原位生长柱状晶复合增韧氧化铝陶瓷制备方法及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从陶瓷材料结构组成出发,针对影响晶粒形态的主要因素,通过显微结构的设计和制备新途径,促使增韧元在基体中原位生成。采用工业γ-Al_2O_3粉为主要原料,分别加入了玻璃粉Al_2O_3-CaO-SiO_2(简称CAS)、Nb_2O_5、MgO和3Y-TZP粉做添加剂,通过无压烧结制备出了具有柱状晶的复合增韧Al_2O_3陶瓷材料,利用三点弯曲等力学方法以及TEM、SEM、XRD、EDAX等检测手段,系统研究了制备工艺、化学组成、显微结构与力学性能之间的关系,同时研究了添加剂CAS、Nb_2O_5、MgO、和3Y-TZP对Al_2O_3陶瓷柱状晶的影响规律,在此基础上探索了柱状晶生长机理及复合增韧机制。
     通过原位生长工艺,采用CAS、Nb_2O_5、3Y-TZP作为多相复合添加剂,利用Nb_2O_5配合CAS,使陶瓷材料在烧结过程中促进了氧化铝晶粒异向生长的动力学条件,诱导了氧化铝晶粒在某些方向上优先生长成柱状晶,并建立了柱状晶生长模型。
     研究证明了液相烧结时其驱动力来源于液相两边晶界曲率不同所造成的化学位的差异,液相的流动和扩散使晶粒与晶粒粘结并促进柱状晶生长。柱状晶生长过程中,晶界的移动包括如下途径:
     1)气孔靠晶格扩散迁移;
     2)气孔靠表面扩散迁移;
     3)气孔靠物质的气相传递;
     4)气孔聚合靠晶格扩散;
     5)气孔聚合靠晶界扩散及杂质牵制的晶界移动等多项机理的同时作用。
     研究结果表明:纯Al_2O_3陶瓷形成等轴晶,是因为烧结过程中交叉生长的晶粒不断长大,互相紧密接触,制约了晶体结构各向异性,阻碍了晶粒的异向生长。CAS、CAS/Nb_2O_5等添加剂的加入,消除了束缚异向生长阻力,增加了晶粒间活度,使其按着各向异性的方式自由长大,当生长动力足够时就会成长为柱状晶。研究发现,当CAS加入量为0.6wt%时,能够得到晶粒发育完全的柱状晶,长径比达到8:1,相对密度97.2%。
     Nb_2O_5单独使用时,提高了材料的烧结性能,获得的组织主要为等轴晶,并有少量的板块状晶粒;Nb_2O_5配合CAS使用时,会有助于柱状晶的形成,长径比在8:1以上,材料的相对密度可达97.8%。烧结性能明显的优越于相同含量CAS粉单独作用的结果。MgO对溶质拖拽的作用,会影响柱状晶的生长发育,但有利于陶瓷烧结过程中的致密化。ZrO_2在晶界溶质成分扩散过程中,组分相对独立存在,因而在空间位置上对柱状晶生长发育会有一定影响。
     利用动力学原理,对烧结过程进行了研究,添加剂可以明显的降低Al_2O_3陶瓷烧结时扩散激活能,CAS/Nb_2O_5/3Y-TZP复合添加剂,比各自单独加入时效果更佳,CAS/Nb_2O_5与3Y-TZP配合使用时,相对减弱了第二相对Al_2O_3晶粒生长的干预,促进了Al_2O_3柱状晶的形成。
     显微组织结构及裂纹扩展研究表明,原位生长柱状晶Al_2O_3陶瓷由于没有复合界面影响,所以增韧效果好于外加纤维的复合增韧。多相复合Al_2O_3陶瓷的增韧效果并不是多相简单的叠加,柱状晶在起到裂纹偏转、分叉增韧作用的同时,还延长了裂纹扩展路径,使马氏体相变量增加,强化了相变增韧。制备出的柱状晶多相复合增韧Al_2O_3陶瓷,最高抗弯强度为570MPa,断裂韧性为7.4MPa·m~(1/2)。
     从裂纹扩展过程分析可以看出,除第二相Nb_2O_5引起裂纹偏转外,ZrO_2相变增韧和柱状晶引起的裂纹桥接和拔出、裂纹分叉等多种增韧机制之间相互协同作用,大幅度提高Al_2O_3陶瓷材料的力学性能,其效果大于各种增韧机理单独作用的总和。
From the structures of ceramic materials and the main factors influencing the grain shapes, the toughening element was in-situ synthesized in Al_2O_3 ceramic by the design of microstructure and the new processing way. In-situ columnar crystal toughening Al_2O_3 composite ceramic materials were prepared by pressureless sintering by adding CaO-SiO_2-Al_2O_3 (CAS) glass powder, Nb_2O_5, MgO and 3Y-TZP powder in commercialγ-Al_2O_3 powder as additives, respectively, The relationship between the preparation technology, the chemical composition, the microstructure and the mechanical properties has been studied systematically by a three-point bending testing and other measurements, such as TEM, SEM, XRD and EDAS. Also, the effect of CAS, Nb_2O_5, MgO, and 3Y-TZP additives on the Al_2O_3 ceramic columnar crystals was studied. Further, the columnar crystal growth mechanism and the toughening mechanism were analyzed.
     In the in-situ preparation process of Al_2O_3 ceramic materials by using CAS, Nb_2O_5 as well as 3Y-TZP as multiphase composite additives, the using of Nb_2O_5 and CAS promoted the formation kinetic condition of abnormal growth of Al_2O_3 grain, and then induced the formation of columnar Al_2O_3, preferably along some gain direction. A grain growth model of the columnar grain was discussed.
     The results have shown that the driving force in the liquid phase sintering came from the difference in the chemical potential caused by the grain boundary curvature. The flow of liquid phase and diffusion made some grains contact with other grains, which promoted the growth of the columnar grain. During the growth of the columnar grain, the movement of grain boundary may include followings:
     1) the migration of hole by lattice diffusion;
     2) the migration of hole by surface diffusion;
     3) the transmission of hole by gaseous substance ;
     4) the aggregation of hole by lattice diffusion;
     5) the aggregation of hole by lattice diffusion and grain boundary movement caused by inclusion.
     The results have also shown that the pure Al_2O_3 ceramic formed equiaxed crystal due to the fact that the continue growth of Al_2O_3 in a resisted the inhomogenity of crystal structure, prohibited the grain growth in an abnormal growth model. The addition of CAS and CAS/Nb_2O_5 eliminated the resistance to the abnormal growth and increased the activity of grains, thus, the grains can freely grow in an anisotropy. It was found that the grains grew to a columnar crystal as the addition content of CAS was 0.6 wt%. The aspect ratio was 8:1, and the relative density was 97.2%.
     The additive of Nb_2O_5 can improve the sintering properties of material, and result in the formation of equiaxed grains with small amount of plate-like grains; The additive of Nb_2O_5 combined with CAS was helpful to the formation of columnar crystals with an aspect ratio of over 8:1. The relative density of the ceramic materials was up to 97.8%. The sintering property of the ceramic materials with Nb_2O_5 or Nb_2O_5/ CAS was obviously superior to that of the ceramic materials with only CAS additive. MgO showed a solute-drag function, which affected the growth of columnar crystals, but was beneficial to the densification of the ceramic in the sintering process. ZrO_2 has no effect on the solute diffusion by the grain boundary, but has a certain impact on the growth and development of columnar crystals in spatial position.
     The sintering process was investigated according to dynamic theory. The additives can significantly reduce the diffusion activation energy of Al_2O_3 ceramic. The additive of mixed CAS/Nb_2O_5/3Y-TZP has better function that any single additive. The using of mixed CAS, Nb_2O_5 and 3Y-TZP can relatively decrease the influence of second phase on the growth of Al_2O_3 grains and promote the formation of Al_2O_3 columnar crystals.
     Studies on microstructure and crack propagation showed that toughening efficiency of the columnar Al_2O_3 grain was much better than that of fiber due to that no interface existed in in-situ columnar Al_2O_3 grain ceramic. The toughening mechanism in the multiphase composite toughening Al_2O_3 ceramic was not a simple superposition of phases. The columnar crystals played a role in toughening with crack deflection and bifurcation, but also extended the crack propagation path, which resulted in the increase of martensitic transformation amount and intensified the phase transformation toughening. The maximum bending strength of the columnar crystal multiphase toughening Al_2O_3 ceramic was 570MPa and the fracture toughness was 7.4MPa·m~(1/2).
     From the crack propagation process, it can be found that in addition to the crack deflection caused by the second phase Nb_2O_5, ZrO_2 phase transformation toughening, crack bridging and unplugging caused by columnar crystals, crack bifurcation, together with other toughening mechanisms function together. This toughening efficiency was greater than the sum of separate role of each toughening mechanism. As a result, the mechanical properties of Al_2O_3 ceramic were significantly increased.
引文
[1]尹衍升.氧化铝陶瓷及其复合材料[M].北京:化学工业出版社, 2001: 129-130, 70-78.
    [2]兰俊思,丁培道,黄楠. SiC晶须和Ti(C,N)颗粒协同增韧Al_2O_3陶瓷刀具的研究[J].材料科学与工程学报, 2004, 22(1): 59-64.
    [3]郭英奎,李东波,周玉,等. ZrO_2(2Y)/316L不锈钢复合材料的微观组织[J].中国有色金属学报, 2003, 13(4): 963-967.
    [4] DENG J X, AIXING. Wear Resistance of Al_2O_3/TiB2 Ceramic Cutting,Tool,Sin Sliding Wear Test Sand in Machining Processes[J]. Journal of Materials Processing Technology,1997,72(2):249~255.
    [5]郭景坤.关于陶瓷材料的脆性问题[J].复旦大学学报, 2003, 42(6): 822-827.
    [6]谢志鹏,高丽春,立文超,等.晶种诱导长柱状晶生长规律与高韧性氧化铝陶瓷材料[J].中国科学E辑, 2003, 33(1): 11-18.
    [7]李旺兴,李东红,沈湘黔.提高氧化铝陶瓷断裂韧性的先进途径[J].矿冶工程, 2005, 25(4): 73-76.
    [8]黄勇,张立明,汪长安,等.先进结构陶瓷研究进展评述[J].硅酸盐通报, 2005, (05): 97-107.
    [9] BENNETT I, STEVENS. R. Calcination and Phase Changes in Alumina[J]. British Ceramic Transactions,1998,97(3):117-124.
    [10]郝春成,崔作林,尹衍升,等.颗粒增韧陶瓷的研究进展[J].材料导报, 2002, 16(2): 28-30.
    [11] Masaaki A,Koji M, Motozoh. Fabrication of A1_2O_3/ZrO_2 Micro Nancr Composite Prepared by High-energy Ball Milling[J]. Materials Transactions,2001,42(6):1119-1123.
    [12] MATSUI K, OHMICHI N, OHGAI M. Effect of Alumina-doping on Grain Boundary Segregation-induced Phase Transformation in Yttria-stabilizedTetragonal Zirconia Polycrystal[J]. Mater. Res, 2006, 21[9]: 2278-2279.
    [13]尹洪峰,徐永东,张立同.纤维增韧陶瓷基复合材料界面相的作用及其设计[J].硅酸盐通报, 1999,(3): 23-28.
    [14] Aly E I, FREITAY D W. Effect of Fiber Coating,on Room and Elevated Temperature Mechanical Properties of Nicalon Fiber Reinforced BlackglassCeramic Matrix Composites. Proceeding of the Conference on Processing,Fabrication , and Application of Advanced Composites[J]. Long Beach CA,1993,(9-11): 73-84.
    [15]李国军,黄校先,郭景坤. Al_2O_3基金属陶瓷的研究现状[J].材料导报,2000, 14(9): 22-24.
    [16] STEARNS L C, Zhao J, HARMMAR M P. Processing, and Microstructure, Development, in Al_2O_3-SiC Nanocomposites[J]. Euro Ceram Soc,1992,10(6):473-477.
    [17] Peigney A. Carbon Nanoutubes in Novel Ceramic Matrixnano Composites[J]. Ceramics Inierational,2000,(26):677-863.
    [18]何新波,杨辉,张长瑞,等.连续纤维增强陶瓷基复合材料概述[J].材料科学与工程, 2002, 20(2): 273-278.
    [19] NIIHARA K, UNAL N, HAKAHIRA A. Mechanical Properties of(Y-TZP)-Alumina-Silicon Carbide Nanocomposites and the Phase Stability of Y-TZP Particles in it[J]. Mater Sci,1994(29):164-168.
    [20] JIANGONG L, YINPING Ye. Densification and Grain Growth of Al_2O_3 Nanoceramics During Pressureless Sintering[J]. Am. Ceram. Soc, 2006, 89(1):139-143.
    [21]朱永长,荣守范,张敬强.原位生长片晶增韧氧化铝陶瓷的制备与显微结构[J].铸造设备研究, 2007, 147(6): 12-14.
    [22] RONG S F, JI Z S, ZHU Y C. Study on the Formation of Rod-like Grain inAlumina Ceramics[C]. CCIC5 Conference collection, Changsha,2007:125-126.
    [23] MESSING G, OH K S. Kinetics of Template Growth in Alumina During He Process of Templated GrainGrowth(TGG)[J]. Acta Materialia, 2001, (49):2075-2081.
    [24] ALTAY A, GULGUN M A. Origin and Growth Kinetics of Platelike Abnormal Grains in Liquid-Phase-Sintered Alumina[J]. Am. Ceram. Soc,2003,86(4):623-629.
    [25]吴义权,张玉峰,郭景坤.原位生长晶须增强陶瓷基复合材料的研究进展[J].材料导报, 2000, 14(12):20-22.
    [26] BAE I, BAIK S. Abnormal Grain Growth of Alumina[J]. Am.Ceram.Soc, 1997, 80(5):1149-1156.
    [27]刘彤,谢志鹏,陆继伟.长柱状晶高韧性氧化铝陶瓷的制备与性能研究[J].材料工程, 2001, (8): 14-17.
    [28] CHEN R Z, CHIU Y T, TUAN W H. Toughening Alumina With Both Ni and ZrO_2 Inclusions[J]. Eur Ceram Soc, 2000, (20):1901-1906.
    [29] HUANG S G, LI L, VLEUGELSl O. Microwave sintering of CeO_2 and Y_2O_3 Co-stabilised ZrO_2 From Coated Nanopowders[J]. Journal of the European Ceramic Society, 2007, (27):689-693.
    [30]戴金辉,李建保.晶粒原位异向生长与自增韧陶瓷材料[J].稀有金属,2002, 26(6); 468-475.
    [31] DEBRA S.HORN S GARY L. Messing. Anisotropic Grain Growth in TiO_2-doped Alumina[J]. Materials Science and Engineering A , 1995, (195):169-178.
    [32]吴义权,张玉峰,黄校先.原位生长棒晶氧化铝陶瓷的制备[J].硅酸盐学报, 2000, 28(6): 585-588.
    [33] CHEN P, CHEN I. In-Situ Alumina/Aluminate Platelet Composites[J]. Am. Ceram. Soc, 1992, 75(9):2610-2612.
    [34] YOSHIZAUA Y, TORIYAMA M,KANZAKI S. Preparation of High Fracture Toughnes Alumina Sinered Bodies From Layer Aluminum Hydroxide[J]. Ceram Soc Jpn, 1998, 106(12):1172-1177.
    [35]张孟杰,范润华.新氧化铝陶瓷基复合材料的制备和应用[J].化工新型材料, 2002, 30(8): 27-36.
    [36] RIU DOH-HYUNG, KIM HYOUN-EE. Effect of Cr_2O_3 Addition on Microstructural Evolution and Mechanical Properties of Al_2O_3[J]. Journal of the European Ceramic Society, 2000, (20):1474-1481.
    [37] RONG S F, JI Z S, MA B X. The Effect of Cu on the Microstructure and Properties of Al_2O_3 Diphase Ceramic[J]. Journal of Iron and Steel Research, 2007, 14(1):90-93.
    [38]朱丽慧,刘伟.片状氧化铝晶种加入量对氧化铝陶瓷组织和性能的影响[J].材料工程, 2007, (12): 44-47.
    [39]黄康明,李伟信.陶瓷增韧技术的研究进展[J].中国陶瓷, 2007, 43(11): 6-9.
    [40] YASUOKA M, HIRAO K, BRITO M E. High-Strength and High-Fracture-Toughness Ceramics in the Al_2O_3/LaAl11O18 System[J]. Am Ceram Soc,1995,78(7):1853-1853.
    [41]闫洪,窦明民.二氧化锆陶瓷的相变增韧机理和应用[J].陶瓷学报, 2000, 21(1): 47-48.
    [42]穆柏春.陶瓷材料的强韧化[M].北京:冶金工业出版社, 2002: 113-118, 205-209, 113-114, 118-119, 220-230.
    [43]卢红霞.氧化铝陶瓷自增韧制备技术[J].河南建材, 2004, (1): 6-7.
    [44]李漠,刘国昌.自增韧陶瓷的增韧机理研究[J].机械制造与自动化, 2003, (3): 10-12.
    [45] TUAN W H, LIN I C, PAI Y P, etal.Toughening Al_2O_3with NiAl and NiAl(Fe) Particles[J]. British Ceranic Transactions, 2000, 99(2):88-91.
    [46] BASU B. Toughening of Yttria Stabilised Tetragonal Zirconia Ceramics[J].International Materials Reviews,2005,50(4):239-256.
    [47] LANGE F F. Transformation Toughening[J]. Mater Sci, 1982, (17):225-227.
    [48]孟宪梅,尚成嘉.辊轧成型工艺制备ZrO_2/Al_2O_3复相陶瓷的性能及结构[J].北京科技大学学报, 1996, 18(4): 379-382.
    [49]靳喜海,董向红.四方氧化锆相变增韧及其影响因素[J].陶瓷学报, 1999, 20(3):164-166.
    [50]王昕,单妍,于薛刚.纳米ZrO_2-微米Al_2O_3复合陶瓷中“内晶型”结构的形成与机理[J].硅酸盐学报, 2003, 31(12): 1145-1149.
    [51]尹衍升,陈守刚,李嘉.先进结构陶瓷及其复合材料[M].北京:化工出版社, 2006: 9-14, 18-27, 124-125.
    [52] ChEN G Q, ZHANG K F. Superplastic Extrusion of Al_2O_3-YTZ Nanocomposite and its Deformation Mechanism[J]. Materials Science Forum,2005,(475-479):2973-2976.
    [53]王昕,李镇江.溶胶-悬浮液混合制备ZrO_2(n)-Al_2O_3纳米复合陶瓷[J].化工学报, 1999, 50(3):362-366.
    [54] LEE B T. Fracture Characteristic of a (Si-Al-O-N)-SiC Composite Studied by Transmission Electron Microscopy[J]. Mater Sci, 1998, (33):313-314.
    [55]吕珺,郑治祥,吴玉程,等.增韧Al_2O_3结构陶瓷氧化反应裂纹愈合动力学研究[J].无机材料学报, 2006, (1): 189-194.
    [56]高景霞,陈昌平. TiO_2-CAS添加剂对氧化铝陶瓷密度和显微结构的影响[J].硅酸盐通报, 2007(3): 192-196.
    [57] CHONG H X. Effects of Particle Size and Matrix Grain Size and Volume Fraction of Particle Son the Toughening of Ceramic Composite by Thermal Residual Stress[J]. Ceramics International,2005, (31):537~542.
    [58]王宏志,高濂,郭景坤. SiC颗粒尺寸对Al_2O_3-SiC纳米复合陶瓷的影响[J].无机材料学报, 1999, 14(4): 679-683.
    [59] KONG D J, ZHANG Y K. Interracial Bonding Strength of TiN FilmCoated on Si3N4 Ceramic Substrate[J].材料科学技术学报, 2007, 23(4):487-490.
    [60] PETTERSSON P, JOHNSSON M. Thermal Shock Properties of Alumina Reinforced With Ti(C,N)whiskers[J]. Eur Ceram Soc,2003,2(23):309-313.
    [61] CARROLL L, DERBY B, DERBY B. Silicon Carbide Particle Size Effects in Alumina-Based Nanocomposites[J]. Acta Materialia, 1996, 44(11): 4543-4552.
    [62]李景国,高镰,郭景坤. TiN-Al_2O_3纳米复合材料的力学性能和导电性能[J].无机材料学报, 2002, l7(6): 1215-1219.
    [63] CHOU I A, HARMER M P. Machining-induced Surface Residual Stress Behavior in Al_2O_3/SiC Nanocomposites[J]. Journal of the American Ceramic Society, 1996, 79(12):2403-2415.
    [64]王欣,王佩玲,程一兵. TiO_2和MgO微量添加剂对Al_2O_3陶瓷烧结致密化的影响[J].无机材料学报, 2001, 16(5): 979-984.
    [65]匡诚忠,邓庚凤,匡敬忠.含Na2O-MgO添加剂自增韧Al_2O_3的研究[J].南方冶金学院学报, 2004, 25(4):17-20.
    [66] KWON O S, HONG S H, LEE J H. Microstructural Evolution During Sintering of TiO_2/SiO_2-doped Alumina Mechanism of Anisotropic Abnormal Grain Growth[J]. Acta Materialia, 2002, 50(19):4865-4868.
    [67] MOSTAGHACI H. ComPatibility of Alumina With Nickel-titanium Carbide Alloys[J]. Canad Ceram Soc, 1998, (57):60-66
    [68] TUAN W H, CHOU W B. PreParation of Al_2O_3-AlN-Ni Composites[J]. Am Crema Soc, 1997, 80(9):2148-2149.
    [69] LU F H, FANG F X, YAN-SHIAW C. Eutectic Reaction Between Copper Oxide and Titanium Oxide[J]. Euro Ceram Soc, 2001, (21):1093-1099.
    [70]聂立芳,张玉军,魏红康.碳化硅晶须增韧陶瓷基复合材料的研究进展[J].山东陶瓷, 2006, 29(2): 16-19.
    [71] SUNG-TAG O,YONG-HO C,YOUNG-D K. Fabrication of Al_2O_3/Svol%Cu Nanocomposites Using Various Powder Mixtures and its Properties.[J]. Materials Science Forurm, 2004, (449):1213-1216.
    [72] BORSA C E BROOK R J .Influence of Processing on the Microstructural Development and Flexural Strength of Al_2O_3/SiC Nanocomposites[J]. Journal of the European Ceramic Society,1997,17(4):865-872.
    [73]张玉军,张伟儒.结构陶瓷材料及其应用[M].北京:化学工业出版社, 2005: 42-49.
    [74] YOUNG-WOO R, SUK-JOONG L K. Diffusion Induced Grain-boundary Migration and Mechanical Property Improvemen in Fe Doped Alumina[J]. Journal of the European Ceramic Society, 2003, (23):1667-1674.
    [75] Li J G. Synthesis and Sintering Behavior of a Nanocrystallineα-alunina Powder[J]. Acta Materialia,2000,(48):3103-3112.
    [76] CHEN I. Sintering Dense Nanocrystalline Ceramics Without Stage Grain Growth[J]. Nature, 2000, 404(3):168-171.
    [77] CHIH-PENG L, TING-TAI L. Preparation of Nanometersizedα-Alumina Powders by Calcining an Emulsion of Boehmite and Oleic Acid[J]. Journal of the American Ceramic Society, 2002, 85(1):129-133.
    [78] WINN A J. Microstural Requirements for Alumina-SiC Nanocomposites[J]. British Ceramic Transactions, 1999, 98(1):219-231.
    [79] STERNITZKE M, BROOK R J. Alumina/silicon Carbide Nanocomposites by Hybrid Polymer/powder Processing Microstructures and Mechanical Properties[J]. Journal of the American Ceramic Society, 1998, 81(1):41-48.
    [80] WU H Z, ROBERTS S G. TheStrength of Al_2O_3/SiC Nanocomposites after Grinding and Annealing[J]. Acta Materialia, 1998, 46(5):3839-3847.
    [81]申玉芳. Al_2O_3基纳米复相陶瓷的研究进展[J].济南大学学报, 2002, 16(3): 105-107.
    [82] ANYA C C. Microstructura Nature of Strengthening and Toughening in A1_2O_3 SiC(p) Nanocomposites[J]. Journal of Mate-vialsSoience,1999,34(3):5557-5567.
    [83]郭景坤.中国先进陶瓷研究及其展望[C].高性能陶瓷论文集, 1998: 3-8.
    [84] BUDIANSKY B, HUTCHINSON J W, EVANS A G. Matrixfracture in Fiber Reinforced Ceramics[J]. Mech phys Solids, 1986, 34(2):167-189.
    [85] MCARTNEY L N. Mechanics of Matrix Cracking in Brittle-Matrix Fiber Reinforced Composites[J]. Pro Ray Soc London, 1987, (A409):329-350.
    [86] TOUGLESS M D, EVANS A G. Effects of Pull-put on Mechanical Properties of Ceramic- Matrix Composites[J]. Acta Metall, 1988, 36(3):517-522.
    [87] SEKINO T, NAKAJIMA T, Ueda S, etal. Reduction and Sintering of a Micked Dispersed Alumina Composite and its Properties[J]. Am Ceram Soc, 1997, 80(5):1139-1148.
    [88]刘晓光,陈大明,仝建峰等.热压烧结Si3N4-Y_2O_3-La_2O_3陶瓷材料的研究[J].稀有金属材料与工程, 2007, 36(A01): 369-372.
    [89]周曦亚,方培育.自增韧陶瓷复合材料的研究[J].中国陶瓷, 2003, 39(6): 30-32.
    [90]娄海琴,杨彬,王刚,等.添加剂自增韧氧化铝陶瓷的若干研究进展[J].现代技术陶瓷, 2005, 26(4): 24-27.
    [91]李小雷,马红安. AlN陶瓷的高压烧结研究[J].无机材料学报, 2008(1): 104-108.
    [92]杨为佑,谢志鹏,苗赫濯,等.异向生长晶粒增韧氧化铝陶瓷的研究进展[J].无机材料学报, 2003, 18(5): 963-972.
    [93] TARTAI J, MESSING G L. Anisotropic Grain Growth inα-Fe_2O_3-doped Alumina[J]. Euron Ceram Soc, 1997, (17):719-725.
    [94] SONG H, COBLE RL. Origin and Growth Kinetics of Platelike Abnormal Grains in Liquid-Phase-Sintered Alumina[J]. Am Ceram Soc, 1990, 73(7):2077-2085.
    [95] DEBRA S H, GARY L M. Anisotropic Grain Growth in TiO_2-dopedAlumina[J]. Materials Science and Engineering, 1995, (195):69-178.
    [96] RONG S F, JI Z S ZHU Y C. Effect of Rod-like Grain on Properties and Toughening Mechanism of 3Y-TZP/ Al_2O_3 Ceramics[J]. Transactions of Nonferrous Metals Society of China, 2008, 18(2):388-392.
    [97] ANANTHAKUMAR S, MANOHAR P, WARRIER G K. Microstructural Features and Mechanical Properties of Al_2O_3-Al2TiO5 Composite Processed by Gel Assisted Ceramic Extrusion[J]. British Ceramic Transactions, 2002, 101(1):38 -43.
    [98] YOSHIZAWA Y. Sintering and Grain Growth of Alumina[J]. Ceram. Soc. Jap, 1998, 106(4):444-446.
    [99] OLEVSKY E A, KUSHNAREV B, MAXIMENKO A. Modelling of Anisotropic Sintering in Crystalline Ceramics[J]. Philosophical Magazine, 2005, 85(19):2123-2146.
    [100]陆佩文.硅酸盐物理化学[M].武汉:武汉理工大学出版社, 2003: 12-13.
    [101] YOSHIZWA Y. Anistropic Abnormal Grain Growth in TiO_2/SiO_2 Doped alumina[J]. Adv Powder Technol, 1997, 8(2):163-173.
    [102] Travitzky N A.Effect of Metal Volume Fraction on the Mechanical Proper Ties of Alumina/aluminum Composites[J]. Journal of Materials Science, 2001, (36):4459-4463.
    [103] SALOR D M, DASHER B E, PANG Y. Alumina Platelet Reinforced Reaction Bonded , Aluminum Oxide Composites Textured and Random[J]. Am. Ceram. Soc, 2004, 87(4):724-726.
    [104] JEONG Y, MORGAN P E. Effect of Milling Conditions on the Strength of Alumina-silicon Carbide Nanocomposites[J]. Journal of the American Ceramic Society, 1997, 80(5):1307-1309.
    [105]黄晓巍. A1_2O_3/3Y-TZP复相陶瓷的液相烧结机理[J].福州大学学报, 2005, 33(5): 624-627.
    [106] LIU X Q. Effects of Sr2 Nb2O7 Additive on Microstructure and MechanicalProperties of 3Y-TZP/Al_2O_3 Ceramics[J]. Ceramics International, 2002, (28):209-215.
    [107]荣守范,吉泽升,张敬强.复相添加剂/3Y-TZP复合增韧氧化铝陶瓷的研究[J].稀有金属材料与工程, 2007, 36(8); 279-281.
    [108] TEKELI S. Fracture Toughness, Hardness, Sintering and Grain Growth Behaviour of 8YSCZ/Al_2O_3 Composites Produced by Colloidal Processing[J]. Journal of Alloys & Compounds, 2005, 39(1):217-224.
    [109]仝建峰,陈大明.原位生长柱状晶氧化铝陶瓷材料的制备[J].真空电子技术, 2005, (4); 15-18.
    [110] CHEN Z C, CHAWLA K K. Microstructure and Mechanical Properties of in Situ Synthesized Alumina/Ba-β-alumina/zirconia Composites[J]. Materials Science & Engineering, 2004, 367:24-28.
    [111]周洋,詹国栋.氧化铝基陶瓷复合材料的微观结构与增韧机理[J].无机材料学, 1997, 12(2): 161-168.
    [112] ZHANG G J, YANG J F, MOTOHIDE A. Reactive Hot Pressing of Aluminum-Silicon Carbide Nanocomposites[J]. Am. Ceram. Soc, 2004, 87(2):299-301.
    [113] BATEMAN C A. Defect Models for Sintering and Densification of Al_2O_3[J]. Am.Ceram. Soc, 1989, 72(7):1241-1244.
    [114]艾兴,黄传真,冯衍霞,等.基于抗破损性能与可靠性的复相陶瓷刀具材料的组分设计模型[J].陶瓷学报, 2000,(1): 6-9.
    [115] ACCHAR W, FONSECA J L. Sintering Behavior of Alumina Reinforced with(Ti,W)Carbides[J]. Materials Science&Engineering, 2004, 37(1):382-387.
    [116] AN L, WU s, CHAN H M, etal. Alumina Platelet Reinforced Reaction Bonded Aluminum Oxide Composites Textured and Random[J]. Mater Res, 1997, 12(12):3300-3306.
    [117] Yamamoto H, IIO S. Effects of in-situ Formed Platelet-like Grains on Mechianical Properties of Alumina[J]. Ceramic Materials with Composite Structures, 1989, (20):29-39
    [118] YOSHIZAWA G. Low Temperature Sintering of Alumina with the Aid of Abrasive Powder in Wet Grinding[J]. Advanced Powder Thchnol, 1997, 8(2):163-173.
    [119] DAVID J G,陶瓷材料力学性能导论[M].龚江宏,译.北京:清华大学出版社, 2003: 194-203.
    [120]周玉.陶瓷材料学[M].第2版,雷廷权主审,北京:科学出版社, 2004: 239-242.
    [121] ZENG W G. SinteringkineticsofαAl_2O_3 powder[J]. Ceramics International, 1999, (25):723-729.
    [122] ZIMOVáK P, KVES T, DUSZA J. Indentation Testing of an Al_2O_3/Al_2O_3 /ZrO_2layered Composite[J]. Key Engineering Materials,2005,(290):316-319.
    [123] TAKAYASU I, KAZUO K, KATSUYA E. Some roles of MgO and TiO_2 in Densification of Sinterable Alumina[J]. JAm Ceram Soc, 1987, 70(12):885-890.
    [124]张喜燕,李聪.纳米组织锆合金氧化过程中ZrO_2晶粒生长特性[J].稀有金属材料与工程, 2008, 37(1): 112-114.
    [125] RONG S F, ZHANG J Q, JI Z S. The Study on Fracture Behavior of Alumina Ceramics Toughened by Combining in-situ growth Abnormal Grains 3Y-TZP and Cu[J]. Key Engineering Materials, 2006, (324):311-314.
    [126] HUANG S G, Li L, VAN D B. Microwave Sintering of CeO_2 and Y_2O_3 Co-stabilised ZrO_2 from Coated Nanopowders[J]. Journal of the European Ceramic Society, 2007, (27):689-693.
    [127]李国星,卢红霞,孙洪巍,等. MgB2等镁化物添加剂对氧化铝陶瓷晶粒生长形貌的影响[J].中国陶瓷工业, 2005, 12(1): 12-14.
    [128]王立旺,王家邦,杨辉. MgO引入量对反应烧结ZrO_2增韧Al_2O_3复相陶瓷性能的影响[J].耐火材料, 2005, (6): 18-21.
    [129]李继光,王雅蓉.α-Al_2O_3的烧结动力学[J].金属学报, 1998, 34(2): 195-199.
    [130]史国普,王志.低温烧结氧化铝陶瓷[J].济南大学学报, 2007, 21(1): 17-19.
    [131]李小雷,马红安. AlN陶瓷的高压烧结研究[J].无机材料学报, 2008, (1): 104-108.
    [132]郭英奎. Al_2O_3粉模压成型与烧结尺寸变化的研究[J].陶瓷学报, 1999, 20(4): 190-193.
    [133]李荣久.陶瓷—金属复合材料[M].北京:冶金工业出版社, 2004: 315-356.
    [134]朱永长,荣守范,杨涵崧,等.国内外原位生长柱状晶增韧氧化铝陶瓷研究的现状[J].铸造设备研究, 2008, (1): 46-50.
    [135] JURGEN R. Abnormal Grain Growth in Alumina with Anisotropic Liquid and the Effect of MgO[J]. Am Ceram Soc,1990,73(11):3292-3301.
    [136] YOKOTA K, TSUKUDA A, KONDA Y. Effect of Addition of MgO on Platelike Grain Growth in Alumina Sintered Bodiesand their Mechanic;alproperties[J]. Journal of the Japan Society of Powder and Powder Metallurgy, 1998, 45(11):1018-1023.
    [137]郭瑞松.复合助剂对ZTA陶瓷交接型的影响[J].硅酸盐学报, 1999, 27(2); 258-263.
    [138]高景霞,陈昌平. TiO_2-CAS添加剂对氧化铝陶瓷密度和显微结构的影响[J].硅酸盐通报, 2007, (3): 192-196.
    [139] BENNISON S J, HARMER M P. Effect of Magnesia Solute Insurface Diffusion in Sapphire and the Role of Magnesia Inthe Sintering Alumina[J]. Am Ceram Soc, 1990, 73(4):833-837.
    [140] BAIK S. MOON J H. Effects of Magnesium Oxide on Grain-boundary Segregation of Alcium during Sintering of Alminas[J]. Am Cerm Soc, 1991, (74):819-822.
    [141] CHAN W P. Phase Studies Concerning Sintering in Alumina Doped with Ti[J]. Am Ceram Soc, 2002, 85(6):1585-1593.
    [142] BECHER P F. Microstructural Design of Toughened Ceramics[J]. Am Ceram Soc, 1991, 74(2):255-256.
    [143]范天佑.断裂理论基础[M].北京:科学出版社, 2003: 11-19.
    [144] HEUSSNER K H, CLASSENl N. Yttria-stabilized Tetragonal Zirconia Polocrystals Reinforced with Platelets[J]. Eur Ceram Soc, 1989, 5(3):193-200.
    [145]孙宾.陶瓷材料的韧性及增韧性的研究[J].济南大学学报, 2000, 10(5): 12-14.
    [146] SINGH V K. Densification of Alumina and Silica in the Presence of a Liquid Phase[J]. Am Ceram Soc, 1981, (64):133-136.
    [147] RIEBLING E F. Structure of Magnesium Aluminosilicate Liquids at1700℃[J]. Canadian Journal of Chemistry, 1964, 42(12):2811-2821.
    [148] KANG S L, KWAN-HYEON K, DUK N.Y. Densification and Shrinkage during Liquid-phase Sintering[J]. AmCeram,Soc,1991,74(2):425-427.
    [149] WANG J, RAJ R. Estimate of the Activation Energies for Boundary Diffusion from Rate-controlled Sintering of Pure Alumina and Alumina Doped with Zireonia or Titania[J]. Am Ceram Soc, 1990, (73):1172-1175.
    [150] KINGERY W D. Densification during Sinering in the Presence of a Liquid phase[J]. Theory App Phys, 1959, 30(3):301-306.
    [151] KINGERY W D, NIKI E, NARASIMHAN M D. Sintering of Xxide and Carbide-metal Compositions in Presence of a Liquid Phase[J]. Am Ceram.Soc, 1961, 44 (1):29-35.
    [152] PEJOVNIK S, KOLAR D, HUPPMANN W J. Sintering of Alumina in Presence of Liquid Phase[J]. Sci. Sinering, 1978, 10(2):87-95.
    [153] OH-HUM K, MESSIG G L. Kinetic Analysis of Solution-Precipitation During Liquid-Phase Sintering of Alumina[J]. Am Ceram Soc, 1990, 73(2):275-281.
    [154] WRAY P J. The geometry Of two-Phase Aggregates in Which the Shape of the Second Phase is Determined by its Dihedral Angle[J]. Acta Metall, 1976, 24(2):125-135.
    [155] SALOR D M, DASHER B E, PANG Y. Alumina Platelet Reinforced Reaction Bonded Aluminum Oxide Composites Textured and Random[J]. Am Ceram Soc, 2004, 87(4):724-726.
    [156] POWELL-DOGAN C A, HEUER A H. Abnormal Grain Growth of Alumina[J]. Am Ceram Soc, 1990, 72(12):3670-3676.
    [157] KEBBEDE A, PARAI J, CARIM A H. Preparation of High Fracture Toughness Alumina Sintered Bodies From Layer Aluminum Hydroxide[J]. Am Ceram Soc, 2000, 83(11):2845-2851.
    [158]易中周,肖冰,杨为佑.晶种对氢氧化铝转相和热压烧结氧化铝晶形变化的影响[J].无机材料学报, 2004, 19(6):1287-1292.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700