金属氧化物超级电容器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近十多年来,便携式电子电器产品,以及电动汽车的迅速发展,都极大地促进了新电源技术的发展。超级电容器是一种具有高功率长寿命等一系列优点的绿色储能装置,对于解决世界面临的能源短缺和环境污染等问题具有重要的意义。超级电容器主要分为双电层超级电容器,法拉第准电容超级电容器,混合型超级电容器三种,由于金属氧化物在电极/溶液界面反应所产生的法拉第准电容要远大于碳材料的双电层电容,因此引起了不少研究者的兴趣。本文分别针对几种不同的过渡金属氧化物进行了其电性能的研究。
     由于超级电容器相比其他储能装置具有能量密度较低的缺点,一定程度上限制了超级电容器的进一步发展。根据超级电容器的能量密度的计算公式:E=1/2CV2,可以发现提高超级电容器的能量密度的方法有两种,一是提高超级电容器的工作电压(V),二是提高电容器的容量(C)。对于前一种方法,可以通过有效地混合型超级电容器来实现。而本文主要针对提高金属氧化物电容器的容量(C)进行了一些研究。电容器的容量(C)主要受到两个方面因素的影响,分别是电极材料和电解液,有效地调变这两个因素都可以达到提高超级电容器容量的目的。本文分别针对电极材料和电解液的选择进行了以下一些研究:
     1.模板法制备的有序介孔Co3O4的电化学电容行为的研究:
     法拉第准电容主要来自于电极材料表面或近表面快速可逆的氧化还原反应。根据这一原理,制备纳米多孔电极材料是提高法拉第准电容的一个有效途径。通过纳米多孔结构可以明显提高电极材料和电解液的接触面积,从而增大电极材料的利用率,获得更大的比电容,同时可以有效地缩短离子传递的距离。
     本部分内容主要采用二氧化硅介孔分子筛SBA-15为模板,通过液相浸渍法复制合成了具有有序介孔结构的Co3O4,并首次在6 mol/L KOH中详细研究了其电化学行为。有序介孔结构的Co3O4具有孔径分布在3~4nm的介孔结构,同时具有更高的比表面积83m2/g,通过电化学测试结果表明:这种纳米多孔的Co3O4的比容量达到了250F/g,远大于直接煅烧制的Co3O4;同时,有序的孔结构并未影响离子的迅速扩散,确保了电极材料的功率特性。
     2.纳米结构的MnO2及其电化学性能的研究:
     MnO2材料作为超级电容器的电极材料,和许多贵金属氧化物以及其他过渡金属氧化物相比,具有价格低廉,矿藏丰富,同时又环境友好等优点,因此吸引了许多研究者的关注,并被认为作为超级电容器电极材料最有应用发展潜力的金属氧化物。在研究MnO2材料的电化学性能的过程中,如何减小颗粒的尺寸被认为是提高MnO2比电容的一条非常重要地途径。
     本文利用简单的液相氧化还原沉淀法,利用高锰酸钾和苯胺作为原料,在不同浓度表面活性剂的作用下,合成了具有纳米片状结构的无定形前体Mn02,并对其在1 M Li2SO4的电解液中进行电化学测试。通过实验的尝试,得到了当表面活性剂为0.2 M时,能够得到比容量最大的前体Mn02材料,其比容量可以达到237F/g。此外,我们对前体Mn02材料进行了不同条件的煅烧实验,发现一定条件煅烧后的煅烧MnO2具有电化学过程嵌锂的现象,分别在0.7~1V间出现了两对氧化还原峰。该现象的产生,说明MnO2电极的表层通过电化学过程,产生了一定量的尖晶石型锰酸锂。这一现象使得经过煅烧的MnO2材料仍然能够维持229F/g的比容量,同时材料的工作电位窗口从0.9V提高到了1.1V。3.通过优化材料孔径改善铁氰化钾为电解液添加剂时的NiO的电容行为:
     对于改善金属氧化物比电容,许多研究者们将主要的研究重心放在如何开发更多可以替代Ru02的氧化物材料,或者通常采用各种修饰和改性方法来得到具有更好电容性能的这些廉价过渡金属氧化物,但是尽管如此这些廉价的过渡金属氧化物材料所表现出的电化学容量性能仍然远不及RuO2。本文从改善电解液的方面入手,采用添加具有活性的添加剂,以提高电容器的容量,同时针对活性离子的自放电现象,进行了电极材料的孔径优化,以抑制其自放电。
     本文采用铁氰化钾作为KOH电解液的添加剂,研究NiO的电容行为。由于铁氰根在NiO材料的工作窗口范围内存在铁氰根和亚铁氰根的氧化还原反应,因此这一电对可以有效地参与到NiO的电极行为当中,提供自身氧化还原反应所产生的容量,从而提高电极比容量,但是由于铁氰根离子的扩散会导致电容器的自放电。因此我们通过实验合成了5种具有不同比表面积和孔径分布的NiO材料,分别研究孔径对于自放电的影响,通过不同材料的库伦效率来评价自放电的程度。通过实验发现15nm左右孔径的材料能够最有效的抑制电极的自放电。
In recent ten years, the new power technology has been accelerated to meet the requirement of portable electrical appliance and electric vehicle. The supercapacitor is a kind of green energy storage device characterized by high power and long-life. It is a practical answer to the world's pressing need for clean and efficient power due to its advantages. Supercapacitors are divided into three categories; electric double layer supercapacitor, Faraday pseudocapacitance supercapacitor, and hybrid supercapacitor respectively. The Faraday pseudocapacitance, due to the metal oxide electrodes/solution in the interface reaction, is much more than carbon double-layer capacitance. Thus it attracted many researchers interest. My work focused on some different transition metal oxides and studied their Faraday pseudocapacitance performance.
     However, the energy density of supercapacitors is still much less than that of recharge batteries. The lower energy density restricts the development of supercapacitors. Thus, many researches on the supercapacitors aim to increase energy density of supercapacitors. According to the equation E=1/2 CV2, two effective approaches can be used to improve the energy density of supercapacitors. One is to develop hybrid system with higher work voltage (V); the other is increasing the capacitance(C). The capacitance is influenced by two factors-the electrode material and the electrolyte. My work mainly focused on the study about increasing the capacitance through change the electrode material and the electrolyte:
     1. Electrochemical capacitance performance of ordered mesoporous Co3O4 synthesized by template method:
     The Faraday pseudocapacitance is produced by the redox reaction on the surface of electrode. Based on this principle, nanoporous electrode materials will increase the capacitance. The contact surface between the electrode material and electrolyte will be enlarged obviously due to nanoporous structure, in order to increase the utilization and the capacitance of the materials. At the same time, this kind of structure is good for the transfer of the electrolyte ions.
     In this part, ordered crystallized Co3O4 nanoarrays were synthesized by replicating mesoporous silica template and its electrochemical capacitance performance was evaluated in 6 mol/L KOH electrolyte solution. The ordered structure has a pore size distribution of 3-4nm and a large surface area of 83m2/g. The electrochemical tests results indicated that the ordered mesoporous structure of Co3O4 nanoarrays provide a higher capacitance of 250 F/g and exhibit a good rate capability. This is due to that the well ordered mesoporous structure provides large specific surface area and facilitates the fast transport of the electrolyte.
     2. Electrochemical capacitance performance of nanostructure MnO2 by precipitation method:
     MnO2 has been taken more attention and attraction in terms of cheaper, more abundant, and more environmentally friendly than noble metal oxides and other transition metal oxide systems as supercapacitor material. A significant approach for increasing specific capacitance of MnO2 is decreasing the particle size during the research work.
     In my work, a simple precipitation method was used to synthesize the MnO2 material. The amorphous MnO2 with a nanosheet structure was prepared by the reaction of KMnO4 and aniline in different concentration SDS solution. The electrochemical test was evaluated in 1 M Li2SO4 electrolyte solution. Through the experiment, the pre-MnO2 had a largest capacitance of 237 F/g when the concentration of SDS is 0.2 M. Further, the calcination experiment was carried out by different calcinated condition. The Li+ insertion reaction is observed in the calcined-MnO2. Two pairs of redox peak were observed between 0.7V to 1V. It indicated that the spinel LiMnO4 was produced by the electrochemical process. The obtained calcined-MnO2 electrode could exhibit a good capacitance of 229F/g and a wider working potential window than pre-MnO2.
     3. Effect of the pore size on the charge/discharge efficiency for the pseudo-capacitive NiO in the mixed electrolyte of KOH and hexacyanoferrate:
     A major breakthrough in electrochemical capacitor electrodes is the development of various alternatives as a replacement for RuO2. As these cheap transition metal oxides usually exhibit lower electrochemical capacitance performance, many researches have been carried on developing these metal oxides with various morphologies to increase their surface area, while very few works have investigated the electrolytes used in capacitors except selecting aqueous solutions. In this research, our interest is the active addition of the electrolyte.
     Five kinds of NiO materials with different pore size distribution were synthesized and their electrochemical capacitance characterizations were studied in 3 M KOH electrolyte solution with the hexacyanoferrate as the addition. The capacitance is improved because of the reaction of the hexacyanoferrate. But the hexacyanoferrate diffusion will induce self-discharge. We synthesized five kinds of NiO materials with different surface areas and. And the electrochemical test results indicated the pore size distribution of the material impacts the self-discharge. Through the experiment, the optimum pore size distribution is about 15 nm. The material with this pore size distribution would shackle hexacyanoferrate ion effectively due to decrease the fading of the capacitance which the diffusion induced. Consequently, the capacitive performance was improved during the optimization.
引文
[1]B. Andrew. Ultracapacitors:why, how, and where is the technology. J. Power Sources,2000,91(1),37.
    [2]B. E. Conway, V. Birss, J. Wojtowicz. The role and utilization of pseudocapacitance for energy storage by supercapacitors. J. Power Sources,1997, 66,1.
    [3]W. G. Pell, B. E. Conway, W. A. Adams, J. Oliveira. Electrochemical efficiency in multiple discharge/recharge cycling of supercapacitors in hybrid EV applications. J. Power Sources,1999,80(1-2),134.
    [4]J.O'.M. Bockris, A. K.N. Reddy. Modern Electrochemistry. New York, Plenum Press,1970.
    [5]B.E. Conway. Electrochemical Supercapacitors. New York, Kluwer Academic/Plenum Publishers,1999.
    [6]B. E. Conway. Transition from "Supercapacitor" to "Battery" behavior in electrochemical energy storage. J. Electrochem. Soc.,1991,138,1539.
    [7]J. P. Zheng, T. R. Jow. A new charge storage mechanism for electrochemical capacitors. J. Electrochem. Soc.,1995,142, L6.R. A. Huggins, Solid State Ionics, 2000,134(1-2),179.
    [8]R. A. Huggins. Supercapacitors and electrochemical pulse sources. Solid State Ionics,2000,134,179.
    [9]南俊民,杨勇,林祖赓,电化学容器及其研究进展,电源技术,1996,20(4),152.
    [10]E. Faggioli, P. Rena, V. Danel, X. Andrieu, R. Maliant, H. Kahlen. Supercapacitors for the energy-management of electric vehicles. J. Power Sources, 1999,84,261.
    [11]A. Chu, P. Braatz. Comparison of commercial supercapacitors and high-power lithium-ion batteries for power-assist applications in hybrid electric vehicles:I. Initial characterization. J. Power Sources,2002,112(1),236.
    [12]A.K. Shukla, A.S. Arico, V. Antonucci. Renewable and Sustainable Energy Reviews.2001,5(2),137.
    [13]R. Kotz, M. Carlen. Principles and applications of electrochemical capacitors. Electrochim. Acta,2000,45(15-16),2483.
    [14]B.E. Conway, W.G. Pell. Power limitations of supercapacitor operation associated with resistance and capacitance distribution in porous electrode devices. J.Power Sources,2002,105(2),67.
    [15]W. G. Pell, B.E. Conway. Analysis of power limitations at porous supercapacitor electrodes under cyclic voltammetry modulation and dc charge. J.Power Sources, 2001,96(1),57.
    [16]L. T. Lam, R. H. Newnham, H. Ozgun, F. A. Fleming. Advanced design of valve-regulated lead-acid battery for hybrid electric vehicles. J. Power Sources, 2000,88(1),92.
    [17]K. V. Schaller, C. Gruber. Fuel cell drive and high dynamic energy storage systems-Opportunities for the future city bus. Fuel Cells Bulletin,2000,3(27),9.
    [18]G. Gutmann. Hybrid electric vehicles and electrochemical storage systems-a technology push-pull couple. J. Power Sources,1999,84(2),275.
    [19]J. Gamby, P. L. Taberna, P. Simon, J. F. Fauvarque, M. Chesneau. Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. J. Power Sources,2001,101(1),109.
    [20]J. P. Zheng, P. J. Cyqan, T. R. Jow. Hydrous Ruthenium oxide as an electrode material for electrochemical capacitors. J. Electrochem. Soc.1995,142(8),2699.
    [21]J. P. Zheng, T. R. Jow, Q. X. Jia, X. D. Wu. Proton insertion into ruthenium oxide film prepared by pulsed laser deposition. J. Electrochem. Soc.,1995, 143(3),1068.
    [22]K. Gurunathan, A. V. Murugan, R. Marimuthu, U. P. Mulik, D. P. Amalnerkar. Electrochemically synthesised conducting polymeric materials for applications towards technology in electronics, optoelectronics and energy storage devices. Mater. Chem. Phys.,1999,61(3),173.
    [23]C. Arbizzani, M. Mastragostino, L. Meneghello. Polymer-based redox supercapacitors:A comparative study. Electrochim. Acta,1996,41(1),21.
    [24]唐致远,徐国祥,电子导电聚合物在电化学电容器中的应用,化工进展,2002,21(9),652.
    [25]G.G. Amatucci, F. Badway, A. Du Pasquier, T. Zheng. An asymmetric hybrid nonaqueous energy storage cell. J. Electrochem. Soc.,2001,148, A930.
    [26]A. D. Pasquier, I. Plitz, S. Menocal, G Amatucci. A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications. J. Power Sources,2003,115,171.
    [27]A. D. Pasquier, I. Plitz, J. Gural, S. Menocal, G Amatucci. Characteristics and performance of 500 F asymmetric hybrids advanced supercapacitor prototypes. J. Power Sources,2003,113,62.
    [28]I. Plitz, A. DuPasquier, F. Badway, J. Gural, N. Pereira, A. Gmitter, G G Amatucci. The design of alternative nonaqueous high power chemistries. Appl. Phys.A,2006,82,615.
    [29]H. Q. Li, L. Cheng, Y. Y. Xia. A hybrid electrochemical supercapacitor based on a 5V Li-ion battery cathode and active carbon. Electrochem. Solid State Lett.,2005, 8,A433.
    [30]Y. G. Wang, Y. Y. Xia. A new concept hybrid electrochemical surpercapacitor: Carbon/LiMn2O4 aqueous system. Electrochem. Commun.,2005,7(11),1138.
    [31]Y. G Wang, Y. Y. Xia. Hybrid aqueous energy storage cells using activated carbon and lithium-intercalated compounds Ⅰ. The C/LiMn2O4 system. J. Electrochem. Soc.,2006,153(2), A450.
    [32]Y. G. Wang, J. Y. Luo, C. X. Wang, Y. Y. Xia. Hybrid aqueous energy storage cells using activated carbon and lithium-ion intercalated compounds Ⅱ. Comparison of LiMn2O4, LiCo1/3Ni1/3Mn1/3O2, and LiCoO2 positive electrodes. J. Electrochem. Soc.,2006,153(8), A1425.
    [33]Y. G. Wang, J. Y. Luo, W. Wu, C. X. Wang, Y. Y. Xia. Hybrid aqueous energy storage cells using activated carbon and lithium-ion intercalated compounds Ⅲ. Capacity fading mechanism of LiCo1/3Ni1/3Mn1/3O2 at different pH electrolyte solutions. J. Electrochem. Soc.,2007,154(3), A228.
    [34]P. J. Cygan, T. B. Atwter, L. P. Jarvis. Hybrid power sources for military application. Battery Conference on applications and Advances,13th,1998,13-16, 85.
    [35]S. M. Halpin, R. M. Nelms, J. E. Schatz. Characterization of double-layer capacitor application issues for commercial and military applications. IECON, 23th international,1997,3,1074.
    [36]X. Andrieu, J. F. Fauvarque. Supercapacitor for telecommunication applications. INTELEC,15th international,1993,1(27-30),79.
    [37]I. B. Weinstock. Recent advances in the US Department of Energy's energy storage technology research and development programs for hybrid electric and electric vehicles. J. Power Sources,2002,110(2),471.
    [38]D. Y. Jung, Y. H. Kim, S. W. Kim, S. H. Lee. Development of ultracapacitor modules for 42-V automotive electrical systems. J. Power Sources,2003,114(2), 366.
    [39]L. P. Jarvis, T. B. Atwater, P. J. Cygan. Fuel cell/electrochemical capacitor hybrid for intermittent high power applications. J. Power Sources,1999,79(1), 60.
    [40]程夕明,孙逢春,电动汽车能量储存技术概况,电源技术,2001,25(1),47.
    [41]E. Faggioli, P. Rena, V. Danel, X. Andrieu, R. Mallant, H. Kahlen. Supercapacitors for the energy management of electric vehicles. J. Power Sources, 1999,84,261.
    [42]李凯,利用超大容量电容器改善内燃机柴油发电机组的电启动性能,机车电传动,2002,2,37.
    [43]薛洪发,超大容量电容器在内燃机车起动中的作用,内燃机车,2000,319,8.
    [44]韦文生,梁吉,徐才录等,碳纳米管超大容量电容器在光伏系统中的应用,太阳能学报,2002,23(2),223.
    [45]S. Nomoto, H. Nakata, K. Yoshioka, A. Yoshida, H. Yoneda. Advanced capacitors and their application. J. Power Sources,2001,97-98,807.
    [46]王永刚,高比能量电化学电容器的研究[博士学位论文],上海:复旦大学,2007.
    [47]B. Andrew. Ultracapacitors:why, how, and where is the technology. J. Power Sources,2000,91(1),37.
    [48]J.H. Lim, D.J. Choi, H.K. Kim et al. Thin film supercapacitors using a sputtered RuO2 electrode. J. Electrochem. Soc.,2001,148(3), A275.
    [49]L. Tongchang, W. G. Pell, B. E. Conway. Self-discharge and potential recovery phenomena at thermally and electrochemically prepared RuO2 supercapacitor electrodes. Electrochimica Acta,1997,42(23-24),3541.
    [50]C.C. Hu, K.H. Chang. Cyclic voltammetric deposition of hydrous ruthenium oxide for electrochemical supercapacitors:effects of the chloride precursor transformation. J. Power Sources,2002,112(2),401.
    [51]Q.L. Fang, D.A. Evans, S.L. Roberson, et al. Ruthenium oxide film electrodes prepared at low temperatures for electrochemical capacitors. J. Electrochem. Soc, 2001,148(8), A833.
    [52]J. P. Zheng, T. R. Jow. Electrochemical capacitors using hydrous ruthenium oxide and hydrogen inserted ruthenium oxide. J. Electrochem. Soc.,1998,145(1), 49.
    [53]Y. U. Jeong, A. Manthiram. Amorphous tungsten oxide/ruthenium oxide composites for electrochemical capacitors. J. Electrochem. Soc.,2001,148, A189.
    [54]张泽波,郭鸣凤,杨瑞敏等。电源技术,1995,12(3),36
    [55]M. M. Wohlfahrt, J. Schenk, P. M. Wilde et al. New materials for supercapacitors. J. Power Sources,2002 (105),182.
    [56]F. Cao, J. Prakash. Performance investigations of Pb2Ru2O6.5 oxide based pseudocapacitors. J. Power Sources,2001,92(1-2),40.
    [57]K. Yokoshima, W. Sugimoto, Y. Murakami, Y. Takasu, Electrochemistry,2005, 73(12),1026.
    [58]W. Sugimoto, T. Shibutani, Y. Murakami, Y. Takasu. Charge storage capabilities of rutile-type RuO2-VO2 solid solution for electrochemical supercapacitors. Electrochemical and Solid-State Letters,2002,5(7), A170.
    [59]W. Sugimoto, T. Ohnuma, Y. Murakami, Y. Takasu. Molybdenum oxide/carbon composite electrodes as electrochemical supercapacitors. Electrochemical and Solid-State Letters,2001,4(9), A145.
    [60]H. Y. Lee, J. B. Goodenough. Supercapacitor behavior with KCl electrolyte. J. Solid State Chem,1999,144(1),220.
    [61]M. Toupin, T. Brousse, D. Belanger. Influence of microstructure on the charge storage properties of chemically synthesized manganese dioxide. Chem. Mater, 2002,14,3936.
    [62]X. Wang, X. Wang, W. Huang, P. J. Sebastian, S. Gamboa. Sol-gel template synthesis of highly ordered MnO2 nanowire arrays. J. Power Sources, 2005,14,211.
    [63]H. Chen, X. Dong, J. Shi, J. Zhao, Z, Hua, J. Gao, M. Ruan, D. Yan. Templated synthesis of hierarchically porous manganese oxide with a crystalline nanorod framework and its high electrochemical performance. J. Mater. Chem, 2007,17,855
    [64]S. C. Pang, M. A. Anderson, T. W. Chapman. Novel electrode material for thin-film ultracapacitors:comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide. J. Electrochem. Soc.,2000,147,444.
    [65]S. F. Chin, S. C. Pang, M. A. Anderson. Material and electrochemical characterization of tetrapropylammonium manganese oxide thin films as novel electrode materials for electrochemical capacitors. J. Electrochem. Soc, 2002,149,A379
    [66]M. S. Wu. Electrochemical capacitance from manganese oxide mamowire structure synthesized by cyclic voltammetric electrodeposition. Appl. Phys. Lett, 2005,87,153102
    [67]K. C. Liu, M. A. Anderson. Porous nickel oxide/nickel films for electrochemical capacitors. J. Electrochem. Soc.,1996,143(1),124.
    [68]闪星,张密林.功能材料与器件学报,2002,8(1),35.
    [69]王晓峰,孔祥华,刘庆国等.电子元件与材料,2000,19(5),26.
    [70]王晓峰,孔祥华.无机材料学报,2001,16(5),815.
    [71]Y. G. Wang, Y. Y. Xia. Electrochemical capacitance characterization of NiO with ordered mesoporous structure synthesized by template SBA-15. Electrochem Acta,2006,51,3223.
    [72]K. W. Nam, W. S. Yoon, K. B. Kim. X-ray absorption spectroscopy studies of nickel oxide thin film electrodes for supercapacitor. Electrochem Acta,2002,47,-3201.
    [73]V. Srinivasan, J. W. Weidner. An electrochemical route for making porous nickel oxide electrochemical capacitors. J. Electrochem. Soc,1997,144, L210.
    [74]S.C. Pang, M.A. Anderson, Mat. Res. Symp. Proc,2000,575,415.
    [75]刘献明,张校刚.电源技术,2003,27(3),315.
    [76]刘献明,张校刚,包淑娟等.功能材料与器件学报,2003,9(3),267.
    [77]C. Lin, J. A. Ritter, B. N. Popov. Characterization of sol-gel-derived cobalt oxide xerogels as electrochemical capacitors. J. Electrochem.Soc,1998,145,4097.
    [78]A. A. F. Grupioni, T. A. F. Lassali. Effect of the Co3O4 introduction in the pseudocapacitive behavior of IrO2-based electrode. J. Electrochem. Soc,2001, 148,A1015.
    [79]H. Y. Lee, J. B. Goodenough, J.Solid State Chemistry,1999,148,81.
    [80]Y. Atsuo, B. John. Keggin-type heteropolyacids as electrode materials for electrochemical supercapacitors. J. Electrochem.Soc,1998,145,737.
    [81]景茂祥,沈湘黔,沈裕军,邓春明,翟海军,矿冶工程,2003(23),73.
    [1]马礼敦,高等结构分析,复旦大学出版社:上海,2001.
    [2]严风霞,王筱敏,现代光学仪器分析选论,华东师范大学出版社:上海,1992.
    [3]黄惠忠,纳米材料分析,化学工业出版社:北京,2003
    [4]陈国珍,黄贤智,刘文远,分光光度法(上册),原子能出版社:北京,1980.
    [5]周伟舫,电化学测量,上海科学技术出版社,1983
    [6]吴浩青,李永舫,电极过程动力学,高等教育出版社:北京,1998.
    [7]查全性等,电极过程动力学导论,科学出版社:北京,1984.
    [8]田昭武,电化学研究方法,科学出版社:北京,1984.
    [9]藤岛昭,相泽益男,井上撤著,陈震,姚建年译,电化学测定方法,北京大学出版社:北京,1995,p204.
    [1]Conway, B.E. Electrochemical Supercapacitors. Kluwer Academic/Plenum Publishers, New York,1999.
    [2]张治安,杨邦朝,邓梅根,胡永达,汪斌华,化学学报,2004,62,1617
    [3]张校刚,刘献明,包淑娟,王永刚,无机化学学报,2004,20,94
    [4]李红芳,席红安,杨学林,王若钉,化学学报,2004,22,714
    [5]王晓峰,尤政,阮殿波,物理化学学报,2005,18,635
    [6]Zheng, J.P.; Cygan P. J.; Jow, T.R. J. Electrochem.Soc.,1995,142,2699.
    [7]Liu,K.C.; Anderson, M.A. J. Electrochem. Soc.,1996,143,124.
    [8]Srinivasan,V; Weinder, J.W. J. Electrochem. Soc.,1997,144, L210.
    [9]Srinivasan, V.; Weinder, J.W. J. Electrochem. Soc.,2000,147,880.
    [10]Lin,C.; Ritter,J.A.; Popov, B.N. J. Electrochem. Soc.,1998,145,4097.
    [11]Pang, S.C.; Anderson,M.A.; Chapman, T.W. J. Electrochem. Soc.,2000,147,444.
    [12]Jeong,X.U.; Manthiram, A. J. Electrochem. Soc.,2002,149,1419.
    [13]Wu, M; Snook, G.A. Chen, G.Z. Fray, D. J. Electrochemistry Communications, 2004,6,499.
    [14]Yoon, S.; Lee, J.; Hyeon, T.; Oh, S. M. J. Electrochem. Soc.,2000,147,2507.
    [15]Cao, L.; Lu, M.; Li, H.L. Electrochem. Soc.,2005,152, A871
    [16]Wang,Y G; Xia,Y Y. Electrochimica Acta,2006,51 (16):3223-3227
    [17]Li, H Q; Luo, J Y; Zhou, X F; Yu, C Z; Xia, Y Y. J. of Electrochem. Soc, 2007,154 (8), A731-A736
    [18]Li, H Q, Liu, R L; Zhao, D Y; Xia, Y Y. Carbons,2007,45,2628-2635
    [19]Luo, J Y; Xia, Y Y. J. of Electrochem. Soc,2007,154 (11), A987-A992
    [20]张密林,刘志祥,无机化学学报,2002,18,513
    [1]R. Kotz, M. Carlen, Electrochem. Acta 45 (2000) 2483.
    [2]B.E. Conway, Electrochemical Supercapacitors, Kluwer Academic/Plenum Publishers, New York,1999.
    [3]B.E. Conway, J. Electrochem. Soc.138 (1991) 1539.
    [4]S. Sarangapani, B.V. Tilak, C.P. Chen, J. Electrochem. Soc.143 (1996) 3791.
    [5]R.A. Huggins, Solid State Ion.134 (2000) 179.
    [6]A. Nishino, J. Power Sources 60 (1996) 137.
    [7]R.N. Reddy, R.G. Reddy. Electrochemical Capacitor and Hybrid Power Sources, in:R.J. Brodd, D.H. Doughty, K. Naoi, M. Morita, C. Nanjundiah, J.H. Kim (Eds.), Nagasubramanian, PV 2002-7, The Electrochemical Society Proceedings Series, Pennington, NJ,2002, p.197.
    [8]R.N. Reddy, R.G. Reddy.2002 EPD Congress and Fundamental of Advanced Materials for Energy Conversion, in:D. Chandra, R.G. Bautista (Eds.). The Minerals, Metals & Materials Society, Philadelphia,2002, p.75.
    [9]J.P. Zheng, T.R. Jow, J. Electrochem. Soc.144 (1997) 2417.
    [10]Srinivasan V, Weinder JW (2000) J Electrochem Soc 147:880
    [11]Lin C, Ritter JA, Popov BN (1998) J Electrochem Soc 145:4097
    [12]Hu CC, Tsou TW (2003) J Power Sources 115:179
    [13]Wu MQ, Snook GA, Chen GZ, Fray DJ (2004). Electrochem Commun 6:499
    [14]Reddy RN, Reddy RG (2003) J Power Sources 124:330
    [15]Wang X, Wang X, Huang W, Sebastian PJ, Gamboa S. (2005) J. Power Sources 140:211
    [16]Zheng JP, Jow TR (1995). J Electrochem Soc 142:L6
    [17]Edelstein AS, Cammarata RC (1996). Nanomaterials:synthesis, properties and applications. Institute of Physics, Bristol and Philadelphia
    [18]Subramanian V, Zhu H, Vajtai R, Ajayan PM, Wei B. (2005) J Phys Chem B 109:20207
    [19]Long JW, Young AL, Rolison DR. (2003) J Electrochem Soc 150:Al 161
    [20]Moore TE, Ellis M, Selwood PW (1950) J Am Chem Soc 72:856
    [21]Pang SC, Anderson MA, Chapman TW (2000) J Electrochem Soc 147:444
    [22]T. Ohzuku, J. Kato, K. Sawai, and T. Hirai, J. Electrochem. Soc.,138,2556 (1991).
    [23]M. M. Thackeray, A. de Kock, M. H. Rossouw, D. Liles, R. Bittihn, and D. Hoge, J. Electrochem. Soc.,139,363 (1992).
    [24]D. Guyomard and J. M. Tarascon, J. Electrochem. Soc.,139,937 (1992).
    [25]F. K. Shokoohi, J. M. Tarascon, B. J. Wilkens, D. Guyomard, and C. C. Chang, J. Electrochem. Soc.,139,1845 (1992).
    [26]G. Pistoia, G. Wang, and C. Wang, Solid State Ionics,58,285 (1992).
    [27]A. Momchilov, V. Manev, A. Nassalevska, and A. Kozawa, J. Power Sources,41, 305 (1993).
    [28]M. M. Thackeray, Prog. Batteries Battery Mater,14,1 (1995).
    [29]K. Ooi, Y. Miyai, S. Katoh, H. Maeda, and M. Abe, Langmuir,5,150 (1989).
    [30]Q. Feng, Y. Miyai, H. Kanoh, and K. Ooi, Langmuir,8,1861 (1992).
    [31]H. Kanoh, K. Ooi, Y. Miyai, and S. Katoh, Sep. Sci. Technol.,28,643 (1993).
    [32]W. Li, W. R. McKinnon, and J. R. Dahn, J. Electrochem. Soc.,141,2310 (1994).
    [33]W. Li and J. R. Dahn, J. Electrochem. Soc.,142,1742 (1995).
    [1]K.C. Liu, M.A. Anderson, J. Electrochem. Soc.143 (1996) 124.
    [2]V. Srinivasan, J.W. Weinder, J. Electrochem. Soc.144 (1997) L210.
    [3]V. Srinivasan, J.W. Weinder, J. Electrochem. Soc.147 (2000) 880.
    [4]Y.G. Wang, X.G. Zhang, J. Electrochem. Soc.152 (2005) A671.
    [5]C. Lin, J.A. Ritter, B.N. Popov, J. Electrochem. Soc.145 (1998) 4097.
    [6]F. Beguin, J. Braz. Chem. Soc.,2006,17,1083.
    [7]V. Khomenko, E. Raymundo-Pinero and F. Beguin, J. Power Sources,2006,153, 183.
    [8]P. Ragupathy, H. N. Vasan and N. Munichandraiah, J. Electrochem. Soc.,2008, 155, A34.
    [9]M. S. Hong, S. H. Lee and S. W. Kim, Electrochem. Solid-State Lett.,2002,5, A227.
    [10]M. Lazzari, F. Soavi and M. Mastragostino, J. Power Sources,2008,178,490.
    [11]A. Balducci, R. Dugas, P. L. Taberna, P. Simon, D. Plee, M. Mastragostino and S. Passerini, J. Power Sources,2007,165,922.
    [12]P. Liu, M. Verbrugge and S. Soukiazian, J. Power Sources,2006,156,712.
    [13]T. A. Centeno, M. Hahn, J. A. Ferna' ndez, R. Ko" tz and F. Stoeckli, Electrochem. Commun,2007,9,1242.
    [14]Q. Li, K. X. Li, C. G. Sun and Y. X. Li, J. Electroanal. Chem.,2007,611,43
    [15]L.H. Su, X.G. Zhang, C.H. Mi, B. Gao and Y. Liu. PCCP,2009.
    [16]X. M. Liu, X.G. Zhang. S.Y. Fu. Materials Research Bulletin,2006,41.620
    [17]Y.G. Wang, Y.Y. Xia. Electrochimica. Acta,51.2006.3223-3227
    [18]D.W. Wang, F. Li, H.M. Cheng, J. Power Sources,2008,185,1563
    [19]H.W. Yan, C.F. Blanford, B. T. Holland, M. Parent, W.H. Smyrl, and A. Stein, Adv. Mater.1999,11, No.12
    [20]H.W. Yan, C.F. Blanford, B. T. Holland, M. Parent, W.H. Smyrl, and A. Stein, Chem. Mater.,2000,12 (4),1134-1141

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700