超声—电沉积镍基TiN纳米复合镀层的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复合电沉积技术是在镀液中加入不溶性微米或纳米固体粒子(如TiN、AlN、SiC和Al_2O_3等),通过电沉积的方式,使固体粒子与基质金属离子共同沉积的一种方法。纳米复合镀层由于具有良好的光学非线性、磁性以及机械性能(如高强度、高硬度和良好的耐磨性能),近年来成为广泛研究的热点。目前,纳米复合镀层的研究还处于探索阶段,纳米粒子和基质金属晶粒的共沉积理论还不完善;纳米复合镀层的制备工艺、纳米粒子在镀液和镀层中的均匀分散问题以及纳米粒子在镀层中的作用机制等方面的研究还显得比较薄弱,严重制约着有关纳米复合镀层的进一步研究和应用。本论文以镍基TiN纳米复合镀层为研究对象,采用理论分析与实验研究相结合的方法,对超声-电沉积镍基TiN纳米复合镀层的制备工艺和主要性能进行研究,并利用BP神经网络对镍基TiN纳米复合镀层的粒子复合量和显微硬度建立网络预测模型。
     本论文从镍基TiN纳米复合镀层的制备机理入手,首先采用超声-电沉积法制得镍基TiN纳米复合镀层。研究分析了超声波功率、脉冲电流密度、脉冲占空比、TiN粒子悬浮量以及表面活性剂对镍基TiN纳米复合镀层显微组织、显微硬度以及镀层中TiN粒子复合量的影响。同时,利用正交试验法对超声-电沉积镍基TiN纳米复合镀层的工艺参数进行优化。实验结果表明,超声-电沉积的主要工艺参数对镍基TiN纳米复合镀层显微硬度和TiN粒子复合量的影响主次顺序为:纳米TiN粒子的悬浮量>超声功率>电流密度>占空比>表面活性剂浓度。采用超声-电沉积方法制备镍基TiN纳米复合镀层的最佳工艺参数为:镀液温度50℃,pH=4.5,复合电沉积时间50min,TiN粒子悬浮量8g/l,电流密度5A/dm~2,占空比40%,表面活性剂浓度100mg/l,超声功率200W。
     其次,本论文首先简述了超声波在介质中的作用机理。然后,研究了不同的搅拌方式对镍基TiN复合镀层表面形貌、显微组织结构、镀层中TiN粒子复合量以及镀层磨损量的影响,探讨了超声波在电沉积镍基TiN纳米复合镀层中的作用。并对镍基TiN纳米复合镀层进行表征。研究结果表明,超声波在电沉积镍基TiN复合镀层过程中,具有明显的搅拌分散作用、强化促进作用以及细化TiN粒子和镍晶粒作用等。XRD分析表明,在机械搅拌-电沉积制得的复合镀层中,镍晶粒和TiN粒子的平均粒径分别为119.3nm和56.7nm:而在超声-电沉积制得的复合镀层中,镍晶粒和TiN粒子的平均粒径分别为74.6nm和34.8nm。对镀层表面XPS分析表明,在镍基TiN纳米复合镀层表面存在零价态的镍和Ti元素。AFM分析表明,电沉积镍镀层的表面均方根粗糙度、平方粗糙度和最大高度粗糙度分别为Rms=48.213nm、Ra=39.567nm和Rmax=339.28nm;机械搅拌-电沉积镍基TiN纳米复合镀层的表面均方根粗糙度、平方粗糙度和最大高度粗糙度分别为Rms=27.427nm、Ra=21.857nm和Rmax=174.74nm;超声-电沉积镍基TiN纳米复合镀层的表面均方根粗糙度、平方粗糙度和最大高度粗糙度分别为Rms=19.242nm、Ra=15.719nm和Rmax=125.53nm。这说明超声波对纳米粒子的搅拌分散作用明显超过机械搅拌所能达到的剧烈程度。
     为了研究镍基TiN纳米复合镀层的主要性能,分别采用机械搅拌-电沉积法和超声-电沉积法制得镍基TiN纳米复合镀层和镍镀层。利用显微维氏硬度计、涂层附着力划痕仪、腐蚀法、中性盐雾试验法(NSS)以及磨损试验机对镍基TiN纳米复合镀层和镍镀层的显微硬度、结合力、孔隙率、耐腐蚀性能和耐磨性能等进行对比研究分析。在此基础上,探讨了镍基TiN纳米复合镀层的耐腐蚀性和耐磨性机理。研究结果表明,镍基TiN纳米复合镀层不仅具有较高的显微硬度、耐腐蚀和耐磨损性能,还具有较低的孔隙率和摩擦系数。其显微硬度大约为镍镀层的2倍左右;其孔隙率约为镍镀层的1/3左右;其磨损量为镍镀层4倍左右。但其结合力与镍镀层相差不大,结合力都在60~70N之间。耐腐蚀性能实验表明,试样的平均腐蚀速率大小依次顺序为:45钢>机械搅拌-电沉积镍镀层>超声-电沉积镍镀层>机械搅拌-电沉积镍基TiN纳米复合镀层>超声-电沉积镍基TiN纳米复合镀层。
     最后,利用BP神经网络对超声-电沉积制备镍基TiN纳米复合镀层的TiN粒子复合量和显微硬度进行建模预测。预测结果表明,所建BP网络预测模型的预测误差相对较小,最大相对误差为5.43%。说明BP网络预测模型的拟合效果较好,准确率较高。本BP网络预测模型的建立,为试验数据的处理提供了一种新途径。
Composite electrodeposition technology is a method to obtain composite coatings by adding insoluble micrometer- or nanometer-sized solid particles(such as TiN,AIN,SiC, Al_2O_3 and so on) to the electrolyte to co-deposit the particles and metal matrix with electrodeposition.In recent years,nanocomposite coatings have become the focus of widespread research owing to favorable properties such as optical non-linearity,magnetism and mechanical performance such as high hardness,wear resistance and corrosion resistance. At present,the research of nanocomposite coatings is still in the exploratory stage,and the codeposition theory of nanoparticles and the matrix grains is not perfect.The study on such as the preparation of nanocomposite coatings technology,the evenly dispersed issue of nanoparticles in the bath and coating,and the role of mechanisms of nanoparticles in coatings is weak relatively.This will restrict the further study and application of nanocomposite coatings seriously.In this thesis,the technological preparation and the main performance of Ni-TiN nanocomposite coatings are studied by combining theoretical analysis with experimental verification,the forecast models for TiN particles content and microhardness of Ni-TiN nanocomposite coatings are established by using the BP neural network.
     Firstly,based on the preparation of Ni-TiN nanocomposite coatings mechanism,the Ni-TiN nanocomposite coatings are prepared by ultrasonic electrodepostion,then the effects of ultrasonic power,current density,duty cycle,TiN nanoparticles concentration and surfactants on the surface morphologies,microhardness and TiN particles in coatings are studied. The technological parameters of Ni-TiN nanocomposite coatings prepared by ultrasonic electrodeposition are optimized with the orthogonal test.The constituent,surface morphologies and surface roughness of Ni-TiN nanocomposite coatings are characterized.The results show that the technological parameters of Ni-TiN nanocomposite coatings prepared by ultrasonic electrodeposition have great effects on the microhardness and TiN particles of coatings.The order from large to small is:TiN nanoparticles concentration>Ultrasonic power>Current density>Duty cycle>Surfactants concentration.And the optimal parameters are as follows: Temperature 50℃,pH 4.5,Time 50min,TiN nanoparticles concentration 4g/l,Current density 5A/dm~2,Duty cycle 40%,Surfactants concentration 80mg/l,ultrasonic power 200W. By using XPS,TEM,EPMA and AFM,the Ni,Ti and N elements are investigated systematically on the surface of Ni-TiN nanocomposite coatings prepared by ultrasonic electrodeposition method,The Ni crystal and nano TiN particles are measured as approximately 55 nm and 35 nm.Moreover,the surface of Ni-TiN nanocomposite coatings is evener,the fluctuation is smaller and the exterior protuberance is also small,and the roughness of the coating are Rms =19.242 nm,Ra =15.719 nm and Rmax=125.53 nm.And they are smaller than that of Ni-TiN nanocomposite coatings prepared by mechanical stirring electrodeposition obviously.
     Secondly,the effect mechanism of the ultrasonic in media is outlined.The effects of different stirring ways on the surface morphologies,microstructure,the TiN particles content and the abrasion of Ni-TiN nanocomposite coatings are studied.The role of ultrasonic is discussed in the Ni-TiN nanocomposite coatings prepared by the electrodeposition method. Then the Ni-TiN nanocomposite coatings are characterized.The results show that the ultrasonic has obvious stirring scattered role,strengthen and promoting role and refining the nickel grains and particles TiN role.The XRD shows that the average sizes of nickel gains and TiN particles are 119.3nm and 56.7nm,separately,in the Ni-TiN nanocomposite coatings prepared by mechanical stirring electrodeposition.While the average sizes of nickel grains and TiN particles are 74.6nm and 34.8nm,separately,in the Ni-TiN nanocomposite coatings prepared by ultrasonic electrodeposition.The XPS indicates that there are nickel and Ti element in the Ni-TiN nanocomposite coatings surface.The AFM shows that the surface roughness of the nickel coating prepared by electrodeposited method are Rms = 48.213nm, Ra = 39.567nm and Rmax = 339.28nm.The surface roughness of the Ni-TiN nanocomposite coatingprepared by mechanical stirring electrodeposited method is Rms=27.427nm, Ra=21.857nm and Rmax=174.74nm.And the surface roughness of the Ni-TiN nanocomposite coating prepared by ultrasonic electrodeposited method is Rms=19.242nm, Ra=15.719nm and Rmax=125.53nm.This shows that the mixing nanoparticles by the ultrasonic dispersed more than that by mechanical agitation to achieve the degree of dramatic.
     In order to study the main performance of the coatings,the Ni-TiN nanocomposite coatings and nickel coatings are prepared by mechanical stirring electrodeposition and ultrasonic electrodeposition.The microhardness,binding force,porosity,the anti-corrosive and wear resistant performances are studied by using Vickers microhardness microscope,scratch tester, corrosive test,NSS and wear testing machine.On this basis,the corrosion resistance and wear resistance mechanism of Ni-TiN nanocomposite coatings are discussed.The result indicates that the Ni-TiN nanocomposite coatings not only have the high microhardness,anti-corrosive and the wear resistant performances,but also have lower porosity and the friction coefficient. The microhardness of the coatings is about 2 times for nickel coating;the porosity approximately 1/3 for about nickel coating,and the abrasion is about 1/4 for nickel coating. But the binding force is close to that of nickel coating between 60~70N.The order of the specimen average corrosion rate is:45 steel>Nickel coating prepared by mechanical stirring electrodeposition>Nickel coating prepared by ultrasonic electrodeposition>Ni-TiN nanocomposite coating by mechanical stirring electrodeposition>Ni-TiN nanocomposite coating prepared by ultrasonic electrodeposition.
     Finally,the forecast models of the TiN particles content and microhardness of the Ni-TiN nanocomposite coatings are established by using the BP neural network.The results indicate that the prediction error of the BP network models is small relatively,and the largest relative error is 5.43%.The fitting effect of the BP network forecast model is explained perfectly,the rate of accuracy is high.The establishment of the BP network forecast models has provided a new way for processing the tentative data.
引文
[1]徐滨士,朱绍华.表面工程的理论与技术.北京:国防工业出版社,1999.
    [2]Low C T J,Wills R G A,Walsh F C.EIectrodeposition of composite coatings containing nanoparticles in a metal deposit.Surf.Coat.Technol.,2006,201:371-383.
    [3]李雪松,吴化,杨友等.MB8镁合金阴极电沉积Ni-SiC纳米复合镀层微观结构及性能.中国有色金属学报,2008,18(7):1261-1267.
    [4]Chen X H,Cheng F Q,Li S L et al.Electrodeposited nickel composites containing carbon nanotubes.Surface and Coatings Technology,2002,155:274-278.
    [5]Subramanian B,Mohan S,Jayakrishnan S et al.Structural and electrochemical characterization of Ni nanostructure films on steels with brush plating and sputter deposition.Current Applied Physics,2007,7:305-313.
    [6]毛延发,唐为国,兰新哲等.脉冲偏压对(Ti,Al)N/TiN/(Ti,Al)N多层复合涂层成分和硬度的影响.稀有金属快报,2008,27(6):12-16.
    [7]郭鹤桐,张三元.复合镀层.天津:天津大学出版社,1991.
    [8]张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2001.
    [9]Zimmerman A F,Clark D G,Aust K T et al.Pulse electrodeposition of Ni-SiC nanocomposite.Materials Letters,2002,52:85-90.
    [10]Wang Z Y,Han E H,Ke W.Effect of nanoparticles on the improvement in fire-resistant and anti-ageing properties of flame-retardant coating.Surface Coating and Technology,2006,200:5706-5716.
    [11]Niu C X,Cao F H,Wang W et al.Electrodeposition of Ni-SiC nanocomposite film.Trans.Nonferrous Met.Soc.China,2007,17:9-15.
    [12]薛玉君,段明德,李济顺等.纳米和微米La_2O_3颗粒增强镍基复合镀层的摩擦磨损性能.中国机械工程,2006,17(3):311-314.
    [13]王敏.复合电镀(Ni-Fe)-金刚石工艺.电镀与精饰,2008,30(3):28-29.
    [14]王兆松,李剑锋,张礼平等.AZ31镁合金表面复合镀膜工艺研究.真空科学与技术学报,2008.28(S1):38-41.
    [15]Nacera A,Berthe R.Crystallization of potash alum:effect of power ultrasound.Ultrasonics sonochemistry,2001,(8):265-270.
    [16]Fu W Y,Yang H B,Bala H et al.Preparation and magnetic characterization of core-shell structure stainless steel/silica nanoparticles.Materials Letters,2006,60:1728-1732.
    [17]Liu W M,Chen Y X,Kou G T et al.Characterization and mechanical/tribological properties of nano Au-TiO_2 composite thin films prepared by a sol-gel process.Wear,2003,254:994-1000.
    [18]Maggio R D,Tomasi A,Scardi P.Characterization of thin ceramic coatings on metal substrates.Materials Letters,1997,31:345-349.
    [19]Narayana R.Electrodeposited Cr-CeO_2 composite coating by nitrate additive.Metal Fin.,2001,99(2):84-88.
    [20]申永良.纳米材料的应用.现代化工,1999,19(9):46-49.
    [21]刘秀珍.施利毅.华彬.负载型纳米TiO_2光催化剂的研究进展.污染防治技术,2000,13(2):79-83.
    [22]高铁,钱朝勇.TiO_2光催化氧化水中有机污染物进展.工业水处理,2000,20(4):10-14.
    [23]王昕,谭训彦,尹衍升等.纳米复合陶瓷增韧机理分析.陶瓷学报,2000,21(2):107-110.
    [24]刘福春,韩恩厚,柯伟.纳米复合涂料的研究进展.材料保护,2001,34(2):1-4.
    [25]徐国财,张立德.纳米复合材料.北京:化学工业出版社,2002.
    [26]李荣久,茹红强,孙旭东.陶瓷-金属复合材料.北京:冶金工业出版社,2002.
    [27]贺鹏,赵安赤.聚合物改性中纳米复合新技术.高分子通报,2001(1):74-77.
    [28]曹珍元.纳米材料的化工应用与开发.化工新型材料,2000,28(11):3-6.
    [29]洪伟良,刘剑洪,田德余等.有机-无机纳米复合材料的制备方法.化学研究与应用,2000,12(2):132-135.
    [30]徐国财,邢宏龙,问凡飞.纳米SiO_2在紫外光固化涂料中的应用.涂料工业,1999,19(7):3-5.
    [31]Zhao Q.Effect of surface free energy of graded Ni-P-PTFE coatings on bacterial adhesion.Surface &Coatings Technology,2004,185:199-204.
    [32]Ashassi-Sorkhabi H,Rafizadeh S H.Effect of coating time and heat treatment on structures and corrosion characteristics of electroless Ni-P alloy deposits.Surface & Coatings Technology,2004,176:318-326.
    [33]Zhou W,Zhao Y G,Qin Q D et al.Effect of pre-oxidation on aluminized coating and their oxidation resistance of Ti alloy.Materials Letters,2006,60:414-417.
    [34]Zhang J H,Yoon R H,Eriksson J C.AFM surface force measurements conducted with silica in C_nTAC1solutions:Effect of chain length on hydrophobic force.Colloids and Surfaces A:Physicochem.Eng.Aspects,2007,300:335-345.
    [35]Wu H P,Wu X J,Ge M Y et al.Effect analysis of filler sizes on percolation threshold of isotropical conductive adhesives.Composites Science and Technology,2007,67:1116-1120.
    [36]Shrestha N K,Yakebe T,Saji T.Effect of particle size on the co-deposition of diamond with nickel in presence of a redox-active surfactant and mechanical property of the coatings.Diamond & Related Materials,2006,15:1570-1575.
    [37]朱晓光,漆宗能.聚合物增韧研究进展.材料研究学报,1997,11(6):623-627.
    [38]Benea L,Bonora P L,Borello A et al.Preparation and investigation of nanostructured SiC-nickel layers by electrodeposition.Solid State Ionics,2002,151:89-95.
    [39]Zimmerman A F,Palumbo G,Aust K T et al.Mechanical properties of nickel silicon carbide nanocomposites.Materials Science and Engineering A,2002,328:137-146.
    [40]徐滨士,董世运,涂伟毅.纳米颗粒对镍刷镀层组织及性能的影响.中国有色金属学报,2004,14(s1):159-163.
    [41]黄新民,吴玉程,郑玉春等.纳米颗粒对复合镀层性能的影响.兵器材料科学与工程,1999,22(6):11-13.
    [42]朱立群,李卫平.电沉积Ni-W非品态合金复合镀层研究.功能材料,1999,30(1):85-87.
    [43]吴元康,余煜,熊晓辉等.纳米晶金刚石织构粒子增强银基电接触复合镀层的研究.中国电镀材料信息、,2002,2(6):64-68.
    [44]Gay P A,Bercot P,Pagetti J.Electrodeposition and characterisation of Ag-ZrO_2 electroplated coatings.Surface and Coatings Technology,2001,140:147-154.
    [45]谭澄宇,郑子樵,陈准.Ni-Al_2O_3纳米复合电镀工艺的初步研究.材料保护,2003,36(4):43-45.
    [46]Clark D,Wood D,Erb U.Industrial applications of electrodeposited nanocrystals.Nanostructured Mate.,1997,9:755-758.
    [47]Morgan K L,Ahmed Z,Ebrahimi F.The effect of deposition parameters on tensile properties of pulse-plated nanocrystalline nickel.Mater.Res.Soc.Symp.Proe,2001,1:634-639.
    [48]Zhang J H,Yoon R H,Eriksson J C.AFM surface force measurements conducted with silica in C_nTAC1solutions:Effect of chain length on hydrophobic force.Colloids and Surfaces A:Physicochem.Eng.Aspects,2007,300:335-345.
    [49]Wu H P,Wu X J,Ge M Y et al.Effect analysis of filler sizes on percolation threshold of isotropical conductive adhesives.Composites Science and Technology,2007,67:1116-1120.
    [50]Shrestha N K,Takebe T,Saji T.Effect of particle size on the co-deposition of diamond with nickel in presence of a redox-active surfactant and mechanical property of the coatings.Diamond and Related Materials,2006,15:1570-1575.
    [51]雷阿利,冯拉俊.高磷高耐蚀性化学镀Ni-P合金复合络合剂的研究.腐蚀与防护.2006,27(3):145-147.
    [52]徐滨士,欧中文,马世宁等.纳米表面工程.中国机械工程,2000,11(6):707-712.
    [53]曹铁华,成旦红,桑付明等.脉冲复合电镀(Ni-P)一纳米微粒SiO_2工艺.电镀与精饰,2004,26(6):27-30.
    [54]郭会清,方红,禹建鹰.复合镀中分散微粒共沉积的若干问题探讨.中原工学院学院,2002,13(1):29-31.
    [55]桑付明,成旦红,曹铁华等.电沉积技术制备Ni-纳米SiO_2复合镀层的研究.电镀与精饰,2004,26(3):5-8.
    [56]Celis J P,Roos J R,Buelens C.Kinetics of the Deposition of Alumina Particles from Copper Sulphate Plating Baths.J.Electrochem.Soc.,1977,124:1508-1511.
    [57]Periene N,Cesuniene A,Matulionis E.Codeposition of Mixtures of Dispersed Particles with Nickel-Phosphorus Electrodeposits.Plating and Surface Finishing,I994,10:68-71.
    [58]Qu N S,Chan K C,Zhu D.Pulse co-electrodeposition of nano Al_2O_3 whiskers nickel composite coating.Scripta Materialia,2004,50:1131-1134.
    [59]Lee W H,Tang S C,Chung K C.Effects of direct current and pulse-plating on co-deposition of nickel and nanometer diamond powder.Surface and Coatings Technology,1999,121(12):607-611.
    [60]Peng Q J,Mu D B,Ma J S et al.Study on the mechanism of Ni/ZrO_2 composite electrodeposition.Electrochemistry,1999,5(1):68-73.
    [61]郭忠诚,杨显万.电沉积多功能复合材料的理论与实践.北京:冶金工业出版社,2002.
    [62]杜克勤,覃奇贤,郭鹤桐.复合电沉积机理研究进展.电镀与精饰,1995,17(6):21-25.
    [63]Smith D W,Starr R M.Some further studies of the mechanism of cermet electrodeposition:Pt 2-variable factors in the process of electrodeposition of metal-matrix composites.Transactions of the Institute of Metal Finishing,1978,56(1):9-14.
    [64]曾华梁,吴仲达,陈钧武等.电镀工艺手册.北京:机械工业出版社,1997.
    [65]Guglielmi N.Kinetics of the deposition of inert particles from electrolytic baths.J.Electrochem.Soc.,1972,119,(8):1009-1012.
    [66]李君,王殿龙,胡信国等.沉降法电铸Ni-SiC复合镀层.材料保护,1996,29(9):17-19.
    [67]Wang M Q,Xie C S,Zeng D W.Cu-Al2O3 composite coating on AISI 1045 steel surface by laser cladding.Trans.Nonferrous Met.Soc.China,1999,9(3):462-467.
    [68]杜克勤.陈慧光,李娟等.镍-聚四乙烯复合电沉积机理的研究.大连铁道学院学报,2001,22(3):96-100.
    [69]Zhang H J.Wu X W,Jia Q L et al.Synthesis and microwave characterization of Co-SiC core-shell powders by electroless plating.Rare Metals.2006.25(3):216-220.
    [70]郭鹤桐.电化学教程.天津:天津大学出版社,2000.
    [71]Celis J P,Roos J R A.Mathematical Model for the Electrolytic Codeposition of Particles with a Metallic Matrix.J.Electrochem.Soc.,1987,134(6):1402-1408.
    [72]Valdes J L,Fabregat I.Electrodeposition of Colloidal Particles.J.Electrochem.Soc.,1987,134(4):223C-225C.
    [73]Fransaer J,Celis J P,Roos J R.Analysis of the Electrolytic Codeposition of Non-Brownian Particles with Metals.J.Electrochem.Soc.,1992,139(2):413-425.
    [74]李晖.超声波强化液-固传质的机理研究.沈阳化工学院学报,1994,8(3):175-180.
    [75]Laux D,Cros B,Despaux G et al.Ultrasonic study of UO2:effect of porosity and grain size on ultrasonic attenuation and velocities.Journal of Nuclear Materials,2002,300(2):192-197.
    [76]Canumalla,Sridhar.Thin layer acoustic image interpretation and metrology for microelectronics using a broadband model.IEEE Transactions on Component s and Packaging Technologies,2005,28(2):353-357.
    [77]Haines N F,Bell J C,Mclntyre P J.The application of broadband ultrasonic spectroscopy to the study of layered media.The Journal of the Acoustical Society of America,1978,64(6):1645-1651.
    [78]Han B H,Luo T J,Liang C L et al.Carbon Fiber with Ni-coating Reinforced Aluminum Matrix Composites.Material Review,2006,S2:447-450.
    [79]Amutha K,Marikkannu K R,Shakkthival P et al.Actions of certain organic additives on Cu-Zn alloy electrodeposition from sulfate-tartrate solutions.Electroplating and Finishing,2006,25(1):1-6.
    [80]付川,祁俊生.正交试验优化电镀Zn-Ni-P合金工艺.表面技术,2003,32(6):43-45.
    [81]郑筱梅,李自林.用均匀设计试验优化镀液组成.材料保护,2001,34(4):34-35.
    [82]赵逸云,周骏,鲍慈光等.均匀设计法在Al_2O_3粉末超声化学镀铜工艺中的应用.材料导报,2000,14(2):53-54.
    [83]Guo Z C,Zhu C Y,Zhai D C et al.Microstructure of electrodeposited RE-Ni-W-P-SiC composite coatings.Transactions of nonferrous metals society of China,2000,10(1):50-52.
    [84]Liu L Y,Guo Z C,Xu R D et al.Structures of electrodeposited RE-Ni-W-P-SiC-PTFE amorphous composite coating.Heat Treatment of Metals,2004,8(29):47-51.
    [85]徐国财,张立德.纳米复合材料.北京:化学工业出版社,2002.
    [86]Nieman G W,Weertman J R.Mechanical behavior of nanocrystalline Cu and Pd.J.Mater.Res.,1991,6(5):1012-1027.
    [87]Benea L,Bonora P L,Borello A et al.Wear corrosion properties of nano- structured SiC-nickel composite coatings obtained by electroplating.Wear,2001,249(11):995-1003.
    [88]Mandich N V,Dennis J K.Codeposition of nano-diamonds with chromium.Metal Finishing,2001,99(6):117-119.
    [89]高濂,靳喜海,郑珊.纳米复相陶瓷.北京:化学工业出版社,2004.
    [90]Kerr A,Welham N J,Willis P E.Low temperature mechanochemical formation of titanium carbonitride.Nanostructured Materials,1999,11(2):233-239.
    [91]White G V.Carbothermal synthesis of titanium nitride.Journal of Materials Science,1992,27(16):4287-4300.
    [92]Peelamedu R D,Fleming M,Agrawal D K et al.Preparation of titanium nitride:microwave-induced carbothermal reaction of titanium dioxide.J.Am.Ceram.Soc.,2002,85(1):117-122.
    [93]莫畏.钛冶金.北京:冶金工业出版社,1998.
    [94]萧世槐.氮化钛粉末生产工艺及其应用新发展.矿冶,1997,6(2):59-67.
    [95]王鸿建.电镀工艺学.哈尔滨:哈尔滨工业大学出版社,1995.
    [96]Pearson T,Dennis J K.The effect of pulsed reverse current on the polarization behavior of acid copper plating solutions containing organic additives.J.Appl.Electrochem,1990,20(2):196-208.
    [97]张胜涛.电镀工程.北京:化学工业出版社,2002.
    [98]赵国刚,张海军,周月波.Ni-纳米Al_2O_3复合镀层结构和耐磨性能研究.材料保护,2008,41(6)11-13.
    [99]陈荣忻.表面活性剂化学与应用.北京:纺织工业出版社,1990.
    [100]Ricp L,Lallemand F.Influence of sodium saccharin on the electrodeposition and characterization of Co-Fe magnetic film.Surface and Coating Technology,2001,138:278-283.
    [101]Fujiwara Y,Yarimizu Y,Enomoto H et al.Electrodeposition of Sn-Ag alloys from pyrophosphate baths containing suspended Ag nanoparticles.Surface and Technology,1999,50(12):147-148.
    [102]于欣伟,陈姚,刘建平等.复合镀层中纳米三氧化铝含量的测定方法研究.无机盐工业,2004,36(6):57-59.
    [103]国家机械工业委员会.工业分析.北京:机械工业出版社,1988.
    [104]Vidrine A B.Podlaha E J.Composite eletrodeposition of untrafine γ-alumina particles in nickel matrices part Ⅰ:citrate and chloride eletrolytes.Journal of Applied Electrochemistry,2001,31:461-468.
    [105]Fujiwara Y,Yarimizu Y,Enomoto H et al.Electrodeposition of Sn-Ag alloys from pyrophosphate baths containing suspended Ag nanoparticles.Surface and Technology,1999,50(12):147-148.
    [106]李廷盛,尹其光.超声化学.北京:科学出版社,1995.
    [107]冯若,李化茂.声化学及其应用.合肥:安徽科学技术出版社,1992.
    [108]吴蒙华,李智.纳米金属陶瓷Ni-A1N复台层的超声-电沉积制备.材料科学与工艺,2005,13(5):548-551.
    [109]Steinbach J,Ferkel H.Nano structured Ni-Al_2O_3 films prepared by D.C.and pulsed D.C.electroplating.Scriptamater,2001,44:1813-1816.
    [110]Elsherik A M,Erb U.Synthesis of bulk nanocrystalline nickel by pulsed electrodeposition.Jouenal of Materials Science,1995,30:5743-5749.
    [111]Ghosh S K,Grove A K,Dey G K et al.Nanocrystalline Ni-Cu alloy plating by pulse electrolysis,Surface and Coating Technology,2000,126:48-63.
    [112]乔桂英,荆天辅,王艳.喷射电沉积块体纳米品Co-Ni金工艺的研究.电镀与环保,2003,23(2):5-8.
    [113]Choo R T C,Toguri J M,Elsherik A Met al.Mass transfer and electrocrystallization analyses of nanocrystalline nickel production by pulse plating.Journal of Applied Electrochemistry,1995.25:384-403.
    [114]朱瑞安,郭振常.脉冲电源.北京:电子工业出版社,1986.
    [115]Natter H,Schmelzer M,Hempelmann R.Nanocrystalline nickel and nickel-copper alloys:synthesis.characterization,and thermal stability.J.Mater.Res.,1998,13:1186-1197.
    [116]Muller B,Ferkel H.Properties of nanocrystalline Ni/Al_2O_3 composites.Zeitschrift fur Metallkunde,1999,90(11):868-871.
    [117]Qu N S,Zhu D,Chan K C.Pulse electrodeposition of nanocrystalline nickel using ultra narrow pulse width and high peak current density.Surface and Coatings Technology,2003,168:123-128.
    [118]Chang S T,Leu I C,Hon M H.Novel methods for preparing nanocrystalline SnO_2 and Sn/SnO_2composite by electrodeposition.Journal of Alloys and Compounds,2005,403:335-340.
    [119]Seah C H,Mridha S,Chart L H.Fabrication of D C plated nanocrystalline copper electrodeposits.Journal of Materials Processing Technology,1999,89:432-436.
    [120]Gay P A,Patrice B,Jacques P.Electrodeposition and characterization of Ag-ZrO_2 electroplated coatings.Surface and Coatings Technology,2001,140:147-154.
    [121]郭忠诚,朱晓云,翟大成等.电沉积RE-Ni-W-P-SiC复合材料镀层的阴极过程.材料保护,2001,34(7):4-5.
    [122]高允彦.正交及回归试验设计方法.北京:冶金工业出版社,1988.
    [123]赵飞,朱荻,薛玉君.工艺参数对Ni-纳米La_2O_3复合电沉积的影响.表面技术,2004,33(2):52-54.
    [124]付川,祁俊生.正交试验优化电镀Zn-Ni-P合金工艺.表面技术,2003,32(6):43-45.
    [125]毕晓勤,陈金身,胡余沛等.铸铁基Ni-SiC复合电镀工艺的研究.金刚石与磨料磨具工程,2008,166(4):66-73.
    [126]林武滔,念保义,王铮敏.超声强化姬松茸多糖的提取及其机理分析.宝鸡文理学院学报(自然科学版),2004,24(3):191-200.
    [127]李小华,马美华,张长丽.Cu-Sn-P-ZnCr_2S_4纳米复合化学镀层制备初探.表面技术,2002,31(6):24-26.
    [128]甘雪萍,戴曦,张传福.超声空化及其在电化学中的应用.四川有色金属,2001,3(3):24-26.
    [129]戴曦,张传福.超声空化与过程强化.有色金属(冶炼部分),2001,5(1):20-22.
    [130]Morgan K L,Ahamed Z,Ebrah I M.The effect of deposition parameters on tensile properties of pulseplated nanocrystalline nickel.Mater.Res.Soc.Symp.Proe.,2001,B311:1-6.
    [131]Aroyo M,Stoychev D,Tzonev N.Theoretical and practical aspects of electrodepostion of metal coatings with improved properties.Plating and Surface Finishing,1998,85(9):92-97.
    [132]Kong F Z,Zhang X B,Xiong W Q et al.Contmuous Ni-layer on multiwall carbon nanotubes by an electroless plating method.Surf.Coat.Technol.,2002,155(1):33-37.
    [133]杨建明,朱荻,雷卫宁.电沉积法制备纳米晶材料的研究进展.材料保护,2003,36(4):1-4.
    [134]肖锋,叶建东,王迎军.超声技术在无机材料合成与制备中的应用.硅酸盐学报,2001,10:615-619.
    [135]吴杰,金花子,崔新宇等.NdFeB磁体超声波化学镀Ni-P的研究.腐蚀科学与防护技术,2003,15(1):44-46.
    [136]王菊香,赵恂,潘进等.超声电解法制备超细金属粉的研究.材料科学与工程,2000,18(4):70-74.
    [137]Wager C D,Riggs W M,Davis L E et al.Handbook of X-ray Photoelectron Spectroscopy,Minnesota USA:PerkinElmer Corporation,1979.
    [138]Zhang J S,Shi J S.The solution of electroplate and significance testing of coating film.Beijing:Chemical Industry Press,2003.
    [139]李国英.表面工程手册.北京:机械工业出版社,1997.
    [140]Tsai Y Y,Wu F B,Chen Y I.Thermal stability and mchanical properties of electroless deposits.Surface and Coatings Technology,2001,146-147:502-507.
    [141]谭俊,郭文才,徐滨士等.脉冲换向电刷镀镍基纳米SiO_2复合镀层的耐腐蚀性能研究.中国腐蚀与防护学报,2006,26(4):193-196.
    [142]王健雄,陈小华,彭景翠等.碳纳米管镍基复合镀层材料耐腐蚀性的初步研究.腐蚀与防护,2002,23(1):6-9.
    [143]胡信国,李桂芝.现代防护装饰性电镀.哈尔滨:哈尔滨工业大学出版社,1989.
    [144]Myllykoski P,Larkiola J,Nylander J.Predicting of mechanical properties of strip steel.J.Mater.Proc Tech.,1996,60:399-406.
    [145]Taylor K K,Darsey J A.Prediction of the electronic properties of polymers using artifical neural networks.Ploymer Proprints,2000,41(1):331-332.
    [146]张国英,刘贵立,曾梅光等.人工神经网络在材料设计中的应用.材料科学与工艺,1999,7(3):93-96.
    [147]左 秀荣,姜茂发,薛向欣.人工神经网络在钢铁材料力学性能预测方面的应用.特速钢,2004,25(5):26-29.
    [148]Dumortier C,Lehert P.Strength predicting of carbon steel and alloy steel.ISU International,1999,39(10):235-238.
    [149]吴起,蒋军成.基于BP神经网络技术的实验数据分析处理.中国安全科学学报,2006,16(1):39-43.
    [150]程相君.神经网络原理及其应用.北京:国防工业出版社 1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700