TiO_2的光电化学稳定性及对金属的光电化学防腐蚀研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,除了在光电转换以及污染物降解处理等方面的应用外,半导体光催化剂的光电化学防腐蚀特性也逐渐引起研究者的兴趣。在半导体光催化剂对金属的光电化学防腐蚀保护过程中,需要的激发能量可取自于太阳能,且半导体光阳极本身并不牺牲,理论上具有很长的使用寿命和潜在的应用前景。目前金属的光电化学防腐蚀研究还处于探索阶段,阳极材料大多为宽禁带半导体如TiO_2,阴极材料主要局限于腐蚀电位比较正的不锈钢和铜等金属。主要研究半导体光催化剂对不锈钢和铜等金属的光致阴极保护的可行性,但对光致阴极保护的长效性尤其是光阳极的光电化学稳定性研究较少。
     论文首先应用电化学阻抗谱和稳态方法分别考察了不同方法制备的TiO_2光阳极反应动力学。结果表明锐钛矿和金红石混晶纳米多孔电极P25(德国,Degussa)和锐钛矿溶胶-凝胶纳米多孔电极SG的光电响应大于热氧化金红石块状电极TO和金红石纳米多孔电极RU。外加阳极偏压不仅降落在空间电荷层以抑制光生载流子复合,而且部分降落在Helmholtz层,即产生费米能级钉扎,并提高电荷转移速率常数,SG和P25电极费米能级钉扎程度比TO明显。
     其次研究了上述TiO_2光阳极的光电化学稳定性能、失活原因和再生途径。结果表明,SG、P25和TO三种电极在酸性和中性中比较稳定;在碱性中较差。电极光电化学稳定性顺序为:SG<P25<TO。SG电极光电化学不稳定性是可逆的,酸洗可以使其完全再生,为金属的长效光电化学防腐蚀提供了一条途径。
     最后考察了溶胶一凝胶TiO_2光阳极SG对碳钢、不锈钢等金属的光电化学防腐蚀效果。结果表明,阳极槽电解质溶液为含不同甲醇浓度的0.5 mol dm~(-3)Na_2SO_4+0.1 mol dm~(-3)NaOH,在5 mol dm~(-3)的NaCl中,500 W氙灯作为激发光源,SG光阳极可以实现对碳钢和不锈钢等金属的光致阴极保护作用,但防护效果随时间延长逐渐下降;在酸性、中性及纯水中都不同程度地加速了碳钢的腐蚀并对其原因进行了探讨。
In recent decades, the photoelectochemical anticorrosion property of semiconductor has been drawn more attention besides its wide applications in light-electricity conversion and disposal of environmental pollutants. In the process of photoelectrochemical anticorrosion against metal, the excited energy can be derived from solar energy and photoanodes will not sacrifice, so that this method has long lifetime and potential application prospects. However, the recent researches are only on the threshold of this field. Most of the photoanode materials studied are the wide band gap semiconductors such as TiO_2 and the cathode materials are those metals with more positive corrosion potential such as stainless steel and copper. And the focus was concentrated on demonstrating the feasibility of photoelectrochemical anticorrosion against those metals. When it comes to the effect of TiO_2 photoelectrochemical stability, which plays a very important role in the protection process on the successive photocathode protection, we found there were few literatures studied about this.
     In the first part of this paper, we studied the kinetics of TiO_2 photoanodes attained by different methods using electrochemical impedance spectroscopy under different applied anodic potential and steady state measurements. The later experiments present the photoresponse of electrode P25 (Germany, Degussa) and nanoporous electrode SG derived by sol-gel, was more effective than that of rutile nanoporous electrode RU and electrode TO derived by thermal oxidation. And the EIS results show that all the TiO_2 photoanodes are not ideal semiconductor electrodes; some of the applied potential dropped over the Helmholtz layer, i.e.Fermi level pinning, changing the charge transfer constant, which would affect the photovoltage, instead of dropping over the space charge layer thoroughly to suppress the recombination of photogenerated carriers. The effect of such a pinning of the SG and P25 electrodes was more obvious than that of TO.
     In the second part, we studied the photoelectrochemical stability of TiO_2 photoanode. Three kinds of TiO_2 electrodes with different crystalline were prepared and the effects of different experimental conditions on the photoelectrochemical stability of TiO_2 such as pH value, concentration of hole scavenger etc were investigated. It turned out that all the photoanodes studied were photoelectrochemically stable in acid and neutral conditions but less stable in alkaline condition, especially for SG photoanodes. The photoelectrochemical stability followed the order: SG < P25 < TO. Such instability is, however, revisable and could be recovered by immersing in acid medium. According to the experimental results, we proposed the most probable mechanism that could explain our results very satisfactorily. This provides a method for photoelectrochemical anticorrosion against metal for long term.
     In the last part, the photoelectrochemical anticorrosion of SG photoanodes against carbon steel and stainless steel was studied. It was found that the SG photoanodes could protect carbon steel from corrosion under the conditions that corrosion electrolyte was 5 mol dm~(-3) NaCl and the light source was 500 W Xe lamp, the electrolyte in anodic compartment was 0.5 mol dm~(-3) Na_2SO_4 + 0.1 mol dm~(-3) NaOH with or without methanol, but the protection effect was losing gradually. However, the corrosion rate was accelerated in acid, neutral conditions and in pure water of different extent. The possible reason was also discussed briefly in this part.
引文
[1] Fujishima A, Honda K, Electrochemical photolysis of water at a semiconductor electrode, Nature, 1972,238:37-38
    [2] Carey J H, Lawrence J, Tosine H M, Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspension, Bull. Environ. Contam. Toxicol., 1976,16:697-701
    [3] Frank S N, Bard A J, Heterogeneous photocatalytic oxidation of cyani de ion in aqueous solution at TiO_2 powder, J.Am.Chem.Soc., 1977,99:303-304
    
    [4] A.L. Pruden, D.F.Ollis.,Photoassisted heterogeneous catalysis:the degradation of trichloroethylene in water, J. Catal., 1983,82:404-417
    [5] S. Hotchandani, I. Bedja, R. W. Fessenden, P.V. Kamat, Electrochromic and photo electrochromic behavior of thin WO_3 films prepared from quantum size colloidal particles, Langmuir, 1994,10:17-22
    [6] Koch U, Fojtik A, Well H,et al,Photochemistry of semiconductor colloids,preparation of extremely small ZnO partiches,fluoresence phenomena and size quantization effects,Chem. Phys.Lett, 1985,122:507-511
    [7] R. Rossetti, S. M. Beck, L. Bros, Direct observation of charge-transfer reactions across semiconductor: aqueous solution interfaces using transient Raman spectroscopy, J. Am. Chem. Soc., 1984,106(4): 980-984
    [8] M.A. Gondal, A. Hameed, Z. H Yaman, A. Suwaiyan, Production of hydrogen and oxygen by water splitting using laser induced photo-catalysis over Fe_2O_3, Appl. Catal. A: Gene.,2004, 268:159-163
    [9] J. Wang, S. Yin, Q. Zhang, F. Saito, T. Sato, Influences of the factors on photo catalysis of fluorine-doped SrTiO_3 made by mechanochemical method, Solid State Ionics, 2004, 172, 191-195
    [10] M.R.Hoffman, S.T.Martin, W.Choi, B.D.Wahnemann, Environmental applications of semiconductor photocatalysis,Chem.Rev.,1995,95:69-96
    [11]Akira Fujishima,Tata N,Rao,Donald A.Tryk,Titanium Dioxide Photocatalysis,J.Photochem.Photobio.C:Photochem.Rev.,2000,1:1-21
    [12]Prashant V.Kamat and Nada M.Dimitrijevic,colloidal semiconductors as photocatalysts for solar energy conversion,Solar Energy,1990,44(2):83-98
    [13]张彭义,余刚,蒋展鹏,半导体光催化剂及其改性技术进展,环境科学进展,1997,5(3):1-10
    [14]A.L.Linsebigler,G.Lu,J.T.Yates,Photocatalysis on TiO_2 surfaces:principles,mechanisms,and selected results,Chem.Rev.,1995,95:735-758
    [15]S.T.Martin,H.Herrmann,W.Choi,M.R.Hoffmann,Time-resolved microwave conductivity,Trans.Faraday Soc.,1994,90:3315-3322
    [16]Z.Ding,G.Q.Lu,P.F.Greenfield,Role of the crystallite phase of TiO_2 in heterogeneous photocatalysis for phenol oxidation in water,J.Phys.Chem.B,2000,104:4815-4820
    [17]K.Tanaka,M.F.Capule,T.Hisanaga,Effect of crystallinity of TiO_2 on its photo catalytic action,Chem.Phys.Lett.,1991,187:73-76
    [18]R.L.Bickley,G.C.Williams,Relative proportions of rutile and pseudo-brookite phases in the Fe(Ⅲ)-TiO_2 system at elevated temperature,Mater.Chem.Phys.,1997,51:47-53
    [19]陶跃武,赵梦月,陈士夫,梁新,空气中有害物质的光催化去除,催化学报,1997,18:345-347
    [20]G.A.Agrios,P.Pichat,State of the art and perspectives on materials and applications of photocatalysis over TiO_2,J.Appl.Electrochem.,2005,35:655-663
    [21]李新勇,李树本,纳米半导体研究进展,化学进展,1996,8:231-240
    [22]沈伟韧,赵文宽,贺飞,方佑龄,TiO_2光催化反应及其在废水处理中的应用, 化学进展,1998,4:349-361
    [23]P.Salvador,M.L.Gonzalez,F.Manoz,Catalytic role of lattice defects in the photoassisted oxidation of water at(001)n-titanium(Ⅳ)oxide rutile,J Phys.Chem.,1992,96:10349-10353
    [24]孙奉玉,吴鸣,李文钊,二氧化钛表面光学特性与光催化活性的关系,催化学报,1998,19(2):121-124
    [25]D.Li,H.Haneda,S.Hishita,N.Ohashi,Visible-light-driven nitrogen-doped TiO_2 photocatalysts:effect of nitrogen precursors on their photocatalysis for decomposition of gas-phase organic pollutants,Mater.Sci.Eng.B,2005,117:67-75
    [26]A.Maldotti,A.Molinari,R.Amadelli,Photocatalysis with organized systems for the oxofunctionalization of hydrocarbons by O_2,Chem.Rev.,2002,102(10):3811-3836
    [27]I.B.Rufus,V.Ramakrishnan,B.Viswanathan,J.C.Kuriacose,Rhodium and Rhodium sulfide coated cadmium sulfide as a photocatalyst for the photochemical decomposition of aqueous sulphide,Langmuir,1990,6:565-570
    [28]N.Serpone,D.Lawless,J.Disdier,J.M.Herrmann,Spectroscopic,photo conductivity and photocatalytic studies of TiO_2 colloids:naked and with the lattice doped with Cr~(3+),Fe~(3+),and V~(5+)Cations,Langmuir,1994,10(3):643-652
    [29]刘畅,暴宁钟,杨祝红,陆小华,过渡金属离子掺杂对TiO_2光催化性能的影响,催化学报,2001,22(2):215-218
    [30]陈崧哲,张彭义,祝万鹏,刘福东,可见光响应光催化剂研究进展,化学进展,2004,16(4):613-619
    [31]W.Choi,A.Termin,M.R.Hoffmann,The role of metallic dopants in quantum sized TiO_2:correlation between photocareactivity and charge carrier recombination dynamics,J.Phys.Chem.,1994,98(51):13669-13679
    [32] K. Wilke, H. D. Breuer, The influence of transition metal doping on the physical and photocatalytic. properties of titanium, J. Photochem. Photobio. A: Chem., 1999,121:49-53
    [33] X.Z. Li, F.B. Li, C.L. Yang, W.K. Ge, Photocatalytic activity of WO_x-TiO_2 under visible light irradiation,J. Photochem. Photobiol. A: Chem., 2001, 141:209-217
    [34] H. Yamashita, M. Harada, J. Misaka, Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts, J. Photochem. Photobiol. A: Chem., 2002,148:257-261
    [35] A.W.Xu, Y. Gao, H. Q. Liu, The Preparation, Characterization and their photocatalytic activites of rare-earth-doped TiO_2 naoparticles, J. Catal.,2002, 207(2):151-157
    [36] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science, 2001,293:269-271
    [37] Y. Choi, T. Umebayashi, M. Yoshikawa, Fabrication. and characterization of C-doped anatase TiO_2 photocatalysts, J. Mater. Sci., 2004, 39:1837-1839
    [38] T. Ohno, T. Mitsui, M. Matsumura, Photocatalytic activity of S-doped TiO_2 photocatalyst visible light, Chem. Lett., 2003, 32:364-365
    [39] T. Umebayashi, T.Yamaki, H.Itoh, K.Asai, Band gap narrowing of titanium dioxide by sulfur doping, Appl. Phys. Lett., 2004, 81:454-456
    [40] S. Sato, Photocatalytic activity of NOx-doped TiO_2 in the visible light region, Chem. Phys. Lett., 1986, 123:126-128
    [41] S. Sakthivel, H. Kisch, Daylight photocatalysis by carbon-modified titanium dioxide, Angew. Chem.-Int. Edit., 2003, 42(40) :4908-4911
    [42] M. P. Moret, R. Zallen, D. P. Vijay, S. B. Desu, Brookite-rich titania films made by pulsed laser deposition, Thin Solid Films, 2000, 366:8-10
    [43]Shi Liyi,Li Chunzhong et al.Morphology and properties of ultrafine SnO_2-TiO_2coupled semiconductor particles,Mater.Chem.Phys.,2000,62:62-67
    [44]J.Papp,S.Soled.etc,Surface acidity and photocatalytic activity of TiO_2,WO_3/TiO_2,and MoO_3/TiO_2 photocatalysts,Chem.Mater.,1994,6:496-500
    [45]S.Hotchandani,P.V.Kamat.Charge-transfer processes in coupled semiconductor system photochemistry and photoelectrochemistry of the colloidal CdS-ZnO system,J.Phys.Chem.,1992,96:6834-6839
    [46]M.Koelsch,S.Cassaignon,J.F.Guillemoles,and J.P.Jolivet,Comparison of optical and electrochemical properties of anatase and brookite TiO_2 synthesized by the sol-gel method,Thin Solid Films,2002,403-404:312-319
    [47]K.Vinodgopal,S.Hotchandani,P.V.Kamat.Electrochemically assisted photo catalysis TiO_2 particulate film electrodes for photocatalytic,J.Phys.Chem.,1993,97:9040-9044
    [48]Blount M.C.,Kim D.H.,Falconer J L.Transparent thin-film TiO_2 photocatalysts with high activity,Environ.Sci.Technol.,2001,35:2988-2994
    [49]苏文悦,付贤智,魏可镁,溴代甲烷在TiO_2上的光催化降解研究,高等学校化学学报,2001,22(2):272-275
    [50]Hamill N.A.,Hardacre C.,Barth Johannes A.C.etal,Gas-phase photocatalytic oxidation of dichlorobutenes,Environ.Sci.Technol.,2001,35:2823-2827
    [51]Cao L.X.,Gao Z.,Suib S.L.,Obee T.N.,Hay S.O.,Freihaut J.D.,Photocatalytic oxidation of toluene on nanoscale TiO_2 catalysts:Studies of deactivation and regeneration,J.Catal.,2000,196:253-261
    [52]Kotronarou,A.,Mills,G.,Hoffmann,M.R,Photolysis of chloroform and other organic molecules in aqueous TiO_2 suspensions,Environmental Science Technology,1991,25:494-500
    [53]Mohammad Abdullah,Gary K.-C.Low,and Ralph W.Matthews,Effects of common inorganic anions on rates of photocatalytic oxidation of organic carbon over illuminated titanium dioxide,J.Phys.Chem.1990,94:6820-6825
    [54]Toshiaki Ohtsuka,Tetsuo Otsuki,Effect of ultra-violet light irradiation on acidic oxide films on titanium in sulfuric acid solution,Journal of Electroanalytical Chemistry,1999,474:272-278
    [55]曹楚南,腐蚀电化学.化学工业出版社,北京:1994
    [56]Y.Ohko,S.Saitoh,T.Tatsuma,Photoelectrochemical anticorrosion and self-cleaning effects of a TiO_2 coating for type 304 stainless steel,J.Electrochem.Soc.,2001,148:B24-B28
    [57]A.Hagfeldt,M.Graetzel,Light-induced redox reactions in nanocrystalline systems,Chem.Rev.,1995,95:49-68
    [58]张鉴清,冷文华,程小芳,刘东坡,金属的光电化学方法防腐蚀原理及研究进展,中国腐蚀与防护学报,2006,26(3):188-192
    [59]冷文华.浙江大学博士学位论文.浙江大学,杭州:2000
    [60]M.C.Li,S.Z.Luo,P.F.Wu,J.N.Shen,Photocathodic protection effect of TiO_2films for carbon steel in 3%NaCl solutions,Electrochim.Acta.,2005,50:3401-3406
    [61]Hyunwoong Park,Kyoo Young Kim and Wonyong Choi,Photoelectrochemical approach for metal corrosion prevention using a semiconductor photoanode,J.Phys.Chem.B,2002,106:4775-4781
    [1]B.O'Regan,M.Gratzel,A Low-cost,high-efficiency solar cell based on dye-sensitized colloidal TiO_2 films,Nature,1991,353(24):737-739
    [2]W.H.Leng,Z.Zhang,J.Q.Zhang,Photoelectrocatalytic degradation of aniline over rutile TiO_2/Ti electrode thermally formed at 600 ℃,J.Mole.Catal.A:Chem.,2003,206:239-252
    [3]曹楚南,张鉴清著.电化学阻抗谱导论,科学出版社,北京,2002年7月第一版
    [4]水质-铁的测定,邻菲啰啉分光光度法,中华人名共和国环境保护行业标准,国家环境保护总局,2007年3月10日
    [1]Fujishima A,Honda K,Electrochemical photolysis of water at a semiconductor electrode,Nature,1972,238:37-38
    [2]沈伟韧,赵文宽,贺飞,方佑龄,TiO_2光催化反应及其在废水处理中的应用,化学进展,1998,4:349-361
    [3]M.R Hoffman,S.T.Martin,W.Choi,B.D.Wahnemann,Environmental applications of semiconductor photocatalysis,Chem.Rev.,1995,95:69-96
    [4]郑红,汤鸿霄,王怡中,有机污染物半导体多相光催化氧化机理及动力学研究进展,环境科学进展,1996,4,1-18
    [5]M.Andrew,L.H.Stephen,An overview of semiconductor photocatalysis,J.Photochem.Photobio.A:Chem.,1997,108:1-35
    [6]Juan Bisquert,Germa Garcia-Belmonte,Francisco Fabregat-Santiago,Noemi S.Ferriols,Peter Bogdanoff,and Ernesto C.Pereira,Doubling exponent model for the analysis of porous films electrodes by impedance relaxation of TiO_2nanoporous in aqueous solution,J.Phys.Chem.B,2000,104:2287-2298
    [7]Franco,G.;Gehring,J.;Peter,L.M.;Ponomarev,E.A.;Uhlendorf,I,Frequency resolved optical detection of photoinjected electrons in dye-sensitized nanocrystalline photovoltaic cells,J.Phys.Chem.B,1999,103:692-698
    [8]M.Ben-Chorin,F.Moller,F.Koch,W.Schirmacher and M.Eberhard,Hopping transport on a fractal:ac conductivity of porous silicon,Phys.Rev.B,1995,51:2199-2213
    [9]Gelloz,B.;Bsiesy,A.Carrier transport mechanisms in porous silicon in contact with a liquid phase:a diffusion process,Appl.Surf.Sci.1998,135:15-22
    [10]Hong Liu,Shaoan Cheng,Ming Wu,Hejin Wu,Jianqing Zhang,Wenzhao Li,and Chunan Cao,Photoelectrocatalytic degradation of sulfosalicylic acid and its electrochemical impedance spectroscopy investigation,J.Phys.Chem.A, 2000,704:7016-7020
    
    [11] Leng, W. H.; Zhang, Z.; Zhang, J. Q.; Cao, C. N., Investigation of the kinetics of a TiO_2 photoelectrocatalytic reaction involving charge transfer and recombination through surface states by electrochemical impedance spectroscopy,J. Phys. Chem. B, 2005, 109(31): 15008-15023
    [1]Fujishima A,Honda K,Electrochemical photolysis of water at a semiconductor electrode,Nature,1972,238:37-38
    [2]2006年全国太阳能光化学与光催化学术会议,会议论文集,中国广州
    [3]张鉴清,冷文华,程小芳,刘东坡,金属的光电化学方法防腐蚀原理及研究进展,中国腐蚀与防护学报,2006,26(3):188-192
    [4]Blount M.C.,Kim D.H.,Falconer J.,Transparent thin-film TiO_2 photocatalysts with high activity,Environ.Sci.Technol.,2001,35:2988-2994
    [5]苏文悦,付贤智,魏可镁,溴代甲烷在TiO_2上的光催化降解研究,高等学校化学学报,2001,22(2):272-275
    [6]Hamill N.A.,Hardacre C.,Barth Johannes A C,et al.Gas-phase photocatalytic oxidation of dichlorobutenes,Environ.Sci.Technol.,2001,35:2823-2827
    [7]Cao L.X.,Gao Z.,Suib S.L.,Obee T.N.,Hay S.O.,Freihaut J.D.,Photocatalytic oxidation of toluene on nanoscale TiO_2 catalysts:Studies of deactivation and regeneration,J.Catal.,2000,196:253-261
    [8]Kotronarou,A.,Mills,G.,Hoffmann,M.R,Photolysis of chloroform and other organic molecules in aqueous TiO_2 suspensions,Environmental Science Technology,1991,25:494-500
    [9]Mohammad Abdullah,Gary K.-C.Low,and Ralph W.Matthews,Effects of common inorganic anions on rates of photocatalytic oxidation of organic carbon over illuminated titanium dioxide,J.Phys.Chem.1990,94:6820-6825
    [10]曹江林,浙江大学博士论文,浙江大学,杭州,2005
    [11]Jianglin Cao,Zucheng Wu,Jianqing Zhang,Photostability study of nanoporous TiO_2 film electrodes in different pH solutions,J.Electroanal.Chem.,2006,595:71-77
    [12]Tunesi,S.;Anderson,M.,Influence of chemisorption on the photodecomposition of salicylic acid and related compounds using suspended TiO_2 ceramic membranes,J.Phys.Chem.,1991,95:3399-3405
    [1]T.Tatsuma,S.Saitoh,Y.Ohko,A.Fujishima,TiO_2-WO_3 photoelectrochemical anticorrosion system with an energy storage ability,Chem.Mater.,2001,13:2838-2842
    [2]Hyunwoong Park,Kyoo Young Kim and Wonyong Choi,Photoelectrochemical approach for metal corrosion prevention using a semiconductor photoanode,J..Phys.Chem.B,2002,106:4775-4781
    [3]Y.Ohko,S.Saitoh,T.Tatsuma,A.Fujishima,Photoelectrochemical anticorrosion and self-cleaning effects of a TiO_2 coating for type 304 stainless steel,J.Electrochem.Soc.,2001,148:B24-B28
    [4]J.Huang,T.Shinohara,S.Tsujikawa,Protection of carbon steel from atmospheric corrosion by TiO_2 coating,Zairyo-to- Kankyo,1999,48:575-582
    [5]J.Yuan,S.Tsujikawa,Photo-effect of Sol-Gel derived TiO_2 coating on carbon steel in alkaline solution,Zairyo-to- Kankyo,1995,44:534-542
    [6]J.Huang,T.Shinohara,S.Tsujikawa,Effects of interfacial iron oxides on corrosion protection of carbon steel by TiO_2 coating under illumination,Zairyo-to-Kankyo,1997,46:651-661
    [7]闻立昌,袁江南,热碱介质中阳极氧化膜对碳钢的保护作用,中国腐蚀与防护学报,1993,13(2):110-116
    [8]武朋飞,李谋成,沈嘉年,肖美群,刘东,阳极氧化法制备光电化学防腐蚀二氧化钛薄膜,电化学,2004,10:353-358
    [9]M.C.Li,S.Z.Luo,P.F.Wu,J.N.Shen,Photocathodic protection effect of TiO_2 films for carbon steel in 3%NaCl solutions,Electrochim.Acta.,2005,50:3401-3406
    [10]宋江江,沈嘉年,李凌峰,电化学氧化生长纳米晶TiO_2光催化薄膜结构与性能表征,中国腐蚀与防护学报,2002,22:98-100
    [11]J.Yuan,S.Tsujikawa,Characterization of sol-gel derived TiO_2 coating and their photoeffects on copper substrates,J.Electrochem.Soc.,1995,142(10):3444-3450,
    [12]J.Yuan,R.Fujisawa,S.Tsujikawa,Photopotentials of copper coated with TiO_2by sol-gel method,Zairyo-to-Kankyo,1994,43:433-440,
    [13]R.Subasri,T.Shinohara,K.Mori,TiO_2-based photoanodes for cathodic protection of copper,J.Electrochem.Soc.,2005,152:B105-B110
    [14]R.Fujisawa,S.Tsujikawa,Photo-protection of 304 stainless steel with TiO_2coating,Mater.Sci.Forum.,1995,185-188:1075-1081
    [15]Vinodgopal K,Kamat P V.Enchanced rates of photo catalytic degradation of an azodye using SnO_2/TiO_2 coupled semiconductor thin films,Chem Mater,1996,8:2180-2187
    [16]K.Vinodgopal,U.Stafford,K.A.Gray,P.V.Kanmat,Electrochemically assisted photocatalysis:titania particulate film electrodes for photocatalytic degradation of 4-chlorophenol,J.Phys.Chem.,1993,97:9040-9044

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700