具有梯度直径和多级枝状结构金属纳米线的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一维金属纳米材料因具有新颖的物理、化学性能及在纳米器件方面重要应用价值而引起了人们广泛的兴趣。然而纳米材料器件化通常要求其制备过程具有可控性,因此纳米材料的形状控制已经引起了人们极大的关注。本工作旨在探索基于多孔氧化铝模板法来制备不同形状的金属纳米线,发展出一种能有效控制一维纳米材料形状的方法。
     1、我们改进了氧化铝模板的制备工艺,制备出了多种孔洞形貌各不相同的氧化铝模板:分别以硫酸和草酸作为电解液,在氧化过程中,通过缓慢改变氧化电压的方法制备出了具有梯度孔径的氧化铝模板;以草酸作为电解液,在氧化过程中按照1/ 2的系数关系改变氧化电压,得到了从一级到三级分叉结构的氧化铝模板。
     2、利用电化学沉积法,在以硫酸为电解液制备的具有梯度孔径的氧化铝模板中,我们合成了具有梯度直径的银纳米线和铁纳米线;在以草酸为电解液制备的具有梯度孔径的氧化铝模板中,我们合成了具有梯度直径的铋纳米线。利用扫描电子显微镜(SEM)和透射电子显微镜(TEM),我们对各种纳米线的形貌及结晶情况进行了观察和研究。结果显示:上述纳米线都具有梯度变化的直径,铁纳米线和银纳米线的直径变化范围均为12~31nm,铋纳米线的直径变化范围为11~55nm;银纳米线和铋纳米线具有单晶结构,而铁纳米则为多晶结构。
     3、利用电化学沉积法,我们在具有多级分叉结构的模板中生长了不同形状铁纳米线——Y型铁纳米线,枝状结构的铁纳米线。利用选区电子衍射(SAED)和高分辨透射电子显微镜(HRTEM)对这些纳米线进行了研究,结果显示:在这些纳米线的主干上是α-Fe单晶,而在细小的分支上铁是多晶结构。
One-dimensional nanomaterials have received considerable attention over the past decade because of their novel physical and chemical properties and potential applications in future nanodevices. It is well known, however, that the property of nanomaterials is heavy dependent with its shape, so how to control the shape of nanomaterials becomes a hot topic in material research field at present. As one of the useful means in the shape control of one-dimensional nanomaterials, anodic alum -inum oxide (AAO) templates have received widely attention. In this paper, we pay considerable attention to the shape controlling of metal nanowires based on AAO templates, and then develop the template-synthesis method for fabricating nanowires with different shapes.
     1)We have extended the functions of the AAO template to fabricate graded and multi-branched nanochannels. The AAO template with a graded pore diameter was prepared through gradually changing the anodic voltage during an anodization in 0.3M sulfuric acid or oxalic acid. While the AAO templates with various branched pores were prepared through one- to multi-step varying the anodic voltage by a factor of 1/ 2 during an anodization of aluminum in 0.3M oxalic acid.
     2)Based on the templates with a graded pore diameter, several graded metal nanowires (i.e. Ag, Fe, and Bi) were achieved by electrochemical deposition. SEM and TEM were used to characterize these nanowires. The results show that these nanowires have obvious graded diameters along the nanowire direction with gradient ranging from about 12 to 31nm for Ag and Fe, and from about 11 to 55nm for Bi. Their high-resolution TEM images show that Ag nanowires and Bi nanowires have single-crystalline structure, and Fe nanowire has polycrystalline structure.
     3)The corresponding multi-branched Fe nanowires were achieved by electrodepositing Fe into the branched pores of the AAO template used. Selecting area electron diffraction and high-resolution TEM images show that these branched Fe nanowires have a single-crystalline stem with a body-centered cubic lattice and polycrystalline branches.
引文
1. 曹新、赵振华编著,《纳米科技时代——奇迹、财富与未来》,北京:经济科学出版社,2001,1;
    2. 张立德、牟季美编著,《纳米材料与纳米结构》,北京:科学出版社,2001,2~11;
    3. F. Keller, M. S. Hunter, D. L. Robinson, Structural features of oxide coatings on aluminum, J. Electrochem. Soc., 1953,100, 411~419;
    4. J. F. Murphy, C. E. Michelson. A theory for the formation of anodic coatings on aluminum, A. D. A. Conference on anodizing of aluminum. Nottingham, England, 1961;
    5. G. E. Thompson, R. C. Furuneaux, G. C. Wood, Nucleation and Growth of Porous Anode Films on Al, Nature, 1978, 272(30):433~435;
    6. G. E. Thompson, R. C. Furneaux, J. S. Goode, G. C. Wood. Porous Anodic Film Formation on Aluminum Substrates in Phosphoric Acid. [J] Trans. Inst. Met. Finish, 1978,56(4):159~167;
    7. 崔昌军,彭乔,铝及铝合金的阳极氧化研究综述,全面腐蚀控制,2002,16(6):12~17;
    8. 高云震,任继嘉,宁福元等编著,《铝合金表面处理》,北京:冶金工业出版社,1991:17~82;
    9. Thompson G. E., Porous anodic alumina: fabrication characterization and applications, [J] Thin Solid Films, 1997, 297:192~201;
    10. 徐源,G. E. Thompson,G. C. Wood,多孔型铝阳极氧化膜孔洞形成过程的研究,中国腐蚀与防护学报,1989,9(1):1~10;
    11. Paul B. Sines, Ph.D. Thesis, West Virginia University, U.S.A.,2001;
    12. 高云震,任继嘉,宁福元等,《铝合金表面处理》,北京:冶金工业出版社,1991,17~82;
    13. 覃奇贤,郭鹤桐,刘淑兰等, 《电镀原理与工艺》, 天津:天津科学技术出版社,1993,350~351;
    14. Jessesky O., Müller F., G?sele U. Self-organized formation of hexagonal pore arrays in anodic alumina. [J] Appl. Phys. Lett. 1998,72:1173-~1175;
    15. 张吉林,洪广言,利用 AAO 模板合成纳米材料,应用化学,2004, 21(1):6~11;
    16. Hulteen J. C., Martin C. R., A general template-based method for the preparation of nanomaterials., [J] Mater. Chem., 1997, 7(7):1075~1087;
    17. 曾跃,姚素薇编著。电镀磁学涂层,天津:天津大学出版社,1999;
    18. B. B. Lakshmi, P. K. Dorhout, C. R. Martin, Sol-Gel Template Synthesis of Semiconductor Nanostructures, [J] Chem. Mater. 1997, 9:857~862;
    19. 王为,郭鹤桐,高建平铝阳极氧化多孔膜功能化应用的新趋向,化工进展,1997,4:43~48;
    20. 孙景临,薛宽宏,邵颖等,镍纳米线电极对乙醇的电催化氧化动力学参数的测定,物理化学学报,2002 18(3);268~271;
    21. L. C. Li,AC Anodization of Electrodeposition of Nickleand Optical Property Examination,[J] Solar. Energy. Mater., 2000, 64:279~289;
    22. Xiangyang Mei. Fabrication of novel highly ordered quantum nanostructure arrays using non-lithographic anodic alumina templates and their characterization. Ph.D. thesis, University of Toronto, U.S.A.,2003;
    23. 孙景临,薛宽宏,何春建等,镍纳米线电极的电化学氧化还原行为及其对乙醇的电化学氧化催化作用,应用化学,2001, 18 (6 ):462-~65;
    24. 张会锐,张辉,杨青等,室温下纳米多孔氧化铝湿度传感器的研究,浙江大学学报(工学版),2004,138 (4 ):420~424;
    25. 王胜天,秦玉华,翟剩勇等,阳极氧化铝膜修饰的杂多酸-聚毗咯纳米粒子玻碳电极的电化学性质研究,高等学校化学学报,2004, 25(5):841~843;
    26. Koizumi M., 1997,FGM activities in Japan,Composites B,28, 1~4;
    27. 新野正之,平井敏雄,渡边龙山,倾斜机能材料-宇宙机用超耐热材料た目指す,日本复合材料学会志,1987,13, 257~264;
    28. Rabin B. H., Shiota I., Functionally gradient materials, Materials Research Society Bulletin 1995, 20, 14~18;
    29. 余茂黎,魏明坤,功能梯度材料的研究动态,功能材料,1992,23,184~191;
    30. 郑子樵,梁叔全,梯度功能材料的研究与展望,功能材料,1992, 10(1):1~5,16;
    31. 黄旭涛,严密,功能梯度材料回顾与展望,材料科学与工程,1997, 15(4):35~38;
    32. J. Rode,A Neubrand,[J] Rcscarch Program on Gradient Materials in Germany,Proc of the 4th Int Symposium on Gradient Materials 1996, 9~14;
    33. 沈强,张联盟,袁润章,Ni/Ni3Al- Ni 系梯度功能材料的组成结构设计与制备 [J].硅酸盐学报,1997,25(4):406~411;
    34. 曹文斌,武安华,李江涛等,SiC/C 功能梯度材料的制备,北京科技大学学报,2001,23(1):
    32~34;
    35. 李耀天,梯度功能材料研究与应用,金属功能材料,2000,17(4):15~23;
    36. W. H. Qi, Electrical and magnetic properties of polyaniline/Fe"3O"4 nanostructure, Physica B (Amsterdam, Neth.) 2005, 368, 46~50;
    37. S. S. Bhattacharyya, K. Saha, D. Chakravorty, Silver nanowires grown in the pores of a silica gel, Appl. Phys. Lett.,2000, 77(23), 3770~3772;
    38. D. B. Eason, Z. Yu, W. C. Hughes, W. H. Roland, C. Boney, J. W. Cook, J. F. Schetzina, G. Cantwell, W. C. Harsch, High-brightness blue and green light-emitting diodes,Appl. Phys. Lett. 1995, 66, 115~117;
    39. J. H. Hafner, C. L. Cheung, C. M. Lieber, Growth of nanotubes for probe microscopy tips,Nature, 1999, 398(6730), 761~762;
    40. H. C. Lo, D. Das, J. S. Hwang, K. H. Chen, C. H. Hsu, C. F. Chen, L. C. Chen, SiC-capped nanotip arrays for field emission with ultralow turn-on field,Appl. Phys. Lett. 2003, 83(7), 1420~1422;
    41. G. Y. Zhang, X. Jiang, E. G. Wang, Tubular graphite cones, Science 2003, 300(5618), 472~474;
    42. C. C. Williams, R. C. Davis, P. U. S. Neuzil, Patent 5 1999, 969, 345;
    43. F. G. Tarntair, L. C. Chen, S. L. Wei, W. K. Hong, K. H. Chen, H. C. Cheng, High current density field emission from arrays of carbon nanotubes and diamond-clad Si tips, J. Vac. Sci. Technol. B 2000, 18(3), 1207~1211;
    44. P. D. Kichambare, F.G. Tarntair, L.C. Chen, K. H. Chen, H. C. Cheng, Enhancement in field emissionof silicon microtips by bias-assisted carburization, J. Vac. Sci. Technol. B 2000, 18(6), 2722~2729;
    45. D.M. Tennant, In Nanotechnology, G. Timp, Ed., Springer-Verlag: New York, 1999; ch4;
    46. N. G. Shang, F. Y. Meng, C. K. Au Frederick, Q. Li, C. S. Lee, I. Bello, S. T. Lee, Fabrication and field emission of high-density silicon cone arrays, Adv. Mater. 2002, 14(18), 1308+;
    47. R. C. Mani, X. Li, M. K. Sunkara, K. Rajan, Carbon nanopipettes, Nano. Lett. 2003, 3(5), 671~673;
    48. D. H. Lowndes, J. D. Fowlkes, A. Pedraza, Early stages of pulsed-laser growth of silicon microcolumns and microcones in air and SF6, J. Appl. Surf. Sci. 2000,154, 647~658;
    49. C. H. Hsu, H. C. Lo, C. F. Chen, C. T. Wu, J. S. Hwang, D. Das, J. Tsai, L. C. Chen, K. H. Chen, Generally applicable self-masked dry etching technique for nanotip array fabrication, Nano. Lett. 2004, 4(3), 471~475;
    50. H. Masuda, M. Sotoh, Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask, Jpn. J. Appl. Phys. Part2, 1996, 35, L126~L129;
    51. A. P. Li, F. Müller, A. Birner, K. Nielsch, U. G?sele, Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina, J.Appl. Phys. 1998, 84(11), 6023~6026;
    52. A. P. Li, F. Müller, A. Birner, K. Nielsch, U. G?sele, Fabrication and microstructuring of hexagonally ordered two-dimensional nanopore arrays in anodic alumina, Adv. Mater., 1999,11(6):483~487;
    53. 姚素薇,张璐,孔亚西,宋兆爽,铝阳极氧化膜纳米孔阵列的微细结构,材料研究学报, 2005,19(6),567-572;
    54. In the case of Al with the array of concaves which is naturally formed byselective removal of the oxide film after constant voltage anodization,concaves can induce the development of the pores in the initial stage ofthe second anodization process at constant voltage identical to that in first anodizing. See H. Masuda and M. Satoh, Jpn. J. Appl. Phys., 1996,Part 2 35, L126;
    55. F. Keller, M. S. Hunter, D. L. Robinson, Structural features of oxide coatings on aluminum, J. Electrochem. Soc., 1953,100, 411~419;
    56. T. W. Whitney, J. S. Jiang, P. C. Searson, C. L. Chien, Fabrication and magnetic properties of arrays of metallic nanowires, Science, 1993, 261, 1316~1319;
    57. Martin, C. R., Nanomaterials: A membrane-based synthetic approach, Science, 1994, 266:1961-1966;
    58. Routkevitch, D., Tager, A. A., Haruyama, J., Almawlawi, D., Moskovits, M., Xu, J. M., Nonlithographic nano-wire arrays: Fabrication, physics and device application, IEEE Trans. Electro. Devices, 1996, 43:1646~1657;
    59. Xia, Y. N., Yang, P. D., Sun, Y. G., Wu, Y. Y., Mayers, B., Gates, B., Yin, Y. D., Kim, F., Yan, Y. Q., One-dimensional nanostructures: Synthesis, characterization, and applications, Adv. Mater., 2003, 15:353-389;
    60. Huang, Y., Duan, X. F., Wei, Q. Q., Lieber, C. M., Directed assembly of one-dimensional nanostructures into functional networks, Science, 2001, 291:630-633;
    61. Yang, S. G., Zhu, H., Yu, D. L., Jin, Z. Q., Tang, S. L., Du, Y. W., Preparation and magnetic property of Fe nanowire array, J. Magnet. Magnet. Mater., 2000, 222 (1-2): 97-100;
    62. Li, J., Papadopoulos, C., Xu, J. M., Moskovits, M., Highly-ordered carbon nanotube arrays for electronics applications, Appl. Phys. Lett.,1999,75(3):367-369;
    63. Pan, Z. W., Dai, Z. R., Wang, Z. L., Nanobelts of semiconducting oxides, Science, 2001, 291 (5510): 1947-1949;
    64. Ohlsson, B. J., Bjork, M. T., Persson, A. I., Thelander, C., Wallenberg, L. R., Magnusson, M. H., Deppert, K., Samuelson, L., Growth and characterisation of GaAs and InAs nano-whiskers and InAs/GaAs heterostructures. Physica E, 2002, 13, 1126–1130 ;
    65. Gudiksen, M. S., Lauhon, L. J., Wang, J., Smith, D. C.,Lieber, C. M., Growth of nanowire superlattice structures for nanoscale photonics and electronics, Nature 2002, 415, 617-620;
    66. Gao, T., Meng, G., Zhang, J., Sun, S., Zhang, L., Template synthesis of Y-junction metal nanowires, Appl. Phys. A ,2002,74: 403-406;
    67. Kong, L. B., Lu, M., Li, M. K., Li, H. L., Guo, X. Y., Branched silver nanowires obtained in porous anodic aluminum oxide template, Journal Of Materials Science Letters 2003, 22 :701– 702;
    68. Li, J., Papadopoulos, C., Xu, J., Nanoelectronics-Growing Y-junction carbon nanotubes, Nature, 1999, 402 (6759): 253-254;
    69. Manna, L., Scher, E. C. & Alivisatos, A. P. ,Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals., J. Am. Chem. Soc, 2000,122: 12700–12706 ;
    70. Manna, L., Milliron, D. J., Meisel, A., Scher, E. C. & Alivisatos, A. P., Controlled growth of tetrapod-branched inorganic nanocrystals., Nature Mater.,2003, 2:382–385 ;
    71. Yu, D. L., Du, Y. W., Fabrication of NiFe2O4 nanowire arrays and its magnetic properties. Acta Physica Sinica, 2005, 54 (2): 930-934;
    72. Zhao, W. B., Zhu, J. J., Chen, H. Y., Photochemical synthesis of Au and Ag nanowires on a porous aluminum oxide template, J. Crystal Growth, 2003, 258 (1-2): 176-180;
    73. Yang, Y., Hu, Z., Wu, Q., Lu, Y. N., Wang, X. Z., Chen, Y., Template-confined growth and structural characterization of amorphous carbon nanotubes, Chem. Phys. Lett., 2003, 373 (5-6): 580-585;
    74. Yuan, Z. H., Huang, H., Dang, H. Y., Fan, S. S., Field Emission Property of Highly-ordered Monodispersed Carbon Nanotube Array, Appl. Phys. Lett., 2001,78:3127-3129;
    75. Pacholski, C., Kornowski, A., Weller, H., Self-Assembly of ZnO: From Nanodots to Nanorods, Angew. Chem. Int. Ed. 2002, 41:1188-1191;
    76. Yuan, Z. H., Huang, H., Fan, S, S., Regular alumina nanopillar arrays, Advanced Materials, 2002, 14: 303-306;
    77. Yuan, Z. H., Duan, Y. Q., Wu, Y., Bie, L. J., Fan, S. S., Self-catalysis growth of zinc oxide nanopillar array, Chinese Sci. Bull., 2005, 50 (10): 965-967;
    78. De Vito S., Martin, C. R., Toward Colloidal Dispersions of Template-Synthesized Polypyrrole Nanotubules, Chem.Mater. ,1998 ,10(7) :1738~1741;
    79. Pu, L., Bao, X. M., Zou, J. P., Feng, D., Individual alumina nanotubes, Angew. Chem. Int. Ed., 2001, 40 (8): 1490;
    80. O’Sullivan, J. P., Wood, G. C., The morphology and mechanism of formation of porous anodic filmson aluminum, Proc. R. Soc. London A, 1970,317:511-543;
    81. Li, A. P., Müller, F., Birner, A. et al, Hexagonal pore arrays with a 50-420nm interpore distance formed by self-organization in anodic alumina, J. Appl. Phys., 1998, 84(11):6023-6026.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700