碳氮基纳米复合薄膜的微观结构和性质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳氮薄膜以其良好的力学、电学和光学性质,在磁盘磁头保护、硬质刀具、冷阴极发射、空间防护等领域具有广阔的应用前景。目前,纳米级铁磁性金属颗粒薄膜体系、超硬纳米级多层膜体系是凝聚态物理和材料科学领域的研究热点。碳氮薄膜具有导电性可控以及高硬度等特点,尝试在这些复合体系中使用碳氮材料具有重要意义。
     本论文采用对向靶磁控溅射法制备了碳氮薄膜、过渡族金属(Ni、Fe、Co、Cu、Ti)?碳氮基纳米颗粒薄膜以及氮化钛/碳氮(TiN/CN)多层膜,对它们的化学成份、微观结构、磁性质、电输运特性和力学性质进行了系统研究。
     通过对纯碳氮薄膜的研究,发现薄膜中的氮含量并不随氮气分压的升高而增大,而是在氮气分压为20%时达到饱和(33%)。纯碳膜主要由sp~3杂化的C原子组成,随着氮气分压的升高,碳氮薄膜中sp~2杂化的C原子数目增加,类石墨结构区域的尺寸增大,薄膜结构趋于有序化。薄膜中的环状sp~2层的尺寸始终很小,并且薄膜中存在着大量缺陷。薄膜的光学和电学性质主要由薄膜中的缺陷态决定,而薄膜的力学性质则与薄膜中sp~3 C的含量密切相关。
     在室温下采用共溅射法制备了系列过渡族金属?碳氮基纳米颗粒薄膜。在磁性金属(Fe、Co、Ni)?碳氮基纳米颗粒薄膜中观察到了自旋相关的低温磁电阻显著增强现象,磁电阻在3 K和90 kOe的磁场下可以达到–59%。在外加磁场由0增大至90 kOe的过程中,薄膜的磁电阻一直增大,出现弱饱和现象;当温度高于20 K后,薄膜的磁电阻都接近于0;而当温度低于20 K时,磁电阻随温度的降低而急剧增大,并遵循log |MR|∝-T关系。通过改变碳氮母体的绝缘性以及磁性金属含量可以对磁电阻进行调制,而磁电阻随磁场和温度的变化关系并不改变。基于高阶隧穿模型,考虑新的自旋极化率随温度的变化关系P = P_0 exp(-βT~α),我们解明了低温磁电阻增强现象的物理机制。
     在TiN/CN多层膜中观察到“超硬度现象”。多层膜的硬度随着氮化钛层的结晶而大幅度提高,这说明非晶态和晶态薄膜的形变过程不同,只有当多层膜的晶态物质占一定比例,薄膜形变以位错缺陷的形变过程为主时,才会出现超硬度现象。采用Bhattacharya-Nix经验方程对纳米压痕测得的硬度值进行了拟合,从而较准确地估计了薄膜硬度的真实值。我们发现对于硬度较大的薄膜,其硬度的测量值与实际值的差距较大。
Amorphous CNx films have been extensively investigated due to their excellent mechanical, optical and electrical properties and practical applications in magnetic disk coatings, cast machining, cold-cathode-emission and space protection etc. Recently, ferromagnetic metal composite materials and superhard nanomultilayers become the focuses in the field of condensed matter physics and materials science. Carbon nitride films have controllable conductivity and high hardness, and can be used as one of the component in above systems.
     Carbon nitride films, transition metal (Ni, Fe, Co, Cu, Ti)-CN nanocomposite films and TiN/CN multilayers were fabricated using facing-target reactive sputtering. Their chemical composition, microstructure, magnetic, electrical transport and mechanical properties were studied systematically.
     It was found that the N concentration in the carbon nitride films does not change with the nitrogen partial pressure PN linearly, which rises quickly to a saturate value of~33% at a PN of 20%, and does not change with further increasing PN. The pure C films are mainly composed of sp3 C atoms. Increasing PN makes both the number of sp2 C atoms and the size of aromatic sp2-hybridized C clusters increase, while the sp2 C cluster remains a rather small size. The optical and electrical properties of the films are mainly determined by the defects existing in the films and the mechanical properties correlate closely with the sp3 C content.
     An enhanced spin-dependent magnetoresistance (MR) was observed at low temperatures in the (Fe, Co, Ni)-CNx nanocomposite films fabricated at room temperature. The maximum MR reaches–59% at 3 K and 90 kOe. The MR has a weak saturation trend with increasing field to 90 kOe. Above 20 K, the MR is very small (<1%), but as temperature is below 20 K, it follows the relation of log MR∝?T. The maximum MR, MR enhancement and carrier transport mechanism can be tailored by changing the insulation of the CNx matrix through tuning PN or altering the Ni content in the films. The enhancement of the low-temperature negative MR was clarified by introducing a new relation of spin polarization P with T, P = P0 exp(?βTα), into the high-order tunneling model.
     TiN/CN multilayers were fabricated and superhardness phenomenon was observed. When the two components (TiN and CN) in the multilayer are amorphous, no enhancement in hardness can be observed. While with the crystallization of the TiN layer, the hardness of the multilayers is enhanced greatly and becomes higher than that calculated using the rule of mixtures. The variation of hardness with the crystallinity of TiN layers suggests that the mechanism of the deformation in amorphous TiN/CN multilayers is different from that in the crystalline ones and the dislocation related mechanism in the crystalline multilayers is very important for the appearance of the superhardness effect. The real hardness of the multilayers free from the substrate effect was extracted using Bhattacharya-Nix empirical equation based on the data measured from nanoindentation with continuous stiffness measurement technique. Large deviation between the film’s hardness and measured hardness was found for the films with large hardness.
引文
[1] Brotherton T K, Lynn J W, The synthesis and chemistry of cyanogen, Chem. Rev., 1959, 59 (5): 841~883
    [2] Cuomo J J, Leary P A, Yu D, et al. Reactive sputtering of carbon and carbide targets in nitrogen, J. Vac. Sci. Technol., 1979, 16 (2): 299~302
    [3] Liu A Y, Cohen M L, Prediction of new low-compressibility materials, Science, 1989, 245 (6): 841~843
    [4] Wei J, Hing P, Optical behavior of reative sputtered carbon nitride films, J. Appl. Phys., 2002, 91 (5): 2812~2817
    [5] Wang E G, Research on carbon nitrides, Progress in materials, Science, 1997, 41 (5): 241~298
    [6] Bull S J, Tribology of carbon coatings: DLC, diamond and beyond, Diam. Relat. Mater., 1995, 4 (5–6): 827~836
    [7] Kouvetakis J, Bandari A, Todd M, et al, Novel synthetic routes to carbon-nitrogen thin films, Chem. Mater., 1994, 6: 811~814
    [8] Sjostrom H, Boman M, Superhard and elastic carbon nitride thin films having fullerence-like microstructure, Phys. Rev. Letts., 1995, 75 (7): 1336~1339
    [9] Suenaga K, Johansson M P, Hellgren N, et al. Carbon nitride nanotubulite–densely-packed and well-aligned tubular nanostructures, Chem. Phys. Lett., 1999, 300 (5–6): 695~700
    [10] Guo L P, Chen Y, Wang E G, et al, Identification of a new tetragonal C–N phase, J. Cyst. Growth, 1997, 178 (4): 639~644
    [11] Guo L P, Chen Y, Wang E G, Li L and Zhao Z X, Identification of a new C–N phase with monoclinic structure, Chem. Phys. Lett., 1997, 268 (1–2): 26~30
    [12] Lejeine M, Drouhin O D, Ballutand D, et al, Optical investigation of the microstructure of carbon nitride films deposited by magnetron sputtering, Surf. Coat. Technol., 2002, 151–152 (1): 242~246
    [13] Tétard F, Djemia P, et al, Surface and bulk characterization of CNx thin films made by r.f. magnetron sputtering, Surf. Coat. Technol., 2002, 151–152 (1): 184~188
    [14] Sáfrán G, Kolitsch A, Malhuitre S, et al, Modulated CNx films prepared by IBAD, Diam. Relat. Mater., 2002, 11 (8): 1552~1559
    [15] Zhao J P, Chen Z Y, Yano T, et al, Irradiation effect of low energy nitrogen-ion beam during pulsed laser deposition process on the structural and bonding properties of carbon-nitride thin films, J. Appl. Phys., 2001, 89 (3): 1580~1587
    [16] Voecodin A A, Jones J G, Zabinski J S, et al, Growth and structure of fullerene-like CNx films produced by pulsed laser ablation of graphite in nitrogen, J. Appl. Phys., 2002, 92 (9): 4980~4988
    [17] Zhang X W, Cheung W Y, Ke N, et al, Optical properties of nitrogenated tetrahedral amorphous carbon films, J. Appl. Phys., 2002, 92 (3): 1242~1247
    [18] Yu Y H, Chen Z Y, Lou E Z, et al, Optical and electrical properties of nitrogen incorporated amorphous carbon films, J. Appl. Phys., 2000, 87 (6): 2874~2879
    [19] Zhang X W, Ke N, Cheung W Y, et al, Synthesis and structure of nitrogenated tetrahedral amorphous carbon thin films prepared by a pulsed filtered vacuum arc deposition, Diam. Relat. Mater., 2003, 12 (1): 1~7
    [20] Cheng Y H, Qiao X L, Chen J G, et al, Dependence of the composition and bonding structure of carbon nitride films deposited by direct current plasma assisted pulsed laser ablation on the deposition temperature, Diam. Relat. Mater., 2002, 11 (8): 1511~1517
    [21] Bulí? J, Novotny M, Jelínek M, et al, Pulsed laser deposition of CNx films: role of r.f. nitrogen plasma activation for the film structure formation, Diam. Relat. Mater., 2002, 11 (3–6): 1223~1226
    [22] Chen L Y, Yang C, Franklin C N H, Properties of carbon nitride (CNx) films deposited by a high-density plasma ion plating method, Diam. Relat. Mater., 2002, 11 (3–6): 1172~1177
    [23] Sj?str?m H, Ivanov I, Kohansson M, et al, Reactive magnetron sputter deposition of CNx films on Si(001) substrates: film growth, microstrecture and mechanical properties, Thin Solid Films, 1994, 246 (1–2): 103~109
    [24] Rodil S E, Milne W I, Robertson J, Maximized sp3 bonding in carbon nitride phase, Appl. Phys. Lett., 2000, 77 (10): 1458~0162
    [25] Niu C, Lu Y Z, Lieber C M, Experimental Realization of the Covalent Solid Carbon Nitride, Science, 1993, 261 (5119): 334~336
    [26] Fernández A, Ramos C F, López J C, Preparation, microstructural characterization and tribological behaviour of CNx coatings, Surf. Coat. Technol., 2003, 163–164 (1): 527~534
    [27] Hellgren N, Johansson M P, Broitman E, et al, Effect of chemical sputtering on the growth and structural evolution of magnetron sputtered CNx thin films, Thin Solid Films, 2001, 382 (1–2): 146~152
    [28] Barreea F, Mezzasalma A M, Mondio G, et al, Measurement of the dielectric constant of amorphous CNx films in the 0–45 eV energy range, Phys. Rev. B, 2000, 62 (24): 16893~16899
    [29] Riedo E, Comin F, Chevrier J, et al, Composition and chemical bonding of pulsed laser deposited carbon nitride thin films, J. Appl. Phys., 2000, 88 (7): 4365~4370
    [30] Lu Y F, He Z F, Ren Z M, Simulation of material properties of amorphous carbon nitride with different nitrogen concentrations, J. Appl. Phys., 1999, 86 (10): 5417~5421
    [31] Hu J T, Yang P D, Lieber C M, Nitrogen-driven sp3 to sp2 transformation in carbon nitride materials, Phys. Rev. B, 1998, 57 (6): 3185~3188
    [32] Weich F, Widany J, Frauenheim T, Paracyanogenlike Structures in High -Density Amorphous Carbon Nitride, Phys. Rev. Lett., 1997, 78 (17): 3326~3329
    [33] Zhou Z M, Xia L F, An investigation of carbon nitride films depositied at various N2/Ar ratios by the vacuum cathodic arc deposition method, Surf. Coat. Technol., 2003, 172 (1): 102~108
    [34] Demichelis F, Fusco G., Tagliaferro A, et al, Mechanical and physical properties of amorphous carbon-based alloys, Diam. Relat. Mater., 1996, 5 (3–5): 461~465
    [35] Jung H S, Park H H, Microstucture analysis of carbon nitride (CNx) film prepared by ion beam assisted magenetron sputtering, Diam. Relat. Mater., 2002, 11 (3–6): 1205~1209
    [36] Liu W J, Zhou J N, Rar A, et al, X-ray reflectivity and nanotribological study of deposition-energy-dependent thin CNx overcoats on CoCr magnetic films, Appl. Phys. Lett., 2001, 78 (10): 1427~1429
    [37] Li D J, Guruz M U, Bhattua C, et al, Ultrathin CNx overcoats for 1 Tb/in.2 hard disk drive systems, Appl. Phys. Lett., 2002, 81 (6): 1113~1115
    [38] Feng J Y, Xie J Q, Zou X R, et al, Structure and tribological properties of carbon nitride films obtained by the reactive ionized cluster beam method, Surf. Coat. Technol., 2002, 160 (2–3): 132~137
    [39] Hellgren N, Johansson M P, Broitman E, et al, Role of nitrogen in the formation of hard and elastic CNx thin films by reactive magnetron sputtering, Phys. Rev. B, 1999, 59 (7): 5162~5169
    [40] Hellgren N, Macak M P, Hultman L, et al, Influence of plasma parameters on the growth and properties of magnetron sputtered CNx thin films, J. Appl. Phys., 2000, 88 (1): 524~534
    [41] Hellgren N, Johansson M P, Broitman E, et al, Anisotropies in magetron sputtered carbon nitride thin films, Appl. Phys. Lett., 2001, 78 (18): 2703~2705
    [42] Gyorgy E, Mihailescu I N, Baleva M, et al, Correlation between the chemical bonding and the physical properties of the CNx films obtained by pulsed laser deposition from C targets in low-pressure N2, Mater. Sci. Eng. B, 2003, 97 (3): 251~257
    [43] Broitman E, Zheng W T, Sjostrom H, Ivanov I, Greene J E and Sundgren J-E, Stress development during deposition of CNx thin films, Appl. Phys. Lett., 1998, 72 (20): 2532~2534
    [44] Sjostrom H, Stafstrom S, Boman M, et al, Surperhard and Elastic Carbon Nitride Thin Film Having Fullerenelike Microstucture, Phys. Rev. Lett., 1995, 75 (7): 1336~1339
    [45] Zocco A, Perrone A, Broitman E, et al, Mechanical and tribological properties of CNx films deposited by reactive pulsed laser ablation, Diam. Relat. Mater., 2002, 11 (1): 98~104
    [46] Chen Z Y, Zhao J P, Yano T, et al, Valence band electronic structure of carbon nitride from X-ray photoelectron spectroscopy, J. Appl. Phys., 2002, 92 (1): 281~287
    [47] Kusano Y, Barber Z H and Evetts J E, Tribological and mechanical properties of carbon nitride films deposited by ionised magnetron sputtering, Surf. Coat. Technol., 2000, 124 (2–3): 104~109
    [48] López J C, Donnet C, Belin M, et al, Tribochemical effects on CNx films, Surf. Coat. Technol., 1999, 133–134 (1): 430~436
    [49] Donnet C, Martin J M, et al, The role of CN chemical bonding on the tribological behaviour of CNx coatings, Surf. Coat. Technol., 1999, 120–121 (1): 594~600
    [50] López J C, Belin M, Donnet C, et al, Friction mechanisms of amorphous carbon nitride films under variable environments:a triboscopic study, Surf. Coat. Technol., 2002, 160 (2–3): 138~144
    [51] López J C, Donnet C, Mogne T, Tribological and surface characterization in UHV of amorphous CNx films, Vacuum, 2002, 64 (3–4): 191~198
    [52] Ramos C, López J C, Belin M, et al, Tribological behaviour and chemical characterization of Si-free and Si-containing carbon nitride coatings, Diam. Relat. Mater., 2002, 11 (2): 169~175
    [53] Broitman E, Hellgren N, W?nstr O, et al, Mechanical and tribological properties of CNx films deposited by reactive magnetron sputtering, Wear, 2001, 248 (1–2): 55~64
    [54] Li D, Cutiongco E, Chung Y W, et al, Composition, structure and tribological properties of amorphous carbon nitride coatings, Surf. Coat. Technol., 1994, 68–69 (1): 611~615
    [55] Shi X, Fu H, Shi J R, et al, Electronic transport properties of nitrogen doped amorphous carbon films deposited by the filtered cathodic vacuum arc technique, J. Phys: Condens. Matter., 1998, 10 (41): 9293~9302
    [56] Cheah L K, Shi X, Shi J R, et al, Properties of nitrogen doped tetrahedral amorphous carbon films prepared by filtered cathodic vacuum arc technique, J. Non-Cryst Solids, 1998, 242 (1): 40~48
    [57] Monclus M A, Cameron D C, Chowdhury A K, Electron properties of reatively sputtered CNx films, Thin Solid Films, 1999, 341 (1): 94~100
    [58] Sitch P K, Kohler T, Jungnickel G, et al, A theoretical study of boron and nitrogen doping in tetrahedral amorphous carbon, Sol. Stat. Commun, 1996, 100 (8): 549~553
    [59] Sitch P K, Jungnickel G, Kohler T, et al, p- and n-Type doping in carbon modifications, J. Non-Cryst Solids, 1998, 227–230 (1): 607~611
    [60] Shi J R, Wang J P, Wee A T S, et al, Photoelectron emission and Raman scattering studies of nitrogrenated tetrahedral amorphous carbon films, J. Appl. Phys., 2002, 92 (10): 5966~5969
    [61] Mott N F, Davis E A, Electronic Process in Non-Crystalline Materials, Oxford: Clarendon, 1971,1~437
    [62] Bhattacharyya S, Walzer K, Hietschold M, et al, Nitrogen dopung of tetrahedral amorphous carbon films: Scanning tunneling spectroscopy, J. Appl. Phys., 2001, 89 (3): 1619~1624
    [63] Evangelou E, Konofaos N, Logothetidis S, et al, Electrical behaviour of metal/a-C/Si and metal/CN/Si devices, Carbon, 1999, 37 (5): 871~876
    [64] Evangelou E, Konofaos N, Gioti M, et al, Nitrogen induced states at the CNx/Si interface, Mater. Sci Eng, B, 2000, 71 (1–3): 315~320
    [65] Konofaos N, Vangelou E K, Logothetidis S, et al, Electrical properties of carbon nitride films on silicon, J. Appl. Phys., 2002, 91 (12): 9915~9918
    [66] Gerstner E G, McKenzie D R, Nonvolatile memory effects in nitrogen doped tetrahedral amorphous carbon thin films, J. Appl. Phys., 1998, 84 (10): 5647~5649
    [67] Das D, Chen K H, Chattopadhyay S, et al, Spectroscopic studies of nitrogenated amorphous carbon films prepared by ion beam sputtering, J. Appl. Phys., 2002, 91 (8): 4944~4955
    [68] Mubumbila N, Tessier P Y, Angleraud B, et al, Effect of nitrogen incoporation in CNx thin films deposited by RF magnetron sputtering, Surf. Coat. Technol., 2002, 151–152 (1): 175~179
    [69] Ogata K, Chubasi J F D, Fujimoto F, Properties of carbon nitride films with composition ratio C/N=0.5–3.0 prepared by the ion and vapor deposition, J. Appl. Phys., 2000, 87 (8): 3791~3796
    [70] Yokoyama H, Okamoto M, Yamasaki T, et al, Optical and Mechanical Properties of Hard Hydrogenated Amorphous Carbon Films Deposited by Plasma CVD, Jpn. J. Appl. Phys., 1990, 129 (12): 2815~2818
    [71] Papadiumitriou D, Roupakas G, Dimitriadis C A, et al, Raman scattering and photoluminescence of nitrogenated amorphous carbon films, J. Appl. Phys., 2002, 92 (2): 870~875
    [72] Laskarakis A, Logothetidis S, Gioti M, Bonding structure of carbon nitride films by infrared ellipsometry, Phys. Rev. B, 2001, 64 (12): 125419
    [73] Ujvári T, Kolitsch A, Tóth A, et al, XPS characterization of the composition and bonding states of elements in CNx layers prepared by ion beam assisted deposition, Diam. Relat. Mater., 2002, 11 (3–6): 1149~1152
    [74] Morelli D T, Heremans J P, Thermal conducticity of germanium, silicon and carbon nitrides, Appl. Phys. Lett., 2002, 81 (27): 5126~5128
    [75] Modinos A, Xanthakis J P, Electron emission from amorphous carbon nitride films, Appl. Phys. Lett., 1998, 73 (13): 1874~1876
    [76] Godet C, Conway N M J, Bouree J E, et al, Structure and electronic properties of electron cyclotron resonance plasma depositied hydrogenated amorphous carbon and carbon nitride films, J. Appl. Phys., 2002, 91 (7): 4154~4162
    [77] Nagels P, Callaerts R, Denayer M, et al, Conduction in extended and localized states in the amorphous system As–Te–Si, In: proceedings of the 5th International Conference on Amorphous and Liquid Semiconductors, London: Taylor & Francis, 1974, 867~876
    [78] McKenzie D R, Yim Y, Marks N A, et al, Hydrogen-free amorphous carbon preparation and properties, Diam. Relat. Mater., 1994, 3 (4–6): 353~357
    [79] Kinoshita H, Yamauchi A, Formation of electrically conductive nitrogen- doped amorphous hydrogenated carbon (diamond-like carbon) films by the supermagnetron plasma chemical vapor deposition method, J. Vac. Sci. Technol. A, 1996, 14 (3): 1933~1935
    [80] Huttel I, Gurovic J, Cerny F, et al, Carbon and carbon nitride planar waveguides on silicon substrates, Diam. Relat. Mater., 1999, 8 (2–5): 628~630
    [81] Guruz M U, Dravid V P, Chung Y W, et al, Corrosion performance of ultrathin carbon nitride overcoats synthesized by magnetron sputtering, Thin Solid Films, 2001, 38 (1): 6~9
    [82] Guo Y J, Goddard W A, Is carbon nitride harder than diamond? No, but its girth increases when stretched (negative poisson ration), Chem. Phys. Lett., 1995, 237 (1): 72~75
    [83] Yu K M, Cohen M L, Haller E E, et al, Observation of crystalline C3N4, Phys. Rev. B, 1994, 49 (7): 5034~5037
    [84] Stafstrom S, Reactivity of curved and planar carbon-nitride structures, Appl. Phys. Lett. 2000, 77 (24): 3941~3943
    [85] Mattesini M, Matar S F, Density-function theory investigation of hardness, stability, and electron-energy-loss spectra of carbon nitrides with C11N4 stoichiometry, Phys. Rev. B, 2002, 65 (7): 075110
    [86] Kroto H W, Space, Stars, C60 and Soot, Science, 1988, 242: 1139~1145
    [87] Kroto H W, Carbon onions introduce new flavor to fullerene studies, Nature, 1992, 359: 670~671
    [88] Hultman L, Stafstrom S, Czigany Z, et al, Cross-linked nano-onions of carbon nitride in the solid phase:Existence of a novel C48N12 aza-fullerene, Phys. Rev. Letts., 2001, 87 (22): 225503~225506
    [89] Czigany Zsolt, Brunell I F, Neidhardt J, et al, Growth of fullerene-like carbon nitride thin solid films consisting of cross-linked nano-onions, Appl. Phys. Lett., 2001, 79 (16): 2639~2641
    [90] Schultz D, Droppa R, Alvarez F et al, Stability of small carbon nitride heterofullerenes, Phys. Rev. Lett., 2003, 90 (1): 01550101~4
    [91] Iijima S, Helical microtubules of graphitic carbon, Nature, 1991, 354: 56~58
    [92] Sen R, Satishkumar B C, Govindaraj A, et al, B-C-N,C-N and B-N nanotubes produced by the pyrolysis of precursor molecules over Co catalysts, Chem. Phys. Letts., 1998, 287 (5–6): 671~676
    [93] Yudasaka M, Kikuchi R, Ohki Y, et al, Nitrogen-containing carbon nanotube growth from Ni phthalocyanine by chemical vapor deposition, Carbon, 1997, 35 (2): 195~201
    [94] Stephan O, Ajayan P M, Colliex C, et al, Doping graphitic and carbon nanotube structures with Boron and Nitrogen, Science, 1994, 266: 1683~1685
    [95] Loiseau A, Willaime F, Demoncy N, et al, Boron nitride nanotubes, Carbon, 1998, 36 (5–6): 743~752 and references therein
    [96] Weng-Sieh Z, Cherrey K, Chopra N G, et al, Synthesis of BxCyNz nanotubules, Phys. Rev. B, 1995, 51 (16): 11229~11232
    [97] Liu J, Rinzler A G, Dai H J, et al, Fullerene Pipes, Science, 1998, 280: 1253~1255
    [98] Chen J, Hamon M A, Hu H, et al, Solution properties of single-walled carbon nanotubes, Science, 1998, 282: 95~98
    [99] Ma X, Wang E G, Tilley R D, et al, Size-controlled short nanobells:Growth and formation mechanism, Appl. Phys. Letts., 2000, 77 (25): 4136~4139
    [100] Ma X C, Wang E G, Zhou W Z, et al, Ploymerized carbon nanobells and their field-emission properties, Appl. Phys. Letts., 1999, 75 (20): 3105~3108
    [101] Ma X C, Wang E G, CNx/Carbon nanotube junctions synthesized by microwave chemical vapor deposition, Appl. Phys. Lett., 2001, 78 (7): 978~981
    [102] Veprek S, Reiorich S, Li S Z, Superhard nanocrystalline composite materials: the TiN/Si3N4 system, Appl. Phys. Lett., 1995, 66 (20): 2640~2042
    [103] Martinez D, Sanchez J C, Rojas T C, et al, Structural and microtribological studies of Ti-C-N based nanocomposite coating prepared by reactive sputtering, Thin Solid Films, 2005, 472 (1–2): 64~70
    [104] Sobota J, Sorensen J, Jensen H, et al, CN/MeN nanocomposite coatings, deposition and testing of performance, Surf. Coat. Technol., 2001, 142–144 (1): 590~595
    [105] Wu M L, Guruz M U, Dravid V P, et al, Formation of carbon nitride with sp3-bonded carbon in CNx/ZrN superlattice coatings, Appl. Phys. Lett., 2000, 76 (19): 2692~2694
    [106] Jensen H, Sobota J, Sorensen G, A study of film growth and tribological characterization of nanostructured C–N/TiNx multilayer coatings, Surf. Coat. Technol., 2000, 94–95 (1): 174~178
    [107] Liu C S, Wu D W, Fu D J, et al, Multilayers CNx/TiN composite films prepared by multi-arc assisted DC reactive magnetron sputtering, Surf. Coat. Technol., 1997, 128–129 (1): 144~149
    [108] Yu D L, Tian Y J, He J L, et al, Preparation of CNx/TiNy multilayers by ion beam sputtering, J. Cryst. Growth, 2001, 233 (1–2): 303~311
    [109] Fernandez C, Sanchez J C, Justo A, et al, Microstructural characterization of Ti–TiN/CNx gradient-multilayered coatings, Surf. Coat. Technol., 2004, 180–181 (1): 526~532
    [110] Wang T S, Yu D L, Tian Y J, et al, Cubic-C3N4 nanoparticles synthesized in CNx/TiNx multilayer films, Chem. Phys. Lett., 2004, 334 (1): 7~11
    [111] Jensen H, Sorensen G, Mannike I, et al, Reactive sputtering of nanostructured multilayer coatings and their tribological properties, Surf. Coat. Technol., 1999, 116–119 (1): 1070~1075
    [112] Pancielejko M, Precht W, Structure, chemical and phase composition of hard titanium carbon nitride coatings deposited on HS 65-5-2 steel, J. Mater. Proc. Technol., 2004, 157–158 (1): 394~398
    [113] Veprek S, Niederhofer A, Moto K, et al, Composition, nanostructure and origin of the ultrahardness in nc-TiN/a-Si3N4/a- and nc-TiSi2 nanocomposites with HV=80 to≥105 GPa, Surf. Coat. Technol., 2000, 133–134 (1): 152~159
    [114] Musil J, Leipner I and Kolega M, Nanocrystalline and nanocomposite CrCu and CrCu–N films prepared by magnetron sputtering, Surf. Coat. Technol., 1999, 115 (1): 32~38
    [115] Musil J, Polakova H, Hard nanocomposite Zr–Y–N coatings, correlation between hardness and structure, Surf. Coat. Technol., 2000, 127 (1): 99~103.
    [116] Musil J, Regent F, Formation of nanocrystalline NiCrN films by reactive dc magnetron sputtering, J. Vac. Sci. Technol. A, 1998, 16 (6): 3301~3305
    [117] Jiang L, Fitzgerald A G and Rose M J, Microstructural studies of copper incorporated amorphous carbon nitride films, Phys. Stat. Soli. a, 2002, 189 (1): 203~207
    [118] Kovacs G J, Safran G, Geszti O, et al, Structure and mechanical properties of carbon?nickel and CNx?nickel nanocomposite films, Surf. Coat. Technol., 2004, 180–181 (1): 331~334
    [119] Xu N, Cui F M, Lin H, et al, Raman spectra of nanocrystalline carbon nitride synthesized on cobalt-covered substrate by nitrogen-atom-beam-assisted pulsed laser ablation, J. Appl. Phys., 2002, 92 (1): 496~500
    [120] Xu N, Li L, Lin H, et al, Deposition of nanocrystalline CNx thin films on Co/Ni-covered substrate by nitrogen-atom-beam-assisted pulsed laser ablation, Phys. Lett. A, 2004, 320 (4): 297~301
    [121] Lu Y F, He Z F, Mai Z H, et al, Carbon nitride thin film systhesized on iron buffer layers, J. Appl. Phys., 2000, 88 (12): 7095~7098
    [122] Zhang Y P, Gu Y S, Chang X R, et al. Carbon nitride films deposited on Pt substrates by microwave plasma chemical vapor deposition, J. Univ. Sci. Technol. 2000, 7 (1): 42~44
    [123] Ruby C, Zhou J N, Du J, et al, Surface characterization of Co/CNx granular films fabricated by nanolamination, Surf. Interface Anal,. 2000, 29 (1): 38~45
    [124] Simeonov S, Szekeres, Gyorgy E, et al, CNx/Si thin heterostructures for miniaturized temperature sensors, J. Appl. Phys., 2004, 95 (9): 5111~5115
    [125] Mott N F, Conduction in Non-Crystalline Materials, Oxford: Clarendon, 1987
    [126]刘恩科,朱秉升,罗晋生,半导体物理学,北京:电子工业出版社,2003
    [127] Davis E A, Mott N F, Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors, Philos. Mag. 1970, 22 (179) 903~922
    [128] Brodsky M H, Gambino R J, Electrical conduction in evaporated amorphous silicon films, J. Non-Cryst. Solids, 1972, 8–10 (1): 739~744
    [129] Moustafa S H, Koos M, Pocsik, DC electrical properties of amorphous carbon with different bonding hybridization, J. Non-Cryst. Solids, 1998, 227–230 (1): 1087~1091
    [130] Bucker W, Preparation and DC conductivity of an amorphous organic semiconducting system, J. Non-Cryst. Solids, 1973, 12 (1): 115~128
    [131] Godet C, Physics of bandtail hopping in disordered carbons, Diam. Relat. Mater. 2003, 12 (2): 159~165
    [132] Lazar G, Zellama K, Clin M, et al, Band tali hopping conduction mechanism in highly conductive amorphous carbon nitride films, Appl. Phys. Lett. 2004, 85 (25): 6176~6178
    [133] Godet C, Variable range hopping revisited: the case of an exponential distribution of localized states, J. Non-Cryst. Solids, 2002, 299–302 (1): 333~338
    [134] Gittleman J I, Goldstein Y, Bozowski S. Magnetic properties of granular nickel films, Phys. Rev. B, 1972, 5 (9): 3609~3621
    [135] Sheng P, Abeles B, Arie Y. Hopping conductivity in granular metals, Phys. Rev. Lett., 1973, 31 (1): 44~47
    [136] Helman J S, Abeles B. Tunneling of spin-polarized electrons and magneto- resistance in granular Ni films, Phys. Rev. Lett., 1976, 37 (21):1429~1432
    [137] Xiao J Q, Jiang J S, Chien C L. Giant magnetoresistance in nonmultilayer magnetic systems, Phys. Rev. Lett., 1992, 68 (25): 3749~3752
    [138] Barzilai S, Goldstein Y, Balberg I, et al. Magnetic and transport properties of granular cobalt films. Phys. Rev. B, 1981, 23 (4): 1809~1817
    [139] Mitani S, Takahashi S, Takanashi K, et al. Enhanced magnetoresistance in insulating granular systems: evidence for higher-order tunneling, Phys. Rev. Lett., 1998, 81 (13):2799~2802
    [140] Miyazaki T, Tezuka N, Spin polarized tunneling in ferromagnet/insulator/ ferromagnet junctions, J. Magn. Magn. Mater., 1995, 151 (3): 403~410
    [141]白海力,姜恩永,铁磁金属—绝缘体颗粒薄膜的隧道型磁电阻(TMR),科学通报,2000,45 (20): 2134~2145
    [142] Mitani S, Fujimori H, Ohnuma S, Spin-dependent tunneling phenomena in insulating granular system, J Magn Magn Mater, 1997, 165 (1–3): 141~148
    [143] Mitani S, Takanashi K, Yakushiji K, et al. Anomalous behavior of temperature and bias-voltage dependence of tunnel-type giant magnetoresistance in insulating granular systems, J. Appl. Phys., 1998, 83 (11): 6524~6526
    [144] Inoue J, Maekawa S, Theory of tunneling magnetoresistance in granular magnetic films. Phys Rev B, 1996, 53 (18): R11927~11929
    [145]郑伟涛,白晓明,安涛,纳米多层膜和复合超硬涂层的研究进展,吉林师范大学学报,2004, 2: 1~7
    [146] Koehler J S. Attempt to design a strong solid, Phys. Rev. B, 1970, (2): 547~551
    [147]杜会静,田永君,超硬纳米多层膜致硬机理的研究,无机材料学报,2006, 21: 769~775
    [148] Lehoczky S L, Strength enhancement in thin:Layered Al-Cu laminates, J. Appl. Phys., 1978, 49 (11): 5479~5485
    [149] Jankowski A F, Measurement of lattice strain in Au-Ni multilayer and correlation with biaxial modulus effect, J. Appl. Phys., 1992, 71 (4): 1782~1789
    [150] Cammarata R C, Sieradzki K, Effects of surface stress on the elastic moduli of thin films and superlattices, Phys. Rev. Lett., 1989, 62 (17): 2005~2008.
    [151]张惠娟,袁家栋,许辉等,电子显微学报,2004, 23 (4): 374~377
    [152]李戈扬,韩增虎,田家万等,稀有金属材料与工程,2003,32 (1): 2~4
    [153] Cahn J W, Hardening by Spinodal Decomposition, Acta Metal., 1963, 11 (12): 1275~1282
    [154] Kato M, Mori T, Schwartz L H, Hardening by spinodal modulated structure, Acta Metal., 1980, 28 (3): 285~290
    [155] Xu J H, Yu L H, Azuma Y, et al, Thermal stress hardening of a-Si3N4/nc-TiN nanostructured multilayers, Appl. Phys. Lett., 2002, 81 (22): 4139~4141
    [156]薛增泉,吴全德,李洁,薄膜物理,北京:电子工业出版社,1997
    [157]吴自勤,王兵,薄膜生长,北京:科学出版社,2001
    [158] Javier D, Paoliceli G, Ferrer S, et al, Separation of the sp3 and sp2 components in the C1s photoemission spectra of amorphous carbon films, Phys. Rev. B, 1996, 54 (11): 8064~8066
    [159] Lee K H, Sugimura H, Inoue Y, et al, Dependence of hybridizations analyzed by XPS and visible Raman spectroscopy on nanohardness and wear resistance of amorphous carbon carbon nitride films, Diam. Relat. Mater., 2004, 13 (3): 507~512
    [160] Tao H J, Dong Y P, Lieber C M, Nitrogen-driven sp3 to sp2 transformation in carbon nitride materials, Phys. Rev. B, 1998, 57 (6): R3185~R3188
    [161] Ferrari A C, Rodil S E, Robertson J, Interpretation of infrared and Raman spectra of amorphous carbon nitrides, Phys. Rev. B, 2003, 67 (15): 155306
    [162] Bai H L, Jiang E Y, Improvement of the thermal stability of amorphous carbon films by incorporation of nitrogen, Thin Solid Films, 1999, 353 (1–2): 157~161
    [163] Beeman D, Silverman J, Anderson M R, Modeling studies of amorphous carbon, Phys. Rev. B, 1984, 30 (2): 870~874
    [164] Robertson J, Diamond-like amorphous carbon, Mater. Sci. Eng. R, 2002, 37 (4–6): 129~281
    [165] Schwan J, Batori V, Ulrich S, et al, Nitrogen doping of amorphous carbon thin films, J. Appl. Phys., 1998, 84 (4): 2071~2081
    [166] Silva S, Robertson J, Amaratunga G, et al, Nitrogen modification of hydrogenated amorphous carbon films, J. Appl.Phys., 1997, 81 (6): 2626~2634
    [167] Robertson J, Amorphous Carbon, Adv. Phys., 1986, 35 (2): 317~374
    [168] Bhattacharya A K, Nix W D, Analysis of Elastic and Plastic Deformation Associated With Indentation Testing of Thin Films on Substrates, Int. J. Solid Struct., 1988, 24 (12): 1287~1298
    [169] Logothetidis S, Charitidis C, Elastic properties of hydrogen-free amorphous carbon thin films and their relation with carbon–carbon bonding, Thin Solid Films, 1999, 353 (1–2): 208~213
    [170] Iijima S, Yudasaka M, Yamada R, et al, Nano-aggregates of single-walled graphitic carbon nano-horns, Chem. Phys. Lett., 1999, 309 (3–4): 165~170
    [171] Hellgren N, Johansson M P, Broitman E, et al, Role of nitrogen in the formation of hard and elastic CNx thin films by reactive magnetron sputtering, Phys. Rev. B, 1999, 59 (7): 5162~5169
    [172] Robertson J, Mechanism of sp3 bond formation in the growth of diamond-like carbon, Diam. Relat. Mater., 2005, 14 (3–7): 942~948
    [173] Lifshitz Y, Lempert G D, Grossman E, Substantiation of subplantation model for diamondlike film growth by atomic force microscopy, Phys. Rev. Lett., 1994, 72 (17): 2753~2757
    [174] Gioti M, Logothetidis S, Charitidis C, Stress relaxation and stability in thick amorphous carbon films deposited in layer structure, Appl. Phys. Letts., 1998, 73 (2): 184~187
    [175] Deng Z W, Souda R, Synthesis and thermal decomposition of carbon nitride films prepared by nitrogen ion implantation into graphite, Thin Solid Films, 2002, 406 (1–2): 46~51
    [176] Quiros C, Prieto P, Fernandez A, et al, Bonding and morphology study of carbon nitride films obtained by dual ion beam sputtering, J. Vac. Sci. Technol. A, 2000, 18 (2): 515~523
    [177] Beamson G, Briggs D, In High Resolution XPS on Organic compounds, U.K.: Wiley Chichester, 1992
    [178] Zhou Z M, Xia L F, Sun M R, The investigation of carbon nitride films annealed at different temperatures, Appl. Surf. Sci., 2003, 210 (3–4): 293~300
    [179] Wiemann J A, Carpenter E E, Wiggins J, et al, Magnetoresistance of a (γ-Fe2O3)80Ag20 nanocomposite prepared in reverse micelles, J. Appl. Phys., 2000, 87 (9): 7001~7003
    [180] Liu H, Jiang E Y, Bai H L, et al, Structure and magnetotransport properties of Fe3O4-SiO2 composite films reactively sputtered at room temperature, J. Appl. Phys., 2004, 95 (10): 5661~5665
    [181] Zhu T, Wang Y J, Zhao H W, et al, Tunneling magnetoresistance and magnetic properties of Fe–Al2O3 nanogranular films, J. Appl. Phys., 2001, 89 (11): 6877~6879
    [182] Cameron D C, Optical and electronic properties of carbon nitride, Surf. Coat. Technol., 2003, 169–170 (1): 245~250
    [183] Rodil S E, Muhl S, Maca S, et al, Optical gap in carbon nitride films, Thin Solid Films, 2003, 433 (1–2): 119~125
    [184] Wiltner A, Linsmeier C H, Formation of endothermic carbides on iron and nickel, Phys. Status Solidi A, 2004, 201 (5): 881~887
    [185] Wang Y, Fu Z W, Yue X L, et al, Electrochemical Reactivity Mechanism of Ni3N with Lithium, J. Electrochem. Soc., 2004, 151 (1): E162~E167
    [186] Pereira C A M, Abbate M, Schreiner W H, et al, Electronic structure of granular Fe–Al2O3 thin films prepared by co-evaporation Soli. Stat. Commun., 2000, 116 (8): 457~460
    [187] Charles Z D, Michael J, Sputtered cobalt-carbon-nitrogen thin films as oxygen reduction electrocatalysts, J. Electrochem. Soc., 1998, 145 (11): 3513~3520
    [188] Lu F H, Chen H Y, XPS analyses of TiN films on Cu substrates after annealing in the controlled atmosphere, Thin Solid Films, 1999, 355-356 (1): 374~379
    [189] Sarkar D K, Santanu Bera, Narasimhan S V, et al, GIXRD and XPS investigation of silicidation in ion beam mixed Cu/Si(111) system, Sol. Stat. Commun., 1998, 107 (8): 413~416
    [190] Mi W B, Li Z Q, Wu P, et al, Facing-target sputtered Fe–C granular films: Structural and magnetic properties, J. Appl. Phys., 2005, 97 (4): 043903
    [191] Sakai S, Yakushiji K, Mitani S, et al, Tunnel magnetoresistance in Co nanoparticle/Co-C60 compound hybrid system, Appl. Phys. Lett., 2006, 89 (11): 113~118
    [192] Sheng P, Fluctuation-induced tunneling conduction in disordered materials, Phys. Rev. B, 1980, 21 (6): 2180~2195
    [193] Shang C H, Nowak J, Jansen R, et al, Temperature dependence of magnetoresistance and surface magnetization in ferromagnetic tunnel junctions, Phys. Rev. B, 1998, 58 (6): 2917~2920
    [194] Sui Y, Zhang X Q, Wang X J, et al, Magnetoresistance in Sr2FeMoO6:x glass composites, J. Appl. Phys., 2007, 102 (2): 023903
    [195] Vedyayev A, Bagrets D, Bagrets A, et al, Resonant spin-dependent tunneling in spin-valve junctions in the presence of paramagnetic impurities, Phys. Rev. B, 2001, 63 (6): 064429
    [196] Chein C L, Xiao J Q, Jiang J S, Giant negative magn etoresistance in granular ferromagnetic systems, J. Appl. Phys., 1993, 73 (10): 5309~5314
    [197] Chen L H, Jin S, Tiefel T H, et al, Magnetoresistance in a spinodally decomposed Cu-Ni-Fe alloy consisting of two ferromagnetic phases, Phys. Rev. B, 1994, 49 (13): 9194~9197
    [198] Song H Q, Mei L M, Yan S S, et al, Microstructure, ferromagnetism, and magnetic transport of Ti1–xCoxO2 amorphous magnetic semiconductor, J. Appl. Phys., 2006, 99 (12): 123903~123906
    [199] Li D, Lin X W, Cheng S C, et al, Structure and hardness studies of CNx/TiN nanocomposite coatings, Appl. Phys. Lett., 1996, 68 (9): 1211~1213
    [200] Soderberg H, Oden M, Jon M M A, et al. Nanostructure formation during deposition of TiN/SiNx nanomultilayer films by reactive dual magnetron sputtering, J. Appl. Phys., 2005, 97 (11): 114327~114332
    [201] Xu J H, Kamiko M, Zhou Y M, et al, Superhardness effects of heterostructure NbN/TaN nanostructured multilayers, J. Appl. Phys., 2001, 89 (7): 3674~3678
    [202] Logothetidis S, Kassavetis S, Charitidis C, et al, Nanoindentation studies of multilayer amorphous carbon films, Carbon, 2004, 42 (5–6): 1133~1136
    [203] Jeyachandran Y L, Narayandass SaK, Mangalaraj D, et al, Properties of titanium nitride films prepared by direct current magnetron sputtering, Mater. Sci. Eng. A, 2007, 445–446 (1): 223~236
    [204] Bhattachatya AK, Nix WD, Analysis of the elastic and plastic deformation associated with indentation testing of thin films on substrates, Int. J. Solid. Struct., 1998, 24 (12): 1287~1298
    [205] Olive W C, Pharr G M, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res.,1992, 7: 1564~1583
    [206] Coke A M, Everitt N M, May P W, et al, comparison of two models of thin diamond film microhardness data to predict the hardness of CVD diamond, Diam. Rel. Mater., 1994, 3 (4–6): 783~786
    [207] Mencik J, Munz D, Quandt E, et al, Determination of elastic modulus of thin layers using nanoindentaion, J. Mater. Res., 1997, 12 (8): 2475~2484
    [208] Agarwal B K, X-Ray Spectroscopy. Berlin: Springer-Verlag, 1979
    [209] Abadias G, Tse Y Y, Guerin P H, et al, Interdependence between stress, preferred orientation, and surface morphology of nanocrystalline TiN thin films deposited by dual ion beam sputtering, J. Appl. Phys., 2006, 99 (11): 113519~113523
    [210] Greene J E, Sundgren J E, Hultman L, et al, Development of preferred orientation in polycrystalline TiN layers grown by ultrahigh vacuum reactive magnetron sputtering, Appl. Phys. Lett., 1995, 67 (20): 2928~2930
    [211] Davis LA. Plastic instability in a metallic glass. Scr Met 1975;9:339–341.
    [212] Spaepen F, Turnbull D, Mechanism for the Flow and Fracture of Metallic Glasses. Scipta Metal., 1974, 8 (5): 563~568

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700