原位聚合法制备半导体纳米粒子/聚合物杂化光学材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高分子基的纳米复合材料是纳米尺度的无机材料与有机高分子材料进行复合,制备的材料不但能兼顾无机材料和高分子材料的优点,还进一步通过各组分协同作用产生更加优异的综合性能。纳米复合光学材料既具有高分子光学材料的透光性、柔韧性、易加工成型性等特点,又具有无机光学材料优异的机械性能(高硬度、高模量等)和良好的耐热性、高折射率等优点。新型纳米复合光学材料还可以将具有特定功能(高折射率,光致变色,紫外光屏蔽,导电,发光,非线性光学等)的无机纳米填料同聚合物复合,表现出优异的功能。因此纳米复合光学材料的研究在工程光学、发光器件、显示器件、非线性光学材料等方面显示出了诱人的应用前景。
     在本论文中,我们成功地将一些半导体纳米粒子通过原位聚合技术引入到高分子中,得到了一系列透明纳米复合光学材料。我们将硫化锌纳米粒子粉末分散在单体N,N-二甲基丙烯酰胺(DMAA)中,而且保持透明。然后我们又加入苯乙烯,二乙烯基苯作为共聚单体以及交联剂,利用引发剂AIBN进行自由基本体聚合,得到了光学透明的、折射率可随硫化锌含量可调的体相纳米复合光学材料。我们进一步在体系中引入ZnS-聚氨酯(PU)交联网络,制备了透明的具有IPN结构的纳米复合光学材料。此外,我们将一系列的ZnxCd1-xS合金纳米粒子通过原位聚合的方法引入到聚合物基体中。这些纳米复合材料的透明性良好,而且保持了纳米粒子的荧光发射。从而实现了从橙红到蓝光荧光可调的透明纳米复合体相材料。
     我们还开发了一种在乙二醇中合成硫化锌纳米粒子的方法。合成的硫化锌纳米粒子可以均匀地分散在乙二醇中,而且透明性良好。经过反沉淀处理得到的粉末可以重新分散到乙二醇中。经过DMF稀释后,加入二异氰酸酯,然后涂膜,可以制备具有蓝色荧光的高折射率光学涂层。当硫化锌含量达到12.36wt%时,光学涂层的折射率可以达到1.63。
Optical materials are one of the most essential materials for the modern science and technology. The synthesis and research of optical materials is one of the most important components of materials science, and it’s in rapid development. The conventional optical materials consist of inorganic and organic (polymer) materials. The inorganic materials have good mechanical properties (such as high strength, high hardness and high rigidity), good optical properties (high refractive index, large Abbe’s numbers, good optical transparency) and thermal stability, but it is difficult to process to fabricate optical components and devices. Polymer optical materials as the substitute of inorganic materials have been widely used in lenses, optical fibers, opticalwaveguides, optical coatings, optoelectronic devices and antireflection coatings due to their advantages of light weight, flexibility, impact resistance, easily processability, dye ability and excellent optical properties, etc. However, the polymer materials have the disadvantages of low surface hardness, narrow change range of refractive index (1.3~1.7), and low heat-resistance. Thus, one of the current leading research directions on polymer optical materials is to improve these properties of polymer materials and research the materials with more outstanding properties in order to meet the needs in high performance and high precision for optical materials.
     With the development of nanotechnology, more and more functional inorganic nanoparticles and nanomaterials have been developed. For example, the research on nanoparticles with photoluminescence, non-linear optical properties, photochromism, etc. have drawn many attentions of scientists from all over the world. In order to realize the function and applications of these nanoparticles and nanomaterials, the nanoparticles and nanomaterials should be incorporated with macro materials for example, organic polymers for further application on devices. So there came the nanocomposites. The approach of inorganic/organic polymer nanocomposites technology facilitates us to prepare for diverse materials with diverse properties. Compared with the pure inorganic and pure compound organic materials, inorganic/organic polymer nanocomposites have the unparalleled advantages. Optical nanocomposites consisting of inorganic and organic components with controllable length scales of inorganic nano-building blocks ranging from a few angstroms to a few tens of nanometers have attracted broad attention from both fundamental and applied research due to their distinguished physical, chemical properties and well processable properties for optical applications. The nanocomposites materials can behave the advantages of organic polymers and that of inorganic materials. In chapter one, we extensively reviewed and discussed the methods for preparing transparent nanocomposites materials by taking the high refractive index nanocomposites materials as an example. The applications of high refractive index nanocomposites were also reviewed. Besides, other transparent nanocomposites with novel properties, for example, photoluminescence, photochromism, UV-shielding, etc. were also reviewed.
     In this dissertation, transparent nanocomposite materials were prepared by incorporating ZnS, ZnxCd1-xS etc. with polymer matrix by in-situ polymerization method via design and tailoring the surface structure of nanoparticles and the structure of monomers for polymer matrix. The properties of nanocomposites with high refractive index, photoluminescence were also studied.
     In the first section of chapter Two, transparent bulk polymer nanocomposites with high contents of ZnS nanoparticles (NPs) were prepared via free radical initiated in-situ bulk polymerization of N,N-dimethylacrylamide (DMAA), styrene (St) and divinylbenzene (DVB) using 2,2′-azobisisobutyronitrile (AIBN) as initiator in the presence of 2-mercaptoethanol (ME) capped ZnS nanoparticles. Firstly, mercaptoethanol capped ZnS nanoparticles were synthesized in dimethylformamide(DMF). The ZnS nanoparticles with average size of 3nm can disperse in DMF without any precipitation. The ZnS nanoparticles powders were attained by anti-precipitation method, and it’s found that it can be well dispersed in DMAA. The novelty of our strategy is that N,N-dimethylacrylamide (DMAA) we selected is as well a monomer as a solvent which can effectively disperse and stabilize ZnS NPs. The structure and properties of the nanocomposites were studied. Sphalerite ZnS NPs with average size of about 3nm were dispersed homogeneously in polymer matrices. The ME capped ZnS nanophase reached 30 wt%, while the bulk nanocomposites still exhibited good transparency in the visible light range. TGA study showed that the nanocomposite materials had excellent thermal stability. Dynamic mechanical analysis and pencil hardness studies showed that the materials had good mechanical properties. However, with the increase of the ME capped ZnS content, the glass transition temperature of the nanocomposites decreased probably due to the plasticizing effect of the ME capped ZnS NPs. Refractive indices of the nanocomposite materials increased from 1.54 for the matrix to 1.58 as increasing the weight fraction of the ME capped ZnS NPs to 30 wt%. In the second section of this charpter, nanocomposites with IPN structure were prepared by introducing ZnS nanoparticles crosslinked polyurethane. The nanocomposites with IPN structure had improved the mechanic porferance of the nanocomposites prepared in the first section of this charpter.
     In chapter Three, Alloyed ZnxCd1-xS nanoparticles(NPs) were synthesized by a simple one-step wet chemical route in DMF solvent using ME as capping agent as well as zinc acetate, cadmium acetate and thiourea as sources of Zn, Cd and S respectively. These ternary alloyed NPs exhibited a tunable photoluminescence from 375 nm to 568 nm by changing the Zn/Cd ratio and these free-standing ternary alloyed NPs powders showed well redispersibility in organic polar monomer such as DMAA. Furthermore, a series of transparent polymer nanocomposites with continuous controllable fluorescence from 452 nm to 568 nm can be easily obtained by in-situ bulk polymerization of organic monomers (DMAA, St, and DVB) with dispersed ZnxCd1-xS NPs. These prepared nanocomposites with tunable PL show good optical transparency and thermal stability, and may be used as optical materials for potential applications.
     In chapter Four, a novel method for preparing ZnS nanoparticles in ethylene glycol(EG) was invented. ZnS nanoparticles have been prepared by weak coordination control with multi- hydroxyl (ethanol) amine, for example, diethanolamine (DEA), triethanolamine (TEA) etc. in ethylene glycol. Zn(OAc)2, Zn(NO3)2, ZnCl2, can be used as the zinc source respectively, while thiourea can be used as the sulfur source. The prepared ZnS nanoparticles can be well dispersed in ethylene glycol without precipitation. We also studied the reaction mechanism for preparing ZnS nanoparticles, and the factors influencing the crystal type. With Zn(OAc)2 as zinc source, ZnS nanoparticle with cubic form can be obtained with or without DEA. However, when ZnS nanoparticles were prepared by ZnCl2, Zn(NO3)2 as zinc source without DEA, white precipitation of ZnS nanoparticles were hexagonal form; In the presence of DEA, ZnS nanoparticle with cubic form can well dispersed in EG. TGA study shows that ZnS nanoparticles have less surface-capping agent than that of reported. The photoluminescence of the ZnS nanoparticles was also studied. Besides, nanocomposite films of ZnS in PU matrix were prepared and studied. It shows that the incorporation of ZnS nanoparticles improve the refractive index.
引文
[1]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社, 2001.
    [2]徐国财,张立德.纳米复合材料[M].北京:化学工业出版社, 2002.
    [3] Bréchignac C, Houdy P, Lahmani M. Nanomaterials and nanochemistry[M]. Berlin Heidelberg: Springer 2007.
    [4] Majetich S A, Cater A C. Surface effects on the optical properties of cadmium selenide quantum dots[J]. J. Phys.Chem. 1993, 97: 8727–8731.
    [5] Novak B M. Hybrid nanocomposite materials - between inorganic glasses and organic polymers[J]. Adv. Mater., 1993, 5:422–433.
    [6] Allcock H R. Inorganic - organic polymers[J]. Adv. Mater., 1994, 6:106–115.
    [7] Kickelbick G. Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale[J]. Prog. Polym. Sci., 2003, 28:83–114.
    [8] Declerck P, Houbertz R, Jakopic G, et al. High refractive index inorganic-organic hybrid materials for photonic applications[J]. Materials Research Society Symposium Proceedings, 2008, 1007:15–21.
    [9] Flaim T, Wang Y, Mercado R. High-refractive-index polymer coatings for optoelectronics applications[J]. Proc. SPIE, 2004, 5250:423–434.
    [10] Criante L, Castagna R, Vita F, et al. Nanocomposite polymeric materials for high density optical storage[J]. J. Opt. A: Pure Appl. Opt. 2009, 11:024011.1–10.
    [11] Liang L, Xu Y, Zhang L, et al. Polyvinylpyrrolidone/ZrO2–based sol–gel filmsapplied in highly reflective mirrors for inertial confinement fusion[J]. J. Sol-Gel Sci. Technol. 2008, 47:173–181.
    [12] Mosley D, Auld K, Conner D, et al. High performance encapsulants for ultra high-brightness LEDs[J]. Proc. SPIE, 2008, 6910: 691017.1–8.
    [13] Janicki V, Wilbrandt S, Stenzel O, et al. Hybrid optical coating design for omnidirectional antireflection purposes[J]. J. Opt. A: Pure Appl. Opt. 2005, 7:L9–L12.
    [14] Beecroft L L, Ober C K. Nanocomposite materials for optical applications[J]. Chem. Mater., 1997, 9:1302–1317.
    [15]汪敏强,李广社,易文辉,邹小平,姚熹.功能纳米复合材料的研究现状与展望[J].功能材料, 2000, 31: 337–340.
    [16] Hornak L A: Polymers for lightwave and integrated optics: technology and applications[M]. New York: Marcel Dekker, 1992.
    [17] Ho W F, Uddin M A, Chan H P. The stability of high refractive index polymer materials for high-density planar optical circuits[J]. Polymer Degradation and Stability, 2009, 94:158–161.
    [18] Caseri W R. Nanocomposites of polymers and inorganic particles: preparation, structure and properties[J]. Mater. Sci. Technol., 2006, 22:807–817.
    [19] Tsuzuki T. Abnormal transmittance of refractive-index-modified ZnO/ organic hybrid films[J]. Macromol. Mater. Eng., 2008, 293:109–113.
    [20] Tsujioka N, Aoki S, Matsukawa K, et al. Transparent composite material. JP2007091965 [P] (2007).
    [21] Shibahara S, Shimobe Y, Kuramoto H. Transparent composite composition. WO 03064535[P] (2003).
    [22] Shibahara S, Oka W. Transparent composite composition. WO 03064530[P] (2003).
    [23] Shimobe Y, Shibahara S, Oka W, et al. Transparent composite composition. JP2004307845[P] (2004).
    [24] Kang S, Lin H, Day D E, et al. Optically transparent polymethyl methacrylate composites made with glass fibers of varying refractive index[J]. J. Mater. Res., 1997, 12:1091–1101.
    [25] Li YQ, Fu SY, Yang Y, et al. Facile synthesis of highly transparent polymer nanocomposites by introduction of core–shell structured nanoparticles[J]. Chem. Mater., 2008, 20: 2637–2643.
    [26] Zhou R J, Burkhart T. Optical properties of particle-filled polycarbonate, polystyrene, and poly(methyl methacrylate) composites[J]. J. Appl. Polym. Sci., 2009, 115:1866–1872.
    [27] Schneider J, Fanter D, Bauer M, et al. Preparation and optical transparency of composite materials from methacrylate ester copolymers and faujasites with an embedded azo dye[J]. Microporous Mesoporous Mater., 2000, 39:257–263.
    [28] Suárez S, Devaux A, Baňuelos J, et al. Transparent zeolite-polymer hybrid materials with adaptable properties[J]. Adv. Funct. Mater., 2007, 17:2298–2306.
    [29] Taira M, Suzuki H, Toyooka H, et al. Refractive index of inorganic fillers in seven visible-light-cured dental composite resins[J]. J. Mater. Sci. Lett., 1994, 13:68–70.
    [30] Ramaswami R, Sivarajan K. Optical networks: a practical perspective[M]. San Francisco: Morgan Kaufmann, 2001.
    [31] Caseri W. Nanocomposites of polymers and metals or semiconductors: Historical background and optical properties[J]. Macromol. Rapid Commun., 2000, 21:705–722.
    [32] Border J, McGovern M R. Reduced temperature sensitive polymeric optical article and method of making same. US7045569[P] (2006).
    [33] James, R.O., Rowley, L.A., Hurley, D.F., Border, J.: Core shell nanocomposite optical plastic article. US7091271[P] (2006).
    [34] Yang C J, Jenekhe S A. Group contribution to molar refraction and refractive index of conjugated polymers[J]. Chem. Mater., 1995, 7:1276–1285.
    [35] VanKrevelen D W. Properties of polymers[M], Amsterdam: Elsevier, 3rd ed., 1990.
    [36] Speight J G. Lange’s handbook of chemistry (16th Edition) [M], New York: McGraw-Hill, 2005.
    [37] Gao C, Yang B, Shen J. An improved dilatometer for polymers based on beta–particle absorption[J]. J. Appl. Polym. Sci., 2000, 75:1474–1478.
    [38] Okubo T, Kohmoto S, Yamamoto M. Preparation, characterization, and optical properties of disulfide-comprising oligo[2,5-bis(thiomethyl)-1,4-dithiane] and its poly[S-alkylcarbamate] [J]. J. Mater. Sci., 1999, 34:337–347.
    [39] Jallouli A B A, Obordo J O, Turshani Y Y, et al. High refractive index and high impact resistant polythiourethane/urea material, method of manufacturing same and its use in the optical field. EP1456264[P](2002)..
    [40] Okubo T, Kohmoto S, Yamamoto M. Synthesis, characterization, and optical properties of polymers comprising 1,4-dithiane-2,5-bis(thiomethyl) group[J]. J. Appl. Polym. Sci., 1998, 68:1791–1799.
    [41] LüC, Cui Z, Wang Y, et al. Studies on syntheses and properties of episulfide-type optical resins with high refractive index[J]. J. Appl. Polym. Sci., 2003, 89:2426–2430.
    [42] Okutsu R, Suzuki Y, Ando S, et al. Poly(thioether sulfone) with high refractive index and high Abbe’s number[J]. Macromolecules, 2008, 41: 6165–6168.
    [43] Liu J G, Nakamura Y, Shibasaki Y, et al. Synthesis and characterization of highly refractive polyimides from 4,4-thiobis[(p-phenylenesulfanyl)aniline] and various aromatic tetracarboxylic dianhydrides[J]. J. Polym. Sci., Part A: Polym. Chem., 2007, 47:5606–5617.
    [44] Liu J G, Nakamura Y, Shibasaki Y, et al. High refractive index polyimides derived from 2,7-bis(4-aminophenylenesulfanyl)thianthrene and aromatic dianhydrides[J]. Macromolecules, 2007, 40:4614–4620.
    [45] Liu J G, Nakamura Y, Suzuki Y, et al. Highly refractive and transparent polyimides derived from 4,4’-[m-sulfonylbis(phenylenesulfanyl)]diphthalic anhydride and various sulfur-containing aromatic diamines[J]. Macromolecules, 2007, 40: 7902–7909.
    [46] Olshavsky M A, Allcock H R. Polyphosphazenes with high refractive indices: synthesis, characterization, and optical properties[J]. Macromolecules, 1995, 28:6188–6197.
    [47] Olshavsky M A, Allcock H R. Polyphosphazenes with high refractive indices: optical dispersion and molar refractivity[J]. Macromolecules, 1997, 30:4179–4183.
    [48] Zimmermann L, Weibel M, Caseri W, et al. Polymer nanocomposites with ultralow refractive index[J]. Polym. Adv. Technol., 1993, 4:1–7.
    [49] Palik E D. ed. Handbook of optical constants of solids[M], Orlando: Academic Press, 1985.
    [50] French R H, Glass S J, Ohuchi F S, et al. Experimental and theoretical determination of the electronic structure and optical properties of three phases of ZrO2[J]. Phys. Rev. B: Condens. Matter, 1994, 49:5133–5142.
    [51] Li Y Q, Fu S Y, Mai Y W. Preparation and characterization of transparent ZnO/epoxy nanocomposites with high-UV shielding efficiency[J]. Polymer, 2006, 47:2127–2132.
    [52] Demir M M, Memesa M, Castignolles P, et al. PMMA/zinc oxide nanocomposites prepared by in-situ bulk polymerization[J]. Macromol. Rapid Commun., 2006, 27:763–770.
    [53] Krogman K C, Druffel T, Sunkara M K. Anti-reflective optical coatings incorporating nanoparticles[J]. Nanotechnology, 2005, 16:S338–S343.
    [54] Cui H, Zayat M, Parejo P. G. et al. Highly efficient inorganic transparent UV-protective thin-film coating by low temperature sol-gel procedure for application on heat-sensitive substrates[J]. Adv. Mater., 2008, 20:65–68.
    [55] Schulz H, M?dler L, Pratsinis S E, et al. Transparent nanocomposites of radiopaque, flame-made Ta2O5/SiO2 particles in an acrylic matrix[J]. Adv. Funct. Mater., 2005, 15:830–837.
    [56] Yin Y, Zhou S, Gu G, et al. Preparation and properties of UV-curable polymer/nanosized indium-doped tin oxide (ITO) nanocomposite coatings[J]. J. Mater. Sci., 2007, 42:5959–5963.
    [57] Mataki H, Yamaki S, Fukui T. Nanostructured organic/inorganic composites as transparent materials for optical components[J]. Jpn. J. Appl. Phys., Part 1, 2004, 43: 5819–5823.
    [58] Yang H L, Quan R, Zhang G H, et al. Preparation and optical constants of the nano-crystal and polymer composite Bi4Ti3O12/PMMA thin films[J]. Opt. Laser Technol., 2005, 37:259–264.
    [59] Kypriandou-Leodidou T, Althaus H J, Wyser Y, et al. High refractive index materials of iron sulfides and poly(ethylene oxide) [J]. J. Mater. Res., 1997, 12:2198–2206.
    [60] Kypriandou-Leodidou T, Caseri W, Suter U W. Size variation of PbS particles in high-refractive-index nanocomposites[J]. J. Phys. Chem., 1994, 98:8992–8997.
    [61] Schmitt-Rink S, Miller D A B, Chemla D S. Theory of the linear and nonlinear optical properties of semiconductor microcrystallites[J]. Phys. Rev. B, 1987, 35: 8113–8125.
    [62] Papadimitrakopoulos F, Wisniecki P, Bhagwagar D E. Mechanically attrited silicon for high refractive index nanocomposites[J]. Chem. Mater., 1997, 9:2928–2933.
    [63] LüC L, Cheng Y R, Liu Y F, et al. A facile route to ZnS-polymer nanocomposite optical materials with high nanophase content viaγ-ray irradiation initiated bulk polymerization[J]. Adv. Mater., 2006, 18: 1188–1192.
    [64] Sun H Z, Yang B, In situ preparation of nanoparticles/polymer composites[J]. Science in China Series E: Technological Sciences, 2008, 51:1886–1901.
    [65] Ramanathan LS, Vijayendran BR, Schulte MD, et al. Synthesis of nanoparticles in non-aqueous polymer solutions and product. US20070293611 [P] (2007).
    [66] Denisyuk I Y, Williams T R. Methods of preparing polymer nanocomposite having surface modified nanoparticles. US7172811[P] (2007).
    [67] Kane R S, Cohen R E, Silbey R. Synthesis of PbS nanoclusters within block copolymer nanoreactors[J]. Chem. Mater., 1996, 8:1919–1924.
    [68] Carrot G, Scholz S M, Plummer C J G, et al. Synthesis and characterization of nanoscopic entities based on poly(caprolactone)-grafted cadmium sulfide nanoparticles[J]. Chem. Mater., 1999, 11:3571–3577.
    [69] Gao M, Yang Y, Yang B, et al. Effect of the surface chemical modification on the optical properties of polymer-stabilized PbS nanoparticles[J]. J Chem Soc, Faraday Trans, 1995, 91:4121–4125.
    [70] Yang Y, Huang J, Liu S, et al. Preparation, characterization and electroluminescence of ZnS nanocrystals in a polymer matrix[J]. J. Mater. Chem., 1997, 7:131–133.
    [71] Zimmermann L, Weibel M, Caseri W, et al. High refractive index films of polymer nanocomposites[J]. J. Mater. Res., 1993, 8:1742–1748.
    [72] LüC, Guan C, Liu Y, et al. PbS/polymer nanocomposite optical materials with high refractive index[J]. Chem. Mater., 2005, 17:2448–2454.
    [73] Mammeri F, Bourhis E Le, Rozes L, et al. Mechanical properties of hybrid organic–inorganic materials[J]. J. Mater. Chem., 2005, 15:3787–3811.
    [74] Sanchez C, Soler-Illia G J de A A, Ribot F, et al. Designed hybrid organic?inorganic nanocomposites from functional nanobuilding blocks[J]. Chem. Mater., 2001, 13:3061–3083.
    [75] Schottner G. Hybrid Sol?gel-derived polymers: applications of multifunctional materials[J]. Chem. Mater., 2001, 13:3422–3435.
    [76] Sanchez C, Lebeau B, Chaput F et al. Optical properties of functional hybrid organic-inorganic nanocomposites[J]. Adv. Mater., 2003, 15:1969–1994.
    [77] Pénard A-L, Gacoin T, Boilot J-P. Functionalized sol–gel coatings for optical applications[J]. Acc. Chem. Res., 2007, 40:895–902.
    [78] LüC L, Yang B. High refractive index organic–inorganic nanocomposites: design, synthesis and application[J]. J. Mater. Chem., 2009, 19:2884–2901.
    [79] Ogoshi T, Chujo Y. Organic–inorganic polymer hybrids prepared by the sol-gel method[J]. Composite Interfaces, 2005, 11:539–566.
    [80] Flaim T D, Wang Y B, Mercado R-M L. Hybrid organic-inorganic polymer coatings with high refractive indices.US 20060030648 [P] (2006).
    [81] Wang B, Wilkes G L. High refractive-ikdex ceramic/polymer hybrid material. US5109080[P] (1992).
    [82] Wang B, Wilkes GL. High refractive-index hybrid material prepared by titanium alkoxide and a phosphine containing oligomer. US5143988[P] (1992).
    [83] Rao Y Q, Bailey DB, Chen S, Furbeck NL. Nanocomposite materials comprising high loadings of filler materials and an in-situ method of making such materials. US20070042174[P] (2007).
    [84] Wang B, Wilkes G L, Hedrick J C, et al. New high-refractive-index organic/inorganic hybrid materials from sol-gel processing[J]. Macromolecules, 1991, 24:3449–3450.
    [85] Lee L H, Chen W C. High-Refractive-Index Thin Films Prepared from Trialkoxysilane-Capped Poly(methyl methacrylate)?Titania Materials[J]. Chem. Mater., 2001, 13:1137–1142.
    [86] Su H W, Chen W C. High refractive index polyimide–nanocrystalline-titania hybrid optical materials[J]. J. Mater. Chem., 2008, 18:1139–1145.
    [87] Chen W C, Liu W C, Wu P T, et al. Synthesis and characterization of oligomeric phenylsilsesquioxane-titania hybrid optical thin films[J]. Mater. Chem. Phys., 2004, 83:71–77.
    [88] LüC, Cui Z, Guan C, et al. Research on preparation, structure and properties of TiO2/polythiourethane hybrid optical films with high refractive index[J]. Macromol. Mater. Eng., 2003, 288:717–723.
    [89] Su W F, Yuan H K. Solventless nontoxic high refractive index and low birefringence organiciinorganic hybrid materials[J]. US6835792B2[P] (2004).
    [90] Sanchez C, Julián B, Belleville P, et al. Applications of hybrid organic–inorganic nanocomposites[J]. J. Mater. Chem., 2005, 15:3559–3592.
    [91] Que W, Sun Z, Zhou Y, et al. Optical and mechanical properties of TiO2/SiO2/organically modified silane composite films prepared by sol–gel processing[J].Thin Solid Films, 2000, 359:177–183.
    [92]杨柏,刘毅飞,吕长利。高强有机/无机纳米复合透明膜层材料及制备方法. CN200510016828.7[P] ( 2005).
    [93] Althues H, Henle J, Kaskel S. Functional inorganic nanofillers for transparent polymers[J]. Chem. Soc. Rev., 2007, 36:1454–1465.
    [94] Suzuki R, Obayashi T, Mochizuki H. Organic-inorganic hybrid composition, method for producing the same, molding and optical component. WO2007091730 (2007).
    [95] Aiki Y, Obayashi T, Mochizuki H, et al. Organic-inorganic composite composition, its preparation process, molded article and optical component. JP2007238929[P] (2007).
    [96] Dubois F, Mahler B, Dubertret B, et al. A versatile strategy for quantum dot ligand exchange[J]. J. Am. Chem. Soc., 2007, 129:482–483.
    [97] Lee S, Shin H J, Yoon S M, et al. Refractive index engineering of transparent ZrO2–polydimethylsiloxane nanocomposites[J]. J. Mater. Chem., 2008, 18:1751–1755.
    [98] Tanaka T, Tomono H, Yamashita Y, et al. Transparent polymer composition and optical member using the same. JP2007204739[P] (2007).
    [99] Iijima T, Hayashi T. High refractive index resin composition. JP2007270097[P] (2007).
    [100] Sasagawa T, Kawaseki T, Hayashi T, et al. Transparent polymeric material and its manufacturing method. JP2002047425[P] (2002).
    [101] Rantala J. Novel nanoparticle containing siloxane polymers. US20080188032[P] (2008).
    [102] Liu J G, Nakamura Y, Ogura T, et al. Optically transparent sulfur-containing polyimide?TiO2 nanocomposite films with high refractive index and negative pattern formation from poly(amic acid)?TiO2 nanocomposite film[J]. Chem. Mater., 2008, 20:273–281.
    [103] Suzuki A. Organic-inorganic composite composition and optical component. JP2007211164[P] (2007).
    [104] Suzuki A, Obayashi T, Mochizuki H. Organic-inorganic composite composition, its preparation process, molded item, and optical component. JP238930[P] (2007).
    [105] Taima Y. Thermoplastic composite material and optical element. US20060128869 [P] (2006).
    [106] Avella M, Errico M E, Martuscelli E. Novel PMMA/CaCO3 nanocomposites abrasion resistant prepared by an in situ polymerization process[J]. Nano Lett., 2001, 1:213–217.
    [107] Zhang H, Cui Z, Wang Y, et al. From water-soluble CdTe nanocrystals to fluorescent nanocrystal-polymer transparent composites using polymerizable surfactants[J]. Adv. Mater., 2003, 15:777–780.
    [108] Khaled S M, Sui R, Charpentier P A, et al. Synthesis of TiO2?PMMA Nanocomposite: Using Methacrylic Acid as a Coupling Agent[J]. Langmuir, 2007, 23:3988–3995.
    [109] Demir M M, Castignolles P, Akbey U, et al. In-situ bulk polymerization of dilute particle/MMA dispersions[J]. Macromolecules, 2007, 40:4190–4198.
    [110] Althues H, Palkovits R, Rumplecker A, et al. Synthesis and characterization of transparent luminescent ZnS:Mn/PMMA nanocomposites[J]. Chem. Mater., 2006, 18:1068–1072.
    [111] Yoshida K. Optical material. JP2005316119[P] (2005).
    [112] Koo K. Optical material. JP2005316219[P] (2005).
    [113] Shiga N. Optical material. JP2005331708[P] (2005).
    [114] Goto A. Composition for optical material and optical material. JP2006008926[P] (2006).
    [115] Shustack P, Wang Z. Curable high refractive index compositions. US 6656990[P] (2003).
    [116] Pokorny R J, Mader R A, Olson D B, et al. High refractive index, durable hard coats. WO2006073773[P] (2006).
    [117] Walker C B Jr., Mader, R A, Goenner E S, et al. High refractive index monomers for optical applications. US7297810[P] (2007).
    [118] Arney DS, Wood TE. Nanosize metal oxide particles for producing transparent metal oxide colloids and creamers. US6432526[P] (2002).
    [119] Kato E. Manufacturing method of curable coating composition, cured film, anti-reflection film, polarizer, and image display apparatus. JP2007271735[P] (2007).
    [120] Terauchi M, Hayama K. Active energy ray-curable coating composition and molded article having cured coating film obtained from the composition. JP2004307579[P] (2004).
    [121] Kinoshita N, Kawase T. Hard coat film and optical functional film, optical lens and optical component. JP2007171555[P] (2007).
    [122] Mandzy N S, Grulke E A, Druffel T L. Methods of making and using metal oxide nanoparticles. WO2008020867[P] (2008).
    [123] Kimura N, Fujita Y, Nakamoto N, et al. Dispersoid having metal-oxygen bonds, metal oxide film, and monomolecular film. US20060239902[P] (2006).
    [124] Ono K, Abe S. Organic-inorganic complex. JP2004231867[P] (2004).
    [125] Locascio M, Gillies J, Hines M. high-refractive index materials comprising semiconductor nanocrystal compositions, methods of making same, and applications therefor. US20070221947[P] (2007).
    [126]吕长利,崔占臣,杨柏.高折射率纳米微粒/聚合物纳米复合薄膜材料的制备方法. CN2002132752.1[P] (2002).
    [127] C. Lu, Z. Cui, Y. Wang, Z. Li, C. Guan, B. Yang and J. Sheng, Preparation and characterization of ZnS–polymer nanocomposite films with high refractive index[J]. J. Mater. Chem., 2003, 13:2189–2195.
    [128] Demir M M, Koynov K, Akbeyü, et al. Optical properties of composites of PMMA andsurface-modified zincite nanoparticles[J]. Macromolecules, 2007, 40:1089–1100.
    [129] Denisyuk I, Williams I. Polymer nanocomposite having surface modified nanoparticles and methods of preparing same. US20060216508A1[P] (2006).
    [130] Thelen A. Design of optical interference coatings[M], New York: McGraw-Hill, 1989.
    [131] Shanbhogue H, Nagendra C L, Annapurna M, Kumar S, Thutupalli G. Multilayer antireflection coatings for the visible and near-infrared regions[J]. Applied Optics, 1997, 36:6339–6351.
    [132] Fernández-Hidalgo P, Martín-Palma R J, Conde A, et al. Structural and chemical characterization of functional SiOxCy:H coatings for polymeric lenses. J. Vac. Sci.Technol. B, 2004, 22:2402–2408.
    [133] Nakamura K. Antireflection film, polarizing plate and image display device using the same. JP2001166104[P] (2001).
    [134] Walker C B, Radcliffe MD, Klun TP, et al. Durable antireflective film. US 20070286994[P] (2007).
    [135] Blteau J, Fanayar M, Massart N, et al. Optical article comprising a multilayer anti-reflective coating and method for production thereof. US20060275627[P] (2006).
    [136] Zhang R Y, Wu XD, Yang J M. Inorganic-organic hybrid nanocomposite antiglare and antireflection coatings. US20090004462[P](2009).
    [137] Trout T J, Schmieg J J, Gambogi W J, et al. Optical photopolymers: design and applications[J]. Adv. Mater., 1998, 10:1219–1224.
    [138] Garnweitner G, Goldenberg L M, Sakhno O V, et al. Large-scale synthesis of organophilic zirconia nanoparticles and their application in organic-inorganic nanocomposites for efficient volume holography[J]. Small, 2007, 3:1626–1632.
    [139] Tomita Y, Suzuki N, Chikama K. Holographic manipulation of nanoparticle distribution morphology in nanoparticle-dispersed photopolymers[J]. Opt. Lett., 2005, 30:839–841.
    [140] Monte F, Martínez O, Rodrigo J A, et al. A volume holographic sol-gel material with large enhancement of dynamic range by incorporation of high refractive index species[J]. Adv. Mater., 2006, 18:2014–2017.
    [141] Suzuki N, Tomita Y, Kojima T. Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films[J]. Appl. Phys. Letter., 2002, 81:4121–4123.
    [142] Sakhno OV, Goldenberg L M, Stumpe J, et al. Effective volume holographic structures based on organic–inorganic photopolymer nanocomposites[J]. J. Opt. A: Pure Appl. Opt., 2009, 11:024013.1–13.
    [143] Hayashida N, Kosuda A, Yoshinari J: Hologram recording material and hologram recording medium. JP2008083405[P] (2008).
    [144] Mont F W, Kim J K, Schubert M F, Schubert E F, Siegel R W. High-refractive-index TiO2-nanoparticle-loaded encapsulants for light-emitting diodes[J]. Journal of Applied Physics, 2008, 103:083120.1–6.
    [145] Taskar N R, Chabra V, Dorman D, et al. Light efficient packaging configurations for led lamps using high refractive index encapsulants. US20060255353[P] (2006).
    [146] Houbertz R, Fr?hlich L, Popall M, et al. Inorganic-organic hybrid polymers for information technology: from planar technology to 3D nanostructures[J]. Adv.Eng. Mater., 2003, 5:551–555.
    [147] Arpin K A, Mihi A, Johnson H T, et al. Multidimensional Architectures for Functional Optical Devices[J]. Adv. Mater., 2010, 22:1084–1101.
    [148] Houbertz R, Declerck P, Passinger S, et al. Investigations on the generation of photonic crystals using two-photon polymerization (2PP) of inorganic–organic hybrid polymers with ultra-short laser pulses[J]. Phys. Stat. Sol. (a), 2007, 204:3662–3675.
    [149] Kim W S, Yoon K B, Bae B S. Nanopatterning of photonic crystals with a photocurable silica–titania organic–inorganic hybrid material by a UV-based nanoimprint technique[J]. J. Mater. Chem., 2005, 15:4535–4539.
    [150] Fink Y, Thomas E L. Polymeric photonic band gap materials. US6433931[P] (2002).
    [151] Kim W S, Yoon K B, Bae B S. Nanopatterning of photonic crystals with a photocurable silica–titania organic–inorganic hybrid material by a UV-based nanoimprint technique[J]. J. Mater. Chem., 2005, 15:4535–4539.
    [152] Regolini J L, Benoit D, Morin P. Passivation issues in active pixel CMOS image sensors[J]. Microelectron. Reliab., 2007, 47:739–742.
    [153] Ren H W, Lin Y H, Wu S T. Flat polymeric microlens array[J]. Opt. Commun., 2006, 261:296–299.
    [154] Sun Y, Forrest S R. Organic light emitting devices with enhanced outcoupling via microlenses fabricated by imprint lithography[J]. J. Appl. Phys., 2006, 100:073106.1–6.
    [155] . Kusumoto S, Shima M, Yang Y, et al. Advanced materials for 193 nm immersion lithography[J]. Polym. Adv. Technol., 2006, 17:122–130.
    [156] Conley W, Socha R. Everything you ever wanted to know about why the semiconductor industry needs a high-refractive index photoresist but were afraid to ask: Part I[J]. Proc. SPIE, 2006, 6153:61531L.1–9.
    [157] Baea W J, Trikeriotisa M, Rodrigueza R, et al. High index nanocomposite photoresist for 193 nm lithography[J]. Proc. of SPIE 2009, 7273:727326.1–10.
    [158] Olson D B, Jones C L, Kolb B U, et al. Brightness enhancing film and methods of surface treating inorganic nanoparticles. US20070112097[P] (2007).
    [159] Wang ZK, Tweedy H. Radiation curable hybrid composition and process. WO2008058849[P] (2008).
    [160] Chisholm B J, Coyle D J, Resue J A. Microstructure-bearing articles of high refractive index. US6844950[P] (2005).
    [161] Allen J. Optical coatings: Rugate coatings enhance performance of head-up displays.http://www.optoiq.com/index/photonics-technologies-applications/lfw-display/lfw-article-display/articles/optoiq2/vloc/thin-film-coatings/2009/optical-coatings-rugate-coatings-enhance-performance-of-head-up-displays.html.
    [162] Colvin V L, Schlamp M C, Alivisatos A P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer[J]. Nature, 1994, 370:354–357.
    [163] Tessler N, Medvedev V, Kazes M, et al. Efficient Near-Infrared Polymer Nanocrystal Light-Emitting Diodes[J]. Science, 2002, 295:1506–1508.
    [164] Yao J N, Hashimoto K, Fujishima A. Photochromism induced in an electrolytically pretreated MoO3 thin film by visible light[J]. Nature, 1992, 355:624–626.
    [165] Tsivgoulis G M, Lehn J M. Photonic molecular devices: reversibly photoswitchable fluorophores for nondestructive readout for optical memory[J]. Angew. Chem., Int. Ed. Engl., 1995, 34:1119–1122.
    [166] Irie M. Diarylethenes for memories and switches[J]. Chem. Rev., 2000, 100:1685–1716.
    [167] Wang Z L, Zhang R, Ma Y, et al. Transparent and flexible phosphomolybdate– agarose composite thin films with visible-light photochromism[J]. J. Mater. Chem., 2010, 20:1107–1111.
    [168] Dawidczyk T J, Walton M D, Jang W S, et al. Layer-by-layer assembly of UV-resistant poly(3,4-ethylenedioxythiophene) thin films[J]. Langmuir, 2008, 24:8314–8318.
    [169] KyprianidouLeodidou T, Margraf P, Caseri W, et al. Polymer sheets with a thin nanocomposite layer acting as a UV filter[J]. Polym. Adv. Technol., 1997, 8:505–512.
    [170] LüC L, Gao J F, Fu Y Q, et al. A ligand exchange route to highly luminescent surface-functionalized ZnS Nanoparticles and their transparent polymer nanocomposites[J]. Adv. Funct. Mater., 2008, 18: 3070–3079.
    [171] Sasaki T, Ebina Y, Tanaka T, et al. Layer-by-layer assembly of titania nanosheet/polycation composite films[J]. Chem. Mater., 2001, 13:4661–4667.
    [172] Sciancalepore C, Cassano T, Curri M L, et al. TiO2 nanorods/PMMA copolymer-based nanocomposites: highly homogeneous linear and nonlinear optical material[J]. Nanotechnology, 2008, 19:205705.1–8.
    [173] Tu Y, Zhou L, Jin Y Z, et al. Transparent and flexible thin films of ZnO-polystyrene nanocomposite for UV-shielding applications[J]. J. Mater. Chem., 2010, 20:1594–1599.
    [174] Maliakal A, Katz H, Cotts P M, et al. Inorganic oxide core, polymer shellnanocomposite as a high k gate dielectric for flexible electronics applications[J]. J. Am. Chem. Soc., 2005, 127:14655–14662
    [175] Lin W J, Chen W C. Synthesis and characterization of polyimide/oligomeric methylsilsesquioxane hybrid films[J]. Polym Int., 2004, 53:1245–1252.
    [176] Tsai M H, Whang W T. Low dielectric polyimide/poly(silsesquioxane)-like nanocomposite material[J]. Polymer, 2001, 42: 4197–4207.
    [177] De S, Lyons P E, Sorel S, et al. Transparent, flexible, and highly conductive thin films based on polymer - nanotube composites[J]. ACS Nano, 2009, 3:714–720.
    [178] Cong H L, Hong L F, Harake R S, et al. CNT-based photopatternable nanocomposites with high electrical conductivity and optical transparency[J]. Journal of Micromechanics and Microengineering, 2010, 20: 025002.1–6.
    [179] Wang T, Lei C H, Dalton A B, et al. Waterborne, nanocomposite pressure-sensitive adhesives with high tack energy, optical transparency, and electrical conductivity[J]. Adv. Mater., 2006, 18: 2730–2734.
    [1] Althues H, Henle J, Kaskel S. Functional inorganic nanofillers for transparent polymers[J]. Chem. Soc. Rev., 2007, 36:1454–1465.
    [2] Demir M M, Koynov K, Akbeyü, et al. Optical properties of composites of pmma and surface-modified zincite nanoparticles[J]. Macromolecules, 2007, 40:1089–1100.
    [3] Khrenov V, Klapper M, Koch M, et al. Surface functionalized zno particles designed for the use in transparent nanocomposites[J]. Macromol. Chem. Phys., 2005, 206:95–101.
    [4] Demir M M, Memesa M, Castignolles P, et al. PMMA/zinc oxide nanocomposites prepared by in-situ bulk polymerization[J]. Macromol. Rapid Commun., 2006, 27:763–770.
    [5] Zhang H, Cui Z, Wang Y, et al. From water-soluble CdTe nanocrystals to fluorescent nanocrystal-polymer transparent composites using polymerizable surfactants[J]. Adv. Mater., 2003, 15:777–780.
    [6] Althues H, Palkovits R, Rumplecker A, et al. Synthesis and characterization of transparent luminescent ZnS:Mn/PMMA nanocomposites[J]. Chem. Mater., 2006, 18:1068–1072.
    [7] Shen Y, Lin Y H, Li M, et al. High dielectric performance of polymer composite films induced by a percolating interparticle barrier layer[J]. Adv. Mater., 2007, 19:1418–1422.
    [8] Li H L, Qi W, Li W, et al. A highly transparent and luminescent hybrid based on the copolymerization of surfactant-encapsulated polyoxometalate and methyl methacrylate[J]. Adv. Mater., 2005, 17:2688–2692.
    [9] Liu H Z, Zheng S X, Nie K M. Morphology and thermomechanical properties of organic?inorganic hybrid composites involving epoxy resin and an incompletely condensed polyhedral oligomeric silsesquioxane[J]. Macromolecules, 2005, 38:5088–5097.
    [10] LüC L, Yang B. High refractive index organic–inorganic nanocomposites: design, synthesis and application[J]. J. Mater. Chem., 2009, 19:2884–2901.
    [11] Golden J H, Deng H B, DiSalvo F J, et al. Monodisperse metal clusters 10 angstroms in diameter in a polymeric host: the "monomer as solvent' approach[J]. Science, 1995, 268:1463–1466.
    [12] Tran T K, Park W, Tong W, et al. Photoluminescence properties of ZnS epilayers[J]. J. Appl. Phys., 1977, 81: 2803.1–7.
    [13] Ong H C, Chang R P H. Optical constants of wurtzite ZnS thin films determined by spectroscopic ellipsometry[J]. Appl. Phys. Lett., 2001, 79:3612.1–3.
    [14] Gutowski, J., Sebald, K., Voss, T.: ZnS: refractive index, absorption, dielectric constants. Roessler, U. (ed.). SpringerMaterials - The Landolt-B?rnstein III/44B:Semiconductors– New Data and Updates for II-VI Compounds[M]. Berlin Heidelberg: Springer-Verlag, 2008.
    [15] Hosokawa H, Murakoshi K, Wada Y, et al. Extended x-ray absorption fine structure analysis of zns nanocrystallites in n,n-dimethylformamide. An effect of counteranions on the microscopic structure of a solvated surface[J]. Langmuir, 1996, 12:3598–3603.
    [16] Hosokawa H, Fujiwara H, Murakoshi K, et al. In-situ exafs observation of the surface structure of colloidal CdS nanocrystallites in N,N-dimethylformamide[J]. J. Phys. Chem. 1996, 100, 6649–6656.
    [17] Wankhede M E, Haram S K. Synthesis and characterization of Cd?DMSO complex capped CdS nanoparticles[J]. Chem. Mater. 2003, 15, 1296–1301.
    [18] Nanda J, Sapra S, Sarma D D. Size-Selected Zinc Sulfide Nanocrystallites: Synthesis, Structure, and Optical Studies[J]. Chem. Mater. 2000, 12:1018–1024.
    [19] Haraguchi K, Farnworth R, Ohbayashi A, et al. Compositional effects on mechanical properties of nanocomposite hydrogels composed of poly(n,n-dimethylacrylamide) and clay[J]. Macromolecules 2003, 36, 5732–5741.
    [20] Cheng Y R, LüC L, Lin Z, et al. Preparation and properties of transparent bulk polymer nanocomposites with high nanophase contents[J]. J. Mater. Chem., 2008, 18: 4062–4068.
    [21] Morikawa A, Iyoku Y, Kakimoto M, et al. Preparation of a new class of polyimide-silica hybrid films by sol-gel process[J]. Polym. J., 1992, 24:107–113.
    [22] Pacios I E, Pastoriza A, Pierola I F. Effect of the crosslinking density and the method of sample preparation on the observed microstructure of macroporous and conventional poly(N,N-dimethylacrylamide) hydrogels[J]. Colloid Polym. Sci., 2006, 285: 263–272.
    [23] North A M, Scallan A M. The free radical polymerization of N,N-dimethylacrylamide[J]. Polymer, 1964, 5: 447–455.
    [24] Nichifor M, Zhu X X. Copolymers of N-alkylacrylamides and styrene as new thermosensitive materials[J]. Polymer, 2003, 44: 3053–3060.
    [25] Zimmermann L, Weibel M, Caseri W, et al. Polymer nanocomposites with ultralow refractive index[J]. Polym. Adv. Technol., 1993, 4:1–7.
    [26] Kyprianidou-Leodidou T, Caseri W, Suter U W. Size variation of pbs particles in high-refractive-index nanocomposites[J]. J. Phys. Chem., 1994, 98:8992–8997.
    [27]张留成,刘玉龙:互穿聚合物网络[M].北京:烃加工出版社。
    [28] Sperling L H, Mishra V. The current status of interpenetrating polymer networks[J]. Polym. Adv. Technol., 1996, 7:197-208
    [29] Novak B M, Davies C. "Inverse" organic-inorganic composite materials. 2. Free-radical routes into nonshrinking sol-gel composites[J]. Macromolecules, 1991, 24:5481–5483.
    [30] Tamaki R, Horiguchi T, Chujo Y. Synthesis of ipn polymer hybrids by in-situ radical polymerization method and their high resistivity to solvent extraction[J]. Bull. Chem. Soc. Jpn., 1998, 71:2749-2756
    [31] Tamaki R, Chujo Y. Synthesis of IPN polymer hybrids of polystyrene gel and silica gel by an in-situ radical polymerization method[J]. J. Mater. Chem., 1998, 8:1113-1115.
    [32] Imai Y, Itoh H, Naka K, Chujo Y. Thermally reversible ipn organic?inorganic polymer hybrids utilizing the diels?alder reaction[J]. Macromolecules, 2000, 33:4343–4346.
    [1] Biju V, Itoh T, Anas A, et al. Semiconductor quantum dots and metal nanoparticles: syntheses, optical properties, and biological applications[J]. Anal. Bioanal. Chem., 2008, 391:2469–2495.
    [2] Pradhan N, Battaglia D M, Liu Y C, et al. Efficient, Stable, Small, and Water-Soluble Doped ZnSe Nanocrystal Emitters as Non-Cadmium Biomedical Labels[J]. Nano Lett., 2007, 7:312–317.
    [3] Matsui I. Nanoparticles for Electronic Device Applications: A Brief Review[J]. J. Chem. Eng. Jpn., 2005, 38:535–546.
    [4] Eychmüller A. Structure and Photophysics of Semiconductor Nanocrystals[J]. J. Phys. Chem. B, 2000, 104:6514–6528.
    [5] Jun S, Jang E, Park J, et al. Photopatterned Semiconductor Nanocrystals and Their Electroluminescence from Hybrid Light-Emitting Devices[J]. Langmuir, 2006, 22:2407–2410.
    [6] Rogach A L, Gaponik N, Lupton J M, et al. Light-Emitting Diodes with Semiconductor Nanocrystals[J]. Angew. Chem. Int. Ed., 2008, 47:6538–6549.
    [7] Huang H, Dorn A, Bulovic V, et al. Electrically driven light emission from single colloidal quantum dots at room temperature[J]. Appl. Phys. Lett., 2007, 90:023110.1–3.
    [8] Maria A, Cyr P W, Klem E J D, et al. Solution-processed infrared photovoltaic devices with >10% monochromatic internal quantum efficiency[J]. Appl. Phys. Lett., 2005, 87:213112.1–3.
    [9] Chanyawadee S, Harley R T, Henini M, et al, Photocurrent Enhancement in Hybrid Nanocrystal Quantum-Dot p-i-n Photovoltaic Devices[J]. Phys. Rev. Lett., 2009, 102:077402.1–4.
    [10] Murray C B, Norris D J and Bawendi M G, Synthesis and characterization of nearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductornanocrystallites[J]. J. Am. Chem. Soc., 1993, 115:8706–8715.
    [11] Dabbousi B O, Rodriguez-Viejo J, Mikulec F V, et al. (CdSe)ZnS Core-Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites[J]. J. Phys. Chem. B, 1997, 101:9463–9475.
    [12] Alivisatos A P. Semiconductor Clusters, Nanocrystals, and Quantum Dots[J]. Science, 1996, 271, 933–937.
    [13] Rogach A. Semiconductor Nanocrystal Quantum Dots: Synthesis, Assembly, Spectroscopy and Applications: Springer, Vienna, 2008.
    [14] Karanikolos G N, Alexandridis P, Petrou A, et al. Synthesis and Size Control of Luminescent II-VI Semiconductor Nanocrystals by a Novel Microemulsion-Gas Contacting Technique[J]. Mater. Res. Soc. Symp. Proc., 2004, 789:389.
    [15] Murray C B, Kagan C R, Bawendi M G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies[J]. Annu. Rev. Mater. Sci., 2000, 30, 545–610.
    [16] Zhong X H, Feng Y Y, Knoll W, et al. Alloyed ZnxCd1-xS Nanocrystals with Highly Narrow Luminescence Spectral Width[J]. J. Am. Chem. Soc., 2003, 125:13559–13563.
    [17] Zhong X H, Han M Y, Dong Z L, et al. Composition-Tunable ZnxCd1-xSe Nanocrystals with High Luminescence and Stability[J]. J. Am. Chem. Soc., 2003, 125:8589–8594.
    [18] Guo L, Cai X J, Chen L, et al. Functional ZnxCd1-xS nanocrystals: Synthesis and optical properties[J]. Chinese J. Inorg. Chem., 2007, 23:1577–1581.
    [19] Li Y C, Ye M F, Yang C H, et al. Composition- and Shape-Controlled Synthesis and Optical Properties of ZnxCd1-xS Alloyed Nanocrystals[J]. Adv. Funct. Mater., 2005, 15:433–441.
    [20] DeGroot M W, Atkins K M, Borecki A, et al. A molecular precursor approach for the synthesis of composition-controlled ZnxCd1-xS and ZnxCd1-xSe nanoparticles[J]. J. Mater. Chem., 2008, 18:1123–1130.
    [21] Kershaw S V, Harrison M T, Burt M G. Putting nanocrystals to work: from solutions to devices[J]. Phil. Trans. R. Soc. Lond. A, 2003, 361:331–343.
    [22] Gallardo D E, Bertoni C, Dunn S, et al. Cathodic and Anodic Material Diffusion in Polymer/Semiconductor-Nanocrystal Composite Devices[J]. Adv. Mater., 2007, 19:3364–3367.
    [23] Coe-Sullivan S, Woo W K, Stecke J S, et al. Tuning the performance of hybrid organic/inorganic quantum dot light-emitting devices[J]. Org. Electron., 2003, 4:123–130.
    [24] Yang H, Holloway P H. Electroluminescence from Hybrid Conjugated Polymer?CdS:Mn/ZnS Core/Shell Nanocrystals Devices[J]. J. Phys. Chem. B, 2003, 107:9705–9710.
    [25] Althues H, Henle J, Kaskel S. Functional inorganic nanofillers for transparent polymers[J]. Chem. Soc. Rev., 2007, 36, 1454–1465.
    [26] Sanchez C, Lebeau B, Chaput F, et al. Optical Properties of Functional Hybrid Organic-Inorganic Nanocomposites[J]. Adv. Mater., 2003, 15:1969–1994.
    [27] LüC L, Yang B. High refractive index organic–inorganic nanocomposites: design, synthesis and application[J]. J. Mater. Chem., 2009, 19:2884–2901.
    [28] Althues H., Palkovits R., Rumplecker A., et al. Synthesis and Characterization of Transparent Luminescent ZnS:Mn/PMMA Nanocomposites[J]. Chem. Mater., 2006, 18:1068–1072.
    [29] Zhang H, Cui Z, Wang Y, et al. From Water-Soluble CdTe Nanocrystals to Fluorescent Nanocrystal-Polymer Transparent Composites Using Polymerizable Surfactants[J]. Adv. Mater., 2003, 15:777–780.
    [30] [30a] LüC L, Cheng Y R, Liu Y F, et al. A Facile Route to ZnS-Polymer Nanocomposite Optical Materials with High Nanophase Content viaγ-Ray Irradiation Initiated Bulk Polymerization[J]. Adv. Mater., 2006, 18:1188–1192. [30b] LüC L, Gao J F, Fu Y Q, et al. A Ligand Exchange Route to Highly Luminescent Surface-Functionalized ZnS Nanoparticles and Their Transparent Polymer Nanocomposites[J]. Adv. Funct. Mater., 2008, 18:3070–3079. [30c] Cheng Y R, LüC L, Lin Z, et al. Preparation and properties of transparent bulk polymer nanocomposites with high nanophase contents[J]. J. Mater. Chem., 2008, 18: 4062–4068.
    [31] Demir M M, Memesa M, Castignolles P, et al. PMMA/zinc oxide nanocomposites prepared by in-situ bulk polymerization[J]. Macromol. Rapid Commun., 2006, 27:763–770.
    [32] Jana S, Maity R, Das S, et al. Synthesis, structural and optical characterization of nanocrystalline ternary Cd1-xZnxS thin films by chemical process[J]. Physica E, 2007, 39:109–114.
    [33] Bhattacharjee B, Mandal S K, Chakrabarti K, et al. Optical properties of Cd1?xZnxS nanocrystallites in sol–gel silica matrix[J]. J. Phys. D: Appl. Phys. 2002, 35:2636–2642.
    [34] Gao J F, LüC L, LüX D, et al. APhen–functionalized nanoparticles–polymer fluorescent nanocomposites via ligand exchange and in situ bulk polymerization[J]. J. Mater. Chem., 2007, 17:4591–4597.
    [35] Wang D J, Imae T. Fluorescence emission from dendrimers and its pH dependence[J]. J. Am. Chem. Soc., 2004, 126:13204–13205.
    [36] Yan B, Chen D, Jiao X. Synthesis, characterization and fluorescence property of CdS/P(N-iPAAm) nanocomposites[J]. Mater. Res. Bull., 2004, 39:1655–1622.
    [37] Yang Y, Li Y Q, Fu S Y, et al. Transparent and light-emitting epoxy nanocomposites containing ZnO quantum dots as encapsulating materials for solid state lighting[J]. J. Phys. Chem. C, 2008, 112:10553–10558.
    [1] Ong H C, Chang R P H. Optical constants of wurtzite ZnS thin films determined by spectroscopic ellipsometry[J]. Appl. Phys. Lett., 2001, 79:3612.1–3.
    [2] Tran T K, Park W, Tong W, et al. Photoluminescence properties of ZnS epilayers[J]. J. Appl. Phys., 1977, 81:2803.1–7.
    [3] Yanagida S, Ishimaru Y, Miyake Y, et al. Semiconductor photocatalysis 8. Zinc sulfide-catalyzed photoreduction of aldehydes and related derivatives:two-electron-transfer reduction and relationship with spectroscopic properties[J]. J. Phys. Chem., 1989, 93:2576–2582
    [4] Yanagida S, Kawakami H, Midori Y, et al. Semiconductor photocatalysis ZnS-nanocrystallite-catalyzed photooxidation of organic compounds[J]. Bulletin of the Chemical Society of Japan , 1995, 68:1811–1823
    [5] Born G. Device for protecting an optical or infrared window against laser radiation. US4431257[P]
    [6] Fang X S, Zhang L D. One-dimensional (1D) ZnS Nanomaterials and Nanostructures[J]. J. Mater. Sci. Tech., 2006, 22:721–736.
    [7] Borah J P, Sarma K C. Optical and optoelectronic properties of ZnS nanostructured thin film[J]. Acta Physica Polonica A, 2008, 114:713–719.
    [8] Fang X S, Bando Y, Liao M Y, et al. Single-crystalline ZnS nanobelts as ultraviolet-light sensors[J]. Advanced Materials 2009, 21: 2034–2039.
    [9] Liem N Q, Quang V X, Thanh D X, et al. Temperature dependence of biexciton luminescence in cubic ZnS single crystals[J]. Solid State Communications, 2001, 117:255–259.
    [10] Torchynska T V, Diaz Cano A, Dybiec M, et al. Raman scattering and SEM study of bio-conjugated core-shell CdSe/ZnS quantum dots[J]. Physica Status Solidi (c) 2007, 4:241–243.
    [11] Dai N, Chen J. CdSe/ZnS core/shell quantum dots for bio-application[J]. Proc. SPIE, 2006, 6029: 602904; doi:10.1117/12.667661
    [12] Bhargava R N, Gallagher D, Hong X, et al. Optical properties of manganese-doped nanocrystals of ZnS[J]. Phys. Rev. Lett. 1994, 72, 416–419.
    [13] Alshawa A K, Lozykowski H J. AC Electroluminescence of ZnS:Mn[J]. J. Electrochem. Soc. 1994, 141, 1070–1081.
    [14] Huang J M, Yang Y, Xue S H, et al. Photoluminescence and electroluminescence of ZnS:Cu nanocrystals in polymeric networks[J]. Appl. Phys. Lett. 1997, 70, 2335.1–3.
    [15] Xu S J, Chua S J, Liu B, et al. Luminescence characteristics of impurities-activated ZnS nanocrystals prepared in microemulsion with hydrothermal treatment[J]. Appl. Phys. Lett. 1998, 73:478.1–3.
    [16] Hichou A E, Addou M, Bubendorff J L, et al. Microstructure and cathodoluminescence study of sprayed Al and Sn doped ZnS thin films[J]. Semicond. Sci. Technol. 2004, 19:230–235.
    [17] Park W, King JS, Neff CW, Liddell C, Summers C J. ZnS-Based Photonic Crystals[J]. Phys. stat. sol. (b) 2002, 229:949–960.
    [18] Breen M L, Dinsmore A D, Pink R H, et al. Sonochemically Produced ZnS-Coated Polystyrene Core?Shell Particles for Use in Photonic Crystals[J]. Langmuir, 2001, 17: 903–907.
    [19] Ben-Moshe M, Asher S A, Qu D, et al. High refractive index crystalline colloidal arrays materials and a process for making the same.pub. NO.: US20080064788[P].
    [20] LüC L, Cui Z C, Li Z, et al. High refractive index thin films of ZnS/polythiourethane nanocomposites[J]. J. Mater. Chem., 2003, 13:526–530.
    [21] LüC L, Cui Z C, Wang Y, et al. Preparation and characterization of ZnS–polymer nanocomposite films with high refractive index[J]. J. Mater. Chem., 2003, 13:2189–2195.
    [22] Guan C, LüC L, Cheng Y R, et al. A facile one-pot route to transparent polymer nanocomposites with high ZnS nanophase contents via in situ bulk polymerization[J]. J. Mater. Chem., 2009, 19:617–621.
    [23] Quan Z W, Wang Z L, Yang P P,et al. Synthesis and characterization of high-quality ZnS, ZnS:Mn2+, and ZnS:Mn2+/ZnS (core/shell) luminescent nanocrystals[J]. Inorg. Chem. 2007, 46:1354–1360.
    [24] Yu J H, Joo J, Park H M, et al. Synthesis of Quantum-Sized Cubic ZnS Nanorods by the Oriented Attachment Mechanism[J]. J. AM. CHEM. SOC. 2005, 127:5662–5670
    [25] Zhong X, Liu S, Zhang Z, et al. Synthesis of high-quality CdS, ZnS, and ZnxCd1–xS nanocrystals using metal salts and elemental sulfur[J]. J. Mater. Chem., 2004, 14:2790–2794.
    [26] Li Y C, Li X H, Yang C H, et al. Ligand-Controlling Synthesis and Ordered Assembly of ZnS Nanorods and Nanodots[J]. J. Phys. Chem. B 2004, 108:16002–16011.
    [27] Barrelet C J, Wu Y, Bell D C, et al. Synthesis of CdS and ZnS Nanowires Using Single-Source Molecular Precursors[J]. J. Am. Chem. Soc., 2003, 125:11498-11499.
    [28] Nanda J, Sapra S, Sarma D D. Size-Selected Zinc Sulfide Nanocrystallites: Synthesis, Structure, and Optical Studies[J]. Chem. Mater. 2000, 12:1018–1024.
    [29] Xin B P, Huang Q, Chen S, et al. High-purity Nano Particles ZnS Production by a Simple Coupling Reaction Process of Biological Reduction and Chemical Precipitation Mediated with EDTA[J]. Biotechnol. Prog. 2008, 24:1171–1177.
    [30] Mahamuni S, Khosravi A A, Kundu M, et al. Thiophenol-capped ZnS quantum dots[J]. J. Appl. Phys., 1993, 73: 5237–5240.
    [31] He J, Ji W, Mi J, et al. Three-photon absorption in water-soluble ZnS nanocrystals[J]. Applied Physics Letters, 2006, 88:181114.1–3.
    [32] Xu JF, Ji W, Lin J Y, et al. Preparation of ZnS nanoparticles by ultrasonic radiation method[J]. Appl. Phys. A, 1998, 66: 639–641.
    [33] Zhang H Z, Chen B, Gilbert B, et al. Kinetically controlled formation of a novel nanoparticulate ZnS with mixed cubic and hexagonal stacking[J]. J. Mater. Chem., 2006, 16: 249–254.
    [34] Yilmaz V T, Topcu Y, Yilmaz F, et al. Saccharin complexes of Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II) with ethanolamine and diethanolamine: synthesis, spectroscopic and thermal characteristics. Crystal structures of [Zn(ea)2(sac)2] and [Cu2(μ-dea)2(sac)2][J]. Polyhedron, 2001, 20:3209–3217.
    [35] Nesterov D S, Makhankova V G, Kokozay V N, et al. Direct synthesis and crystal structures of new heteropolynuclear complexes containing aminoalcohol ligands: From heterobi- (Co/Zn) to heterotrimetallic (Cu/Co/Zn) compounds[J]. Inorganica Chimica Acta, 2005, 358:4519–4526.
    [36] Karadag A , Yilmaz V T , Thoene C ,et al. Di- and triethanolamine complexes of Co(II), Ni(II), Cu(II) and Zn(II) with thiocyanate: synthesis, spectral and thermal studies. Crystal structure of dimeric Cu(II) complex with deprotonated diethanolamine, [Cu2(μ-dea)2(NCS)2][J]. Polyhedron 2001, 20:635–641.
    [37] Caruntu D, Caruntu G, Chen Y, et al. Synthesis of Variable-Sized Nanocrystals of Fe3O4 with High Surface Reactivity[J]. Chem. Mater. 2004, 16:5527–5534.
    [38] Chen M H, Kim Y N, Li C C, et al. Preparation and characterization of magnetic nanoparticles and their silica egg-yolk-like nanostructures: a prospectivemultifunctional nanostructure platform[J]. J. Phys. Chem. C, 2008, 112:6710–6716.
    [39] Biswas S, Kar S. Fabrication of ZnS nanoparticles and nanorods with cubic and hexagonal crystal structures: a simple solvothermal approach[J]. Nanotechnology, 2008, 19: 045710 .1–11.
    [40] Yang K Y, Yoon K M, Choi K W, et al. The direct nano-patterning of ZnO using nanoimprint lithography with ZnO-sol and thermal annealing[J]. Microelectronic Engineering, 2009, 86:2228–2231.
    [41] Sun J Q, Shen X P, Chen K M, et al. Low-temperature synthesis of hexagonal ZnS nanoparticles by a facile microwave-assisted single-source method[J]. Solid State Communications, 2008, 147:501–504.
    [42] Zhao Y W, Zhang Y, Zhu H, et al. Low-Temperature Synthesis of Hexagonal (Wurtzite) ZnS Nanocrystals[J]. J. Am. Chem. Soc., 2004, 126:6874–6875.
    [43] Althues H, Henle J, Kaskel S. Functional inorganic nanofillers for transparent polymers[J]. Chem. Soc. Rev., 2007, 36:1454–1465.
    [44] Ubale A U, Sangawar V S, Kulkarni D K. Size dependent optical characteristics of chemically deposited nanostructured ZnS thin films[J]. Bull. Mater. Sci., 2007, 30:147–151.
    [45] Koziej D, Krumeich F, Nesper R. Nonaqueous liquid-phase synthesis of nanocrystalline metal carbodiimides. A proof of concept for copper and manganese carbodiimides[J]. J. Mater. Chem., 2009, 19:5122–5124.
    [46] Chen S, Liu W M Preparation and Characterization of Surface-Coated ZnS Nanoparticles[J]. Langmuir, 1999, 15:8100-8104.
    [47] Chen W, Wang Z G, Lin Z J, et al. Absorption and luminescence of the surface states in ZnS nanoparticles[J]. J. Appl. Phys., 1997, 82:3111-3115.
    [48] Chae W S, Yoon J H, Yu H, et al. Ultraviolet emission of ZnS nanoparticles confined within a functionalized mesoporous host[J]. J. Phys. Chem. B, 2004, 108:11509-11513.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700