L, Progress in relating rare-earth ion 4f and 5d energy levels to host bands in optical materials for hole burning, quantum information and phosphors. Journal of Modern Optics, 2002, 49(14-15): 2399-2411.
    [120] Menyuk N, Pierce J W, Dwight K, NaYF4-Yb, Er-efficient upconversion phosphor. Applied Physics Letters, 1972, 21(4): 159-161.
    [121] Kano T, Suzuki T, Suzuki A, Minagawa S, Fabrication of efficient up-conversion type green led using NaYF4-Yb, Er phosphor. Journal of the Electrochemical Society 1973, 120(3): C87.
    [122] Martin N, Boutinaud P, Mahiou R, Cousseins J C, Bouderbala M, Preparation of fluorides at 80 degrees in the NaF(Y,Yb,Pr)F3 system. Journal of Materials Chemistry, 1999, 9(1): 125-128.
    [123] Liang L F, Wu H, Hu H L, Wu M M, Su Q, Enhanced blue and green upconversion in hydrothermally synthesized hexagonal NaY1-xYbxF4 : Ln3+ (Ln3+ = Er3+ or Tm3+). Journal of Alloys and Compounds, 2004, 368(1-2): 94-100.
    [124] Zeng J H, Su J, Li Z H, Yan R X, Li Y D, Synthesis and upconversion luminescence of hexagonal-phase NaYF4 : Yb, Er3+, phosphors of controlled size and morphology. Advanced Materials, 2005, 17(17): 2119-2123.
    [125] Yu S H, Liu B, Mo M S, et al. General synthesis of single-crystal tungstate nanorods/nanowires: A facile, low-temperature solution approach. Advanced Functional Materials, 2003, 13(8): 639-647.
    [126] Burns J H, Crystal structure of hexagonal sodium neodymium fluoride and related compounds. Inorganic Chemistry, 1965, 4(6): 881-886.
    [127] Grzechnik A, Bouvier P, Crichton W A, et al. Metastable NaYF4 fluorite at high pressures and high temperatures. Solid State Sciences, 2002, 4(7): PII S129*3-2558(02)01353-5.
    [128] Kramer K W, Biner D, Frei G, et al. Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors. Chemistry of Materials, 2004, 16(7): 1244-1251.
    [129] Shukla S, Seal S, Vij R, Bandyopadhyay S, Rahman Z, Effect of nanocrystallite morphology on the metastable tetragonal phase stabilization in zirconia. Nano Letters, 2002, 2(9): 989-993.
    [130] Tsunekawa S, Ito S, Kawazoe Y, Wang J T, Critical size of the phase transition from cubic to tetragonal in pure zirconia nanoparticles. Nano Letters, 2003, 3(7): 871-875.
    [131] Tsunekawa S, Ito S, Mori T, et al. Critical size and anomalous lattice expansion in nanocrystalline BaTiO3 particles. Physical Review B, 2000, 62(5): 3065-3070.
    [132] Lin Z, Gilbert B, Liu Q L, Ren G Q, Huang F, A thermodynamically stable nanophase material. Journal of the American Chemical Society, 2006, 128(18): 6126-6131.
    [133] Burda C, Chen X B, Narayanan R, El-Sayed M A, Chemistry and properties of nanocrystals of different shapes. Chemical Reviews, 2005, 105: 1025-1102.
    [134] Dick K A, Deppert K, Larsson M W, et al. Synthesis of branched 'nanotrees' by controlled seeding of multiple branching events. Nature Materials, 2004, 3(6): 380-384.
    [135] Duan X F, Huang Y, Agarwal R, Lieber C M, Single-nanowire electrically driven lasers. Nature, 2003, 421(6920): 241-245.
    [136] Duan X F, Huang Y, Lieber C M, Nonvolatile memory and programmable logic from molecule-gated nanowires. Nano Letters, 2002, 2(5): 487-490.
    [137] Cozzoli P D, Manna L, Asymmetric nanoparticles-Tips on growing nanocrystals. Nature Materials, 2005, 4(11): 801-802.
    [138] Huynh W U, Dittmer J J, Alivisatos A P, Hybrid nanorod-polymer solar cells. Science, 2002, 295(5564): 2425-2427.
    [139] Wang D L, Lieber C M, Inorganic materials-Nanocrystals branch out. Nature Materials 2003, 2(6): 355-356.
    [140] Cheng Y, Wang Y S, Chen D, Bao F, Evolution of single crystalline dendrites from nanoparticles through oriented attachment. Journal of Physical Chemistry B, 2005, 109(2): 794-798.
    [141] Grebinski J W, Hull K L, Zhang J, Kosel T H, Kuno M, Solution-based straight and branched CdSe nanowires. Chemistry of Materials, 2004, 16(25): 5260-5272.
    [142] Jun Y W, Jung Y Y, Cheon J, Architectural control of magnetic semiconductor nanocrystals. Journal of the American Chemical Society, 2002, 124(4): 615-619.
    [143] Jun Y W, Lee S M, Kang N J, Cheon J, Controlled synthesis of multi-armed CdS nanorod architectures using monosurfactant system. Journal of the American Chemical Society, 2001, 123(21): 5150-5151.
    [144] Manna L, Milliron D J, Meisel A, Scher E C, Alivisatos A P, Controlled growth of tetrapod-branched inorganic nanocrystals. Nature Materials, 2003, 2(6): 382-385.
    [145] Milliron D J, Hughes S M, Cui Y, et al. Colloidal nanocrystal heterostructures with linear and branched topology. Nature, 2004, 430(6996): 190-195.
    [146] Wang D, Qian F, Yang C, et al. Rational growth of branched and hyperbranched nanowire structures. Nano Letters, 2004, 4(5): 871-874.
    [147] Yan H Q, He R R, Johnson J, et al. Dendritic nanowire ultraviolet laser array. Journal of the American Chemical Society, 2003, 125(16): 4728-4729.
    [148] Yan H Q, He R R, Pham J, Yang P D, Morphogenesis of one-dimensional ZnO nano- and microcrystals. Advanced Materials, 2003, 15(5): 402-405.
    [149] Chen S H, Wang Z L, Ballato J, Foulger S H, Carroll D L, Monopod, bipod, tripod, and tetrapod gold nanocrystals. Journal of the American Chemical Society, 2003, 125(52): 16186-16187.
    [150] Hao E, Bailey R C, Schatz G C, et al. Synthesis and optical properties of "branched" gold nanocrystals. Nano Letters, 2004, 4(2): 327-330.
    [151] Hoefelmeyer J D, Niesz K, Somorjai G A, Tilley T D, Radial anisotropic growth of rhodium nanoparticles. Nano Letters, 2005, 5(3): 435-438.
    [152] Teng X W, Yang H, Synthesis of platinum multipods: An induced anisotropic growth. Nano Letters, 2005, 5(5): 885-891.
    [153] An L J, Li W, Nie Y R, et al. Patterned magnetic rings fabricated by dewetting of polymer-coated magnetite nanoparticles solution. Journal of Colloid and Interface Science, 2005, 288(2): 503-507.
    [154] Wang J Y, Chen W, Liu A H, et al. Controlled fabrication of cross-linked nanoparticles/pPolymer composite thin films through the combined use of surface-initiated atom transfer radical polymerization and gas/solid reaction. Journal of the American Chemical Society, 2002, 124(45): 13358-13359.
    [155] Zhang H, Cui Z C, Wang Y, Zhang K, et al. From water-soluble CdTe nanocrystals to fluorescent nanocrystal-polymer transparent composites using polymerizable surfactants. Advanced Materials 2003, 15(10): 777-780.
    [156] Zhang H, Wang C L, Li M J, et al. Fluorescent nanocrystal-polymer complexes with flexible processability. Advanced Materials, 2005, 17, (7), 853-857.
    [157] Caruso F, Caruso R A, Mohwald H, Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science, 1998, 282(5391): 1111-1114.
    [158] Prato M, Maggini M, Fulleropyrrolidines: A family of full-fledged fullerene derivatives. Accounts of Chemical Research 1998, 31(9): 519-526.
    [159] Feldman Y, Frey G L, Homyonfer M, et al. Bulk synthesis of inorganic fullerene-like MS2 (M=Mo, W) from the respective trioxides and the reaction mechanism. Journal of the American Chemical Society, 1996, 118(23): 5362-5367.
    [160] Rapoport L, Bilik Y, Feldman Y, et al. Hollow nanoparticles of WS2 as potential solid-state lubricants. Nature, 1997, 387(6635): 791-793.
    [161] Tenne R, Advances in the synthesis of inorganic nanotubes and fullerene-like nanoparticles. Angewandte Chemie-International Edition, 2003, 42(42): 5124-5132.
    [162] Tenne R, Homyonfer M, Feldman Y, Nanoparticles of layered compounds with hollow cage structures (inorganic fullerene-like structures). Chemistry of Materials, 1998, 10(11): 3225-3238.
    [163] Rajeshwar K, Secco E A, Ammounium fluorolanthanates-solid-state synthesis, IR spectral and X-ray-diffraction data. Canadian Journal of Chemistry-Revue Canadienne De Chimie, 1977, 55(14): 2620-2627.
    [164] Kang Z J, Wang Y X, You F T, Lin J H, Hydrothermal syntheses and crystal structure of NH4Ln3F10 (Ln = Dy, Ho, Y, Er, Tm). Journal of Solid State Chemistry, 2001, 158(2): 358-362.
    [165] Fang Z M, Hong Q, Zhou Z H, et al. Oxidative dehydrogenation of propane over a series of low-temperature rare earth orthovanadate catalysts prepared by the nitrate method. Catalysis Letters, 1999, 61(1-2): 39-44.
    [166] Martinez-Huerta M V, Coronado J M, Fernandez-Garcia M, et al. Nature of the vanadia-ceria interface in V5+/CeO2 catalysts and its relevance for the solid-state reaction toward CeVO4 and catalytic properties. Journal of Catalysis, 2004, 225(1): 240-248.
    [167] Terada Y, Shimamura K, Kochurikhin V V, et al. Growth and optical properties of ErVO4 and LuVO4 single crystals. Journal of Crystal Growth, 1996, 167(1-2): 369-372.
    [168] Fields R A, Birnbaum M, Fincher C L. Highly Efficient Nd-YVO4 Diode-Laser End-Pumped Laser. Applied Physics Letters, 1987, 51(23):1885-1886.
    [169] Oconnor J R. Unusual Crystal-Field Energy Levels and Efficient Laser Properties of YVO4- Nd. Applied Physics Letters, 1966, 9(11): 407-409.
    [170] Gambino J R, Guare C J. Yttrium and Rare Earth Vanadates. Nature, 1963, 198(488): 1084.
    [171] Huignard A, Gacoin T, Boilot J P. Synthesis and luminescence properties of colloidal YVO4 : Eu phosphors. Chemistry of Materials, 2000, 12(4): 1090-1094.
    [172] Stouwdam J W, Raudsepp M, van Veggel F. Colloidal nanoparticles of Ln3+-doped LaVO4: Energy transfer to visible- and near-infrared-emitting lanthanide ions. Langmuir, 2005, 21(15): 7003-7008.
    [173] Yu M, Lin J, Wang Z, Fu J, et al. Fabrication, patterning, and optical properties of nanocrystalline YVO4 : A (A = Eu3+, Dy3+, Sm3+, Er3+) phosphor films via sol-gel soft lithography. Chemistry of Materials, 2002, 14(5): 2224-2231.
    [174] Wu H, Xu H F, Su Q, Chen T H, Wu M M, Size- and shape-tailored hydrothermal synthesis of YVO4 crystals in ultra-wide pH range conditions. Journal of Materials Chemistry, 2003, 13(5): 1223-1228.
    [175] Chen L M, Liu Y N, Huang K L, Hydrothermal synthesis and characterization of YVO4-based phosphors doped with Eu3+ ion. Materials Research Bulletin, 2006, 41(1): 158-166.
    [176] Jia C J, Sun L D, You L P, Jiang X C, et al. Selective synthesis of monazite- and zircon-type LaVO4 nanocrystals. Journal of Physical Chemistry B, 2005, 109(8): 3284-3290.
    [177] Xu H Y, Wang H, Jin T N, Yan H, Rapid fabrication of luminescent Eu : YVO4 films by microwave-assisted chemical solution deposition. Nanotechnology 2005, 16(1): 65-69.
    [178] Xu H Y, Wang H, Meng Y Q, Yan H, Rapid synthesis of size-controllable YVO4 nanoparticles by microwave irradiation. Solid State Communications, 2004, 130(7): 465-468.
    [179] Sun Y G, Yin Y D, Mayers B T, Herricks T, Xia Y N, Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chemistry of Materials, 2002, 14(11): 4736-4745.
    [180] Sun Y G, Xia Y N, Shape-controlled synthesis of gold and silver nanoparticles. Science, 2002, 298(5601): 2176-2179.
    [181] Jiang X C, Herricks T, Xia Y N, Monodispersed spherical colloids of titania: Synthesis, characterization, and crystallization. Advanced Materials, 2003, 15(14): 1205-1209.
    [182] Deng H, Li X L, Peng Q, et al. Monodisperse magnetic single-crystal ferrite microspheres. Angewandte Chemie-International Edition 2005, 44(18): 2782-2785.
    [183] Libert S, Gorshkov V, Goia D, Matijevkic E, Privman V, Model of controlled synthesis of uniform colloid particles: Cadmium sulfide. Langmuir 2003, 19(26): 10679-10683.
    [184] Libert S, Gorshkov V, Privman V, Goia D, Matijevic E, Formation of monodispersed cadmium sulfide particles by aggregation of nanosize precursors. Advances in Colloid and Interface Science, 2003, 100: 169-183.
    [185] Park J, Privman V, Matijevic E, Model of formation of monodispersed colloids. Journal of Physical Chemistry B, 2001, 105(47): 11630-11635.
    [186] Privman V, Goia D V, Park J, Matijevic E, Mechanism of formation of monodispersed colloids by aggregation of nanosize precursors. Journal of Colloid and Interface Science, 1999, 213(1): 36-45.
    [187] Ge J P, Hu Y X, Biasini M, et al. Superparamagnetic magnetite colloid nanocrystal clusters. Angewandte Chemie-International Edition, 2007, 46(23): 4342-4345.
    [188] Wang F, Xue X. J, Liu X G, Multicolor tuning of (Ln, P)-Doped YVO4 nanoparticles by single-wavelength excitation. Angewandte Chemie-International Edition, 2008, 47(5): 906-909.
    [189] Wang G F, Qin W P, Zhang D S, et al. Enhanced Photoluminescence of Water Soluble YVO4:Ln3+ (Ln = Eu, Dy, Sm, and Ce) Nanocrystals by Ba2+ Doping. Journal of Physical Chemistry C 2008, 112(44): 17042-17045.
    [190] Riwotzki K, Haase M, Wet-chemical synthesis of doped colloidal nanoparticles: YVO4 : Ln (Ln = Eu, Sm, Dy). Journal of Physical Chemistry B 1998, 102(50): 10129-10135.
    [191] Trovarelli A, Catalytic properties of ceria and CeO2-containing materials. Catalysis Reviews-Science and Engineering 1996, 38(4): 439-520.
    [192] Kaspar J, Fornasiero P, Graziani M, Use of CeO2-based oxides in the three-way catalysis. Catalysis Today 1999, 50(2): 285-298.
    [193] Steele B C H, Appraisal of Ce1-yGdyO2-y/2 electrolytes for IT-SOFC operation at 500 degrees. Solid State Ionics 2000, 129(1-4): 95-110.
    [194] Feng X D, Sayle D C, Wang Z L, et al. Converting ceria polyhedral nanoparticles into single-crystal nanospheres. Science, 2006, 312(5779): 1504-1508.
    [195] Gopalan S, Singhal S C, Mechanochemical synthesis of nano-sized CeO2. Scripta Materialia, 2000, 42(10): 993-996.
    [196] He Y J, Synthesis of polyaniline/nano-CeO2 composite microspheres via a solid-stabilized emulsion route. Materials Chemistry and Physics, 2005, 92(1): 134-137.
    [197] Ho C M, Yu J C, Kwong T, Mak A C, Lai S Y, Morphology-controllable synthesis of mesoporous CeO2 nano- and microstructures. Chemistry of Materials, 2005, 17(17): 4514-4522.
    [198] Mamontov E, Egami T, Structural defects in a nano-scale powder of CeO2 studied by pulsed neutron diffraction. Journal of Physics and Chemistry of Solids, 2000, 61(8): 1345-1356.
    [199] Tok A I Y, Luo L H, Boey F Y C, Carbonate co-precipitation of Gd2O3-doped CeO2 solid solution nano-particles. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2004, 383(2): 229-234.
    [200] Tsunekawa S, Sivamohan R, Ito S, Kasuya A, Fukuda T, Structural study on monosize CeO2-x nano-particles. Nanostructured Materials, 1999, 11(1): 141-147.
    [201] Huo Q S, Margolese D I, Ciesla U, et al. Generalized synthesis of periodic surfactant inorganic composite-materials. Nature 1994, 368(6469): 317-321.
    [202] Huo Q S, Margolese D I, Stucky G D, Surfactant control of phases in the synthesis of mesoporous silica-based materials. Chemistry of Materials, 1996 8(5): 1147-1160.
    [203] Zhao D Y, Feng J L, Huo Q S, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 1998, 279(5350): 548-552.
    [204] Johnson S A, Ollivier P J, Mallouk T E, Ordered mesoporous polymers of tunable pore size from colloidal silica templates. Science, 1999, 283(5404): 963-965.
    [205] Rao G V R, Lopez G P, Bravo J, et al. Monodisperse mesoporous silica microspheres formed by evaporation-induced self assembly of surfactant templates in aerosols. Advanced Materials, 2002, 14(18): 1301-1304.
    [206] Collinson M M, Sol-gel strategies for the preparation of selective materials for chemical analysis. Critical Reviews in Analytical Chemistry, 1999, 29(4): 289-311.
    [207] Doadrio A L. Sousa E M B, Doadrio J C, et al. Mesoporous SBA-15 HPLC evaluation for controlled gentamicin drug delivery. Journal of Controlled Release, 2004, 97(1): 125-132.
    [208] Moller K, Bein T, Inclusion chemistry in periodic mesoporous hosts. Chemistry of Materials, 1998, 10(10): 2950-2963.
    [209] Lu Y F. Fan H Y, Stump A, et al. Aerosol-assisted self-assembly of mesostructured spherical nanoparticles. Nature, 1999, 398(6724): 223-226.
    [210] Corma A, From microporous to mesoporous molecular sieve materials and their use in catalysis. Chemical Reviews, 1997, 97(6): 2373-2419.
    [211] Imamura S, Yamada H, Utani K, Combustion activity of Ag/CeO2 composite catalyst. Applied Catalysis a-General, 2000, 192(2): 221-226.
    [212] Yin Y D, Rioux R M, Erdonmez C K, et al. Formation of hollow nanocrystals through the nanoscale Kirkendall Effect. Science, 2004, 304(5671): 711-714.
    [213] Kim D, Park J, An K, et al. Synthesis of hollow iron nanoframes. Journal of the American Chemical Society, 2007, 129(18), 5812-5813.
    [214] Fan H J, Knez M, Scholz R, Nielsch K, et al. Monocrystalline spinel nanotube fabrication based on the Kirkendall effect. Nature Materials, 2006, 5(8): 627-631.
    [215] Cao H L, Qian X F, Wang C, Ma X D, et al. High symmetric 18-facet polyhedron nanocrystals of Cu7S4 with a hollow nanocage. Journal of the American Chemical Society, 2005, 127(46): 16024-16025.
    [216] Liu B, Zeng H C, Fabrication of ZnO "dandelions" via a modified kirkendall process. Journal of the American Chemical Society, 2004, 126(51): 16744-16746.
    [217] Liu C Y, Tu K N, Sheng T T, et al. Electron microscopy study of interfacial reaction between eutectic SnPb and Cu/Ni(V)/Al thin film metallization. Journal of Applied Physics, 2000, 87(2): 750-754.
    [218] Yin Y D, Erdonmez C K, Cabot A, Hughes S, Alivisatos A P, Colloidal synthesis of hollow cobalt sulfide nanocrystals. Advanced Functional Materials, 2006, 16(11): 1389-1399.
    [219] Chiang R K, Chiang R T, Formation of hollow Ni2P nanoparticles based on the nanoscale Kirkendall effect. Inorganic Chemistry, 2007, 46(2): 369-371.
    [220] Fan H J, Gosele U, Zacharias M, Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: A review. Small, 2007, 3(10): 1660-1671.
    [221] Fan H J, Knez M, Scholz R, et al. Influence of surface diffusion on the formation of hollow nanostructures induced by the Kirkendall effect: The basic concept. Nano Letters, 2007, 7(4): 993-997.
    [222] Henkes A E, Vasquez Y, Schaak R E, Converting metals into phosphides: A general strategy for the synthesis of metal phosphide nanocrystals. Journal of the American Chemical Society, 2007, 129(7): 1896-1897.
    [223] Nishiura M, Nakayama A, Sakatani S, et al. Mechanical strength and microstructure of BGA joints using lead-free solders. Materials Transactions, 2002, 43(8): 1802-1807.
    [224] Tu K N, Gosele U, Hollow nanostructures based on the Kirkendall effect: Design and stability considerations. Applied Physics Letters, 2005, 86: 093111
    [225] Fang J, Bao H, He B, et al. Interfacial and surface structures of CeO2-TiO2 mixed oxides. Journal of Physical Chemistry C 2007, 111(51): 19078-19085.
    [226] Dutta G, Waghmare U V, Baidya T, et al. Origin of enhanced reducibility/oxygen storage capacity of Ce1-xTixO2 compared to CeO2 or TiO2. Chemistry of Materials, 2006, 18: 3249-3256.
    [227] Skirtach A G, Javier A M, Kreft O, et al. Laser-induced release of encapsulated materials inside living cells. Angewandte Chemie-International Edition, 2006, 45(28): 4612-4617.
    [228] Sukhorukov G B, Rogach A L, Garstka M, et al. Multifunctionalized polymer microcapsules: Novel tools for biological and pharmacological applications. Small, 2007, 3(6): 944-955.
    [229] Peyratout C S, Dahne L, Tailor-made polyelectrolyte microcapsules: From multilayers to smart containers. Angewandte Chemie-International Edition, 2004, 43(29): 3762-3783.
    [230] Jung J, Perrut M, Particle design using supercritical fluids: Literature and patent survey. Journal of Supercritical Fluids, 2001, 20(3): 179-219.
    [231] Shchukin D G, Sukhorukov G B, Nanoparticle synthesis in engineered organic nanoscale reactors. Advanced Materials, 2004, 16(8): 671-682.
    [232] Schubert U, Organically modified transition metal alkoxides: Chemical problems and structural issues on the way to materials syntheses. Accounts of Chemical Research, 2007, 40: 730-737.
    [233] Zebli B, Susha A S, Sukhorukov G B, et al. Magnetic targeting and cellular uptake of polymer microcapsules simultaneously functionalized with magnetic and luminescent nanocrystals. Langmuir, 2005, 21(10): 4262-4265.
    [234] Tosh D, Slack J M W, How cells change their phenotype. Nature Reviews Molecular Cell Biology, 2002, 3(3): 187-194.
    [235] Weimann J M, Johansson C B, Trejo A, Blau H M, Stable reprogrammed heterokaryons form spontaneously in Purkinje neurons after bone marrow transplant. Nature Cell Biology, 2003, 5(11): 959-966.
    [236] Trombe J C, Romero S, Mosset A, A novel family of lanthanide complexes associating two ligands, glycolate and carbonate. Synthesis and characterization of Ln2 (H3C2O3)4(CO3) with Ln(III) = La, Ce and Nd. Polyhedron, 1998, 17(15): 2529-2534.
    [237] Pastoriza-Santos I, Koktysh D S, Mamedov A A, et al. Ag@TiO2 core-shell nanoparticles, Langmiur, 2000, 16: 2731-2735
    [238] Cassagneau T, Fendler J H. Silver nanoparticles capped by graphite, Journal of Physical and Chemistry B, 1999, 103: 1789-1793
    [239] Mayya K S, Schoeler B, Caruso F, Preparation and organization of nanoscale polyelectrolyte-coated gold nanoparticles. Advanced Functional Materials, 2003, 13:183-188
    [240] Sun X M, Li Y D, Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angewandte Chemie-International Edition, 2004, 43(5): 597-601.
    [241] Sun X M, Li Y D, Cylindrical silver nanowires: Preparation, structure, and optical properties. Advanced Materials 2005, 17(21): 2626-2630.
    [242] Sun X M, Li Y D, Ag@C core/shell structured nanoparticles: Controlled synthesis, characterization, and assembly. Langmuir, 2005, 21(13): 6019-6024.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700