基于硅基多孔氧化铝模板的硅基纳米发光材料和结构的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Studies on Si-based Nanoscaled Light-emitting Materials and Structures Fabricated by Si-based Anodic Porous Alumina Film
  • 作者:杨阳
  • 论文级别:博士
  • 学科专业名称:无机化学
  • 学位年度:2002
  • 导师:陈慧兰
  • 学科代码:070301
  • 学位授予单位:南京大学
  • 论文提交日期:2002-12-16
摘要
纳米科学与技术的发展使得以硅为基底的微电子集成技术正在向纳米电子学推进。此外还将引入光信号,使之向纳米光电子集成发展。为此制备尺寸均匀、空间分布有序的硅基纳米发光材料和结构就显得非常重要。通过自组织作用形成的多孔氧化铝以其特有的有序纳米孔列阵结构引起了人们广泛的重视。同时阳极氧化多孔铝膜已被成功地移植到硅基上,这样就可以以此为模板或掩模,利用各种物理化学方法制备硅基纳米复合材料以及在硅基上制备了量子点列阵。这些结果对纳米电子学、光电子学的研究将会产生深刻的影响。
     本论文以硅基多孔氧化铝膜为基础,侧重于通过化学和物理方法的结合制备硅基纳米发光材料和结构,主要包括以下几部分内容:
     1.利用硅基多孔氧化铝膜的吸附性能,用化学沉积法制备了C60/多孔硅以及C60/硅基多孔氧化铝两种硅基介孔复合物并研究了它们的发光性质。结果表明C60的毗联可以影响多孔硅的发光性质,但对硅基多孔氧化铝的发光基本不产生影响。此外,同样利用这种模板的吸附性能我们将三种不同波长的荧光染料分别嵌入硅基多孔氧化铝模板中,并且在室温下得到了蓝光、绿光、红光波长的荧光发射。实验中同时观测到上述荧光光谱的蓝移现象。研究结果表明C60分子或荧光染料沉积在不同的模板,如硅基多孔氧化铝、多孔硅中,其相互之间的作用机理是不同的。模板发光机制的差异将直接影响嵌入物质的发光性质。重要的是在硅基纳米多孔氧化铝模板中嵌入发光介质可以得到纳米尺寸的发光点或列阵。
     2.聚乙二醇(PEO)作为一种化学模板可以为纳米晶粒的成核及生长提供一个限制的环境。我们首先研究了PEO的包封特性对生成的CdS晶粒尺寸及光学性质的影响,结果表明生成的CdS纳米晶粒的尺寸可以通过调节Cd2+与PEO两相之间的相对浓度进行控制。受量子尺寸限制效应的影响,CdS纳米晶粒的紫外吸收光谱和荧光发射光谱都发生相应的蓝移。我们进一步将化学模板-聚乙二醇与物理模板-硅基多孔氧化铝相结合,即将PEO包封的CdS纳米晶粒填入硅基多孔氧化铝的孔中,制备了PEO包封的CdS纳米晶粒并研究了它们的发光性质。利用硅基多孔氧化铝模板的有序性可以控制CdS纳米晶粒的空间排列,而利用PEO的包封特性则可以控制CdS纳米晶粒的光学性质。这种设计思想为制备性质可控的硅基半导体纳米晶复合结构提供了一种方便的途径。
     3.在硅基多孔氧化铝模板的基础上,我们在硅基底与铝膜之间引入了一薄的金层,通过阳极氧化制备了一种新型的Au/Si基AAO模板,并适时监测其反应过程的电流-时间曲线,研究了该模板的形成过程。这种模板具有优良的电学性质并且可以与被沉积物形成良好的接触。作为一个应用的实例,我们通过非水电化学沉积的方法制备了具有一定发光性能的CdS纳米线。
     4.利用多孔氧化铝膜对基底的掩膜作用,制备了硅基SiO2岛列阵。受此启发,制备了Cu纳米点列阵,并简要讨论了这些结构可能的用途。
     5.利用电子束蒸发技术在硅衬底上沉积了500 nm厚的铝膜,分别在硫酸、磷酸和草酸中通过阳极氧化技术制备了硅基多孔氧化铝模板。通过透射电镜(TEM)观测了形貌,并测定了它们的光致发光光谱(PL)。结果表明利用不同的酸性电解质得到的多孔氧化铝模板的发光现象是不完全相同的。基于这种思路,采用了其它的酸性电解质,如磺基水杨酸或在酸性电解质中预先加入有机荧光物质罗丹明6G,得到了不同发光特性的硅基多孔氧化铝膜。结合过去的理论,对上述荧光光谱的来源以及变化进行了讨论。多孔氧化铝的发光一般都来自于与氧空位有关的缺陷态F+,但它的复合过程会受到体系中的杂质能级或其它发光物质的影响。来自电解质中的物质在阳极氧化的过程中会参与氧化铝膜的形成,进而改变氧化铝膜的成分,并影响其发光过程。
     6.开展了其它与纳米发光半导体制备有关的工作:利用环糊精对热分解前体醋酸锌的包结作用,制备了尺寸分布均匀并具有一定发光性质的ZnO纳米晶粒,并研究了相关机理。
With the developments of nano-science and nano-technology, the integrated microelectronic technique based on silicon is now being developed into integrated nano-electronics. Moreover, photon signals will be introduced into integration, which is to develop integrated nano-optoelectronics. Therefore, it is very important to fabricate silicon based light-emitting nanomaterials and nanostructures with uniform size and regular distribution. Anodic porous alumina film has been successfully transferred onto silicon substrate, thus it could be used as a template or a mask to prepare Si-based nanoscaled compounds or quantum dots array by different kinds of physical and chemical methods. These results will have great effects in the research areas of nano-electronics and nano-optoelectronics.
     In this dissertation, we made use of Si-based anodic porous alumina film to prepare Si-based nanoscaled light-emitting materials and structures. The combination of chemical and physical methods has been emphasized through the whole research, which includes the following sections:
     1. The mesoporous compound materials of C60 molecules adjacent to porous silicon or Si-based nanoporous alumina were fabricated and characterized by the photoluminescence and photoluminescence excitation spectra. It was observed that the PL spectra of porous silicon could be affected with the deposition of C60 molecules. But C60 molecules had no effect on the PL spectra of Si-based nanoporous alumina. In addition, different kinds of laser dyes were impregnated into Si-based nanoporous alumina and utilized to obtain blue, green and red emission at room temperature. The blue shift of emission spectra was also found. The results show that the interaction mechanism between the impregnated materials and the host matrices such as nanoporous alumina and porous silicon is different and the PL properties of impregnated materials are directly affected by the PL mechanism of the host matrices. It is noticeable that Si-based nanoporous alumina could be used as host matrices for a variety of luminescent media to obtain light dots in nanometer size.
     2. CdS nanocrystallites encapsulated in poly (ethylene oxide) polymer were prepared and the optical and microstructure properties were studied. It has been found that PEO could be used as a chemical template for providing a confined media for CdS neucleation and particle growth. Thus the size of CdS nanocrystallites could be controlled by changing the Cd2+ concentration in PEO. Optical properties of the above nanocrystallites show coherent change with the varieties of the particle dimensions, which could be explained by size quantization effects. Based on this study, a convenient method is presented to achieve regular arrangement of CdS nanocrystallites. CdS/PEO complex was deposited into the nanopores of Si-based porous alumina films. The morphology of CdS/PEO in the film was proved to be in tube shape. Si-based porous alumina film acts as a physical template to form an ordered arrangement of CdS and PEO as a chemical template is used to control the crystallite sizes. It is easier to obtain regular and size-controllable quantum dot array by the combination of chemical and physical templates technique.
     3. A layer of thin gold film was sandwiched between the silicon substrate and Al film to form Al/Au/Si structure. Subsequent anodization leads to formation of a Si-based anodic alumina oxide (AAO) template (AAO/Au/Si structure) with ordered nanopores. Anodic process of the Al/Au/Si structure was investigated in detail by in situ monitoring the current–time curve. This kind of templates has unique electrodeposition property and can bond well with the deposited materials. As an application example, CdS nanowires were fabricated on the silicon substrate using this kind of AAO templates. Light-emitting property from the CdS nanowires was revealed.
     4. A SiO2 nanoscaled island array was fabricated on Si substrate by using anodic porous alumina as a mask. A copper nanoscaled island array was also obtained by the similar preparation route. The possible applications of the above nano-structures were proposed.
     5. Silicon based porous anodic aluminum oxide films were prepared by anodization in traditional H2SO4, H3PO4, and H2C2O4, respectively. It was found that PL spectra of the films prepared in various electrolytes presented different emission. Based on this result, another electrolyte, sulfosalicylic acid was used and a kind of laser dye, Rhodamine 6G was also added in advance in H2C2O4 solution to synthesize Si-based alumina. Both of them showed characteristic PL properties. According to previous theories of the PL mechanism of porous alumina, it has been suggested that luminescence center of the alumina films, which usually originate from the F+ center could be affected by the local structure related to the components incorporated in the films. These species coming from the electrolyte will be responsible for the varied emissions.
     6. Other work related to nanoscaled light-emitting semiconductor materials: ZnO nanoparticles were synthesized by thermal decomposition of Zn(CH3COO)2 under the inclusion effects ofβ-cyclodextrin. ZnO nanoparticles obtained by this method present highly regular size distribution and good optical properties. The possible mechanism was proposed.
引文
1. R.L.Van Tuyl and C.A.Liecti, IEEE J.Solid-State Circuits, 1974,SC-9: 269; R.L.Van Tuyl and C.A.Liecti, IEEE Spectrum, 1977,14: 41.
    2. L.T.Canham, MRS Bull., 1993,18: 22.
    3. L.T.Canham, Phys. Lett., 1990,57: 1046.
    4. L.S.Liao et al., Appl. Phys. Lett., 1995,66: 2382.
    5. P. Mutti et al., Appl. Phys. Lett., 1995,66: 85l.
    6. L.S.Liao et al., J. Luminescence, 1996,68: 199.
    7. T.Gao et al., Acta Physics Sinica, 1997,6: 466.
    8. X.Zhao et al., J. Appl. Phys., 1994,33: L649.
    9. H. Takagi et al., Appl. Phys. Lett., 1990,56: 2379.
    10. Z.H.Lu, D.J.Lockwood, J.M.Baribeau, Nature, 1995,378: 258.
    11. 鲍希茂, 物理(台),1999,21: 437.
    12. D.Philp, F. Stoddart, Angrew. Chem. Int. Ed., 1996,35: 1154.
    13. 陈慧兰, 无机化学学报, 2001,17: 1.
    14. F.Liu, M.G.Lagaug,Surface Science, 1997,386: 169.
    15. J.Y. Marzin et al., Phys. Rev. Lett., 1994,73: 716.
    16. H.Deckmanand, J.H.Dunsmuir, Appl. Phys. Lett., 1982,41: 377.
    17. Y.S.Obeng, A.J.Bard, J. Am. Chem. Soc., 1991,113: 6279.
    18. L.D.Lamb et al., Science, 1992,255: 1413.
    19. R.J.Wilson et al., Nature, 1990,348: 621.
    20. R.M.Penner, C.R.Martin, J. Electrochem. Soc., 1986,133: 2206.
    21. C.R.Martin, Science, 1994,266: 1961.
    22. C.R.Martin, Acc. Chem. Res., 1995,28: 61.
    23. J.C.Hulteen, C.R.Martin, J. Mater. Chem., 1997,7: 1075.
    24. C. G.Wu, T.Bein, Science, 1994,264: 1757.
    25. W.Cahalance, M.M.Labes, Chem. Mater., 1989,1: 519.
    26. C.G.J.Koopal, R.J.M.Notleetal, J. Chem. Soc., Chem. Commnun., 1991: 1691.
    27. C.G.J.Koopal, M.C.Feitersetal., Biosens. Bioelec-tron., 1992,7: 461.
    28. R.P.Burford, T.Tongtam., J. Mater. Sci., 1993,26: 3264.
    29. Granstorm, O.Inganas, Synth. Met., 1993,55-57: 460.
    30. R.L.Fleischer, P.B.Priceetal, Nuclear tracks in Solids (Univ. of California Press, Berkeley, CA.1975).
    31. Despic, V.P.Parkhutik, in Modern Aspects of Electrochemistry; J.O.Bockris, R.E.White, B.E.Con-way, Eds (Plenum, NewYork, 1989), vol.20, chap.6.
    32. R.J.Tonucci, B.L.Justusetal, Science, 1992, 258: 783.
    33. J.S.Beck, J.C.Vartulietal, J. Am. Chem. Soc., 1992,114: 10834.
    34. C.-G.Wu, T.Bein, Science, 1994,266: 1013.
    35. K.Douglas, G.Devaudetal, Science, 1992,257: 642.
    36. T.D.Clark, M.R.Ghadiri, J. Am. Chem. Soc., 1995,117: 12364.
    37. G.A.Ozin, Adv. Mater., 1992,4: 612.
    38. R.Schollhorn, Chem. Mater., 1996,8: 1747.
    39. C.J.Brumlik, C.R.Martinetal, Anal. Chem., 1992,64: 1201.
    40. S.K.Chakarvarti, J.Vettr, J. Micromech. Microeng., 1993,3: 57.
    41. M.J.Tierney, C.R.Martin, J. Phys. Chem., 1998,93: 2878.
    42. G.L.Hornyak, C.R.Martin, J. Phys. Chem., 1997,101: 1548.
    43. C.J.Brumlik, V.P.Menonetal, J. Mater. Res., 1994,9: 1174.
    44. C.J.Miller, C.A.Widrigetal, J. Phys. Chem., 1988,92: 1928.
    45. L.S.VanDyke, C.R.Martin, Langmuir, 1990,6: 1123.
    46. V.P.Menon, C.R.Martin, Anal. Chem., 1995,67: 1920.
    47. J.Lei, Z.Cai et al., Synth. Met., 1992,46: 53.
    48. Z.Cai, J.Lei et al., Chem. Mater., 1991,3: 960.
    49. R.V.Parthasarathy, K.L.Phanietal, Adv. Mater., 1995,7: 896.
    50. J.H.Fendler, F.C.Meldrum, Adv. Mater., 1995,7: 607.
    51. B.B.Lakshmi, P.K.Dorhout et al., Chem. Mater., 1997,9: 857.
    52. T.Kyotani, L.Tsaietal, Chem. Mater., 1996,8: 2109.
    53. V.M.Cepak, J.C.Hulteen et al., Chem. Mater., 1997,9: 1065.
    54. F.Keller et al., J. E1ectrochem. Soc., 1953,100: 411.
    55. M.Miyagie, Appl. Optics., 1987,26: 970.
    56. C.A.Huber, Science, 1994,263: 800.
    57. M. Shirakie, IEEE Trans. Mag., 1985,MAG-21: 1465.
    58. H.Masuda, K.Fukuda, Science, 1995,268: 1466.
    59. H.Masuda et al., Jpn. J. Appl. Phys., 1992,51: L1775.
    60. H.Masuda et al., Appl. Phys. Lett., 1997,71: 1770.
    61. H.Masuda et al., J. Electrochem. Soc., 1997,144: L127.
    62. H.Masuda et al., Jpn. J. Appl. Phys., 1998,37: L1340.
    63. O.Jessensky et al., Appl. Phys. Lett., 1998,72: 1173.
    64. J.H.Wu et al., Chin. Phys. Lett., 2000,17: 451.
    65. L.Pu et al., Angew. Chem. Int. Ed, 2001,40: 1490.
    66. J.P.Zou et al., Phys. Lett. A., 2002,301: 96.
    1. 鲍希茂,等,材料研究学报,1997,11:601.
    2. L.T.Canham, Appl. Phys. Lett., 1990,57:1046.
    3. X.M.Bao et al., Appl. Phys. Lett., 1993,63:2246.
    4. F.Yan et al., Appl. Phys. Lett., 1995,67:3471.
    5. A.Halimani et al., Appl. Phys. Lett., 1991,59:304.
    6. B.D.Evaus et al., Phys. Rev. B., 1978,18:7089.
    7. K.H.Lee et al., Phys. Rev. B., 1979,19:3217.
    8. H.W.Kroto et al., Nature, 1985,318:165.
    9. F. Yan et al., Appl. Phys. Lett.,1995,67:3471.
    10. X.L.Wu et al., Phys. Rev. B., 2000,62:R7759.
    11. X.L.Wu et al., Phys. Lett. A., 1997,225:170.
    12. Edited F.P.Schafer, Dye Lasers, Topics in Applied Physics. Berlin: Springer, 1977: 132-197.
    13. L.T.Canham, Appl. Phys. Lett., 1993, 63: 337.
    14. E.Sawicki et al., Microchem. J., 1970,15: 294.
    15. 陈国珍,等,荧光分析法, 1990: 75-109.
    16. F.Koch et al., MRS Proc., 1992,283: 197.
    17. 郑祥钦,等,科学通报,1993,38: 2128.
    18. X.M.Bao et al., Phys. Stat. Sol(a)., 1994,142: K63.
    1. R. Rossetti, S. Nakahara and L. E. Brus, J. Chem. Phys., 1983,80: 4464.
    2. R. Rossetti, J. L. Ellison, J. M. Gibson and L. E. Brus, J. Chem. Phys., 1984,79: 1086.
    3. S. Mann, R. B. Frankel and R. P. Blakemor, Nature, 1984,310: 405.
    4. P. Lianos and J. K. Thomas, Chem. Phys. Lett., 1986,125: 299.
    5. A. Ulman, An introduction to ultrathin organic films from Langmuir-Blodgett to self assembly, Academic Press: Boston, 1991.
    6. L. Addadi and S. Weiner, Angew. Chem., Int. Ed. Engl., 1992,31: 153.
    7. S. Weiner and L. Addadi, J. Mater. Chem., 1997,7: 689.
    8. G. Xu, N. Yao, I. A. Aksay and J. T. Groves, J. Am. Chem. Soc., 1998,120: 11977.
    9. S. F?rster and M. Antonietti, Adv. Mater., 1998,10: 195.
    10. T. Kato and T. Amamiya, Chem. Lett., 1999: 199.
    11. J. J. Storhoff and C. A. Mirkin, Chem. Rev., 1999,99: 1849.
    12. D. G. Kurth, P. Lehmann and C. Lesser, Chem. Commun., 2000: 949.
    13. A. K. Boal, F. Ilhan, J. E. Derouchey, T. Thurn-Albrecht, T. P. Russell and V. M. Rotello, Nature, 2000,404: 746.
    14. N. Herron, Y. Wang, M. M. Eddy, G. D. Stucky, D. E. Cox, K. Moller and T. Bein, J. Am. Chem. Soc., 1989,111: 530.
    15. P. K. Mahapatra and C. B. Roy, Electrochim. Acta, 1984,29: 1439.
    16. A. P. Alivisatos, J. Phys. Chem., 1996,100: 13226.
    17. N. Herron, J. C. Calabrese, W. E. Farneth, Y. Wang, Science, 1993,259: 1426.
    18. P. Hoyer, N. Baba and H. Masuda, Appl. Phys. Lett., 1995,66: 2700.
    19. R. Dmitri, B. Terry, M. Martin and M. X. Jing, J. Phys. Chem., 1996,100: 14037.
    20. P. Yan, Y. Xie, Y. T. Qian and X. M. Liu, Chem. Commun., 1999: 1293.
    21. M. Chen, Y. Xie, Z. P. Qiao, Y. J. Zhu and Y. T. Qian, J. Mater. Chem., 2000,10: 329.
    22. P. A. Bianconi, J. Lin and A. R. Strzelecki, Nature, 1991,349: 315.
    23. S. X. Ji, C. Y. Fan, F. Y. Ma, X. C. Chen and L. Jiang, Thin Solid Films, 1994,242: 16.
    24. J. Lin, E. Cates and P. A. Bianconi, J. Am. Chem. Soc., 1994,116: 4738.
    25. S. W. Haggata, D. J. Cole-Hamilton and J. R. Fryer, J. Mater. Chem., 1997,7: 1967.
    26. M. A. Olshavsky and H. R. Allcock, Chem. Mater., 1997,9: 1367.
    27. M. Moffitt, H. Vali and A. Eisenberg, Chem. Mater., 1998,10: 1021.
    28. O. V. Salata, P. J. Dobson, P. J. Hull and J. L. Hutchison, Thin Solid Films, 1994,251: 1.
    29. U. Woggon, S. V. Bogdanov, O. Wind and V. Sperling, J. Crystal Growth, 1994,138: 976.
    30. Y. D. Yin, X. L. Xu, X. W. Ge, C. J. Xia and Z. C. Zhang, Chem. Commun., 1998: 1641.
    31. J. Kuczynski and J. K. Thomas, J. Phys. Chem., 1985,89: 2720.
    32. M. G. Bawendi, A. R. Kortan, M. L. Steigerwald and L. E. Brus, J. Chem. Phys., 1989,91: 7282.
    33. H. M. Schmidt and H. Weller, Chem. Phys. Lett., 1986,129: 615.
    34. L. Spanhel, M. Haase, H. Weller and A. Henglein, J. Am. Chem. Soc., 1987,109: 5649.
    35. L. Banyai and S. W. Koch, Semiconductor Quantum Dots, World Scientific, Singapore, 1993.
    36. S. Mann, Nature, 1988,332: 119.
    37. R. Iwamoto, Y. Saito, H. Ishihara and H. Tadokoro, J. Polym. Sci., 1968,6: 1509.
    38. Y. Wang and N. Herron, J. Phys. Chem., 1988,92: 4988.
    39. Y. Wada, H. Kuramoto, J. Anand, T. Kitamura, T. Sakata, H. Mori and S. Yanagida, J. Mater. Chem., 2001,11: 1936.
    40. Lakshmi, B. B. and Dorhout, P. K. Chem. Mater., 1997,9: 857.
    1.J.H.Wu et al., Chin. Phys. Lett., 2000,17: 451.
    2.L.Pu et al., Angew. Chem. Int. Ed., 2001,40: 1490.
    3.J.P.Zou et al., Appl. Phys. Lett. 2002,80: 1079.
    4.A.S.Baranski et al., J. Electrochem. Soc., 1980,127: 766.
    5.D.Routkevitch et al., J. Phys. Chem., 1996,100: 14037.
    6.P.Hoyer et al., Appl. Phys. Lett., 1995,66: 2700.
    7.P.V.Braun et al., Adv. Mater., 2001,13: 482.
    8.J.P.O’Sullivan et al., Proc. R. Soc. London, 1970,A317: 511.
    9.邹建平,等,半导体学报,2000,21:255.
    10.H.P.Klug et al., X Ray Diffraction Procedures, Wiley, New York, 1974: 656.
    11. Y.Wang et al., J. Phys. Chem., 1988,92: 4988.
    12. Y.Wada et al., J. Mater. Chem., 2001,11: 1936.
    
    
    
    
    1. I.Vorobyova et al., Thin Solid Films, 1998,1: 324.
    2. S.Z.Chu et al., J. Electrochem. Soc., 2002,149: B321.
    3. K.Shimizu et al., Thin Solid Films, 1997,295: 156.
    4. H.Habazaki et al., Philos. Mag. A, 1996,73: 445.
    5. K.Chen et al., J. Am. Chem. Soc., 1993,115: 1193.
    6. W.B.Caldwell et al., Langmuir, 1993,9: 1945.
    7. A.B.Smith et al., J. Am. Chem. Soc., 1993,115: 4383.
    8. V.Vladimir et al., Langmuir, 1994,10: 996.
    9. Hsiao et al., J. Am. Chem. Soc., 1997,119: 1439.
    10.R.M.Penner, Acc. Chem. Res., 2000,33: 78.
    
    
    
    
    
    
    1 吴俊辉,等, 半导体学报, 1999,20:314.
    2 杨阳,等, 高等学校化学学报, 2002,23: 768.
    3 Y.Yang et al., Solid State Commun., 2002,123: 279.
    4 I.Mikulskas et al., Adv. Mater., 2001,13: 1574.
    5 Stephen et al., Metal Finishing, 1981,79: 10.
    6 J.P.O’Sullivan et al., Proc. R. Soc. (London), 1970,A317: 511.
    7 E.Sawicki et al., Microchem. J., 1970,15: 294.
    8 K.H.Lee et al., Phys. Rev. B, 1979,19: 3217.
    9 Y.Du et al., Appl. Phys. Lett., 1999,74: 2951.
    10 J.H.Wu et al., Appl. Phys. A, 2001,72: 735.
    11 吴俊辉,等,发光学报,2000,21: 53.
    12 Y.Yamamoto et al., Nature, 1981,289: 572.
    13 吴俊辉,等,化学物理学报,2000,13: 203.
    14 陈国珍,等, 荧光分析法, 科学出版社, 北京, 1990, p75-109.
    1. H. Morkoc, S. Strite, G. B. Gao, M. E. Lin and B. Sverdlov, J. Appl. Phys., 1994, 76: 1363.
    2. D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen and T. Goto, Appl. Phys. Lett., 1997, 70: 2230.
    3. P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma and Y. Segawa, Solid State Commun., 1997, 103: 456.
    4. R. F. Service, Science, 1997, 276: 895.
    5. M. Bowker, R. A. Hadden, H. Houghton, J. N. K. Hyland and K. C. Waugh, J. Catal., 1988, 109: 263.
    6. J. Müller and S. Weissenrieder, J. Anal. Chem., 1994, 349: 390.
    7. R. Lindsay, A. Gutierrez-Sosa, G. Thornton, A. Ludviksson, S. Parker and C. T. Campbell, Surf. Sci., 1999, 439: 131.
    8. H. Cao, J. Y. Xu, D. Z. Zhang, S. -H. Chang, S. T. Ho, E. W. Seelig, X. Liu and R. P. H. Chang, Phys. Rev. Lett., 2000, 84: 5584.
    9. H. Cao, J. Y. Xu, E. W. Seelig and R. P. H. Chang, Appl. Phys. Lett., 2000, 76: 299.
    10. T. Soki, Y. Hatanaka, D. C. Look, Appl. Phys. Lett., 2000, 76: 3257.
    11. M. H. Huang, S. Mao, H. N. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo and P. D. Yang, Science, 2001, 292: 1897.
    12. A. Taubert, D. Palms, ?. Weiss, M. -T. Piccini and D. N. Batchelder, Chem. Mater., 2002, 14: 2594.
    13. M. H. Huang, Y. Y. Wu, H. N. Feick, N. Tran, E. Weber and P. D. Yang, Adv. Mater., 2001, 13: 113.
    14. K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant and J. A. Voigt, Appl. Phys. Lett., 1996, 68: 4034.
    15. D. Gal, G. Hodes, D. Lincot and H. -W. Schock, Thin Solid Films, 2000, 361-362: 79.
    16. K. Nomura, N. Shibata and M. Maeda, J. Electrochem. Soc., 2002, 149: F76.
    17. M. G. Ambia, M. N. Islam and M. O. Hakim, J. Mater. Sci., 1994, 29: 6575.
    18. T. Yoshida, K. Miyamoto, N. Hibi, T. Sugiura, H. Minoura, D. Schlettwein, T. Oekermann, G. Schneider and D. W?hrle, Chem. Lett., 1998: 599.
    19. G. Shi, C. M. Mo, W. L. Cai and L. D. Zhang, Solid State Commun., 2000, 115: 253.
    20. J. Zhang, L. D. Sun, H. Y. Pan, C. S. Liao and C. H. Yan, New J. Chem., 2002, 26: 33.
    21. N. S. Pesika, Z. Hu, K. J. Stebe and P. C. Searson, J. Phys. Chem. B, 2002, 106: 6985.
    22. T. J. Gardner and G. J. Messing, Thermochim. Acta, 1984, 78: 17.
    23. X. Y. Zhao, B. C. Zheng, C. Z. Li and H. C. Gu, Powder Technol., 1998, 100: 20.
    24. M. L. Bender and M. Komiyama, Cyclodextrin Chemistry, Springer, Berlin, 1978.
    25. J. Szejtli, Cyclodextrins and their Inclusion Complexes, Akadmemiai Kiado, Budapest, 1982.
    26. G. Wenz, Angew. Chem., Int. Ed. Engl., 1994, 33: 803.
    27. H. P. Klug and E. A. Leroy, X Ray Diffraction Procedures, Wiley, New York, 1974, p. 656.
    28. S. S. Jiang, G. C. Stangle, V. R. W. Amarakoon and W. A. Schulze, J. Mater. Res., 1996, 11: 2318.
    29. R. Iwamoto, Y. Saito, H. Ishihara and H. Tadokoro, J. Polym. Sci., 1968, 6: 1509.
    30. K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt and B. E. Gnade, J. Appl. Phys., 1996, 79: 7983.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700