Au和双金属Au-Ru纳米多孔电极材料的制备与电催化活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小分子电催化氧化具有重要的理论和实际研究意义,世纪九十年代以来一直受到高度重视。随着小分子电氧化过程研究的深入,对电化学现象的认识、促进物理化学学科相关理论与实验研究方法的发展,具有重要的意义。铂、金等贵金属对小分子电氧化被广为研究。修饰电极在电催化以及电分析等领域具有很好的应用前景。
     水热反应法是以水或其它溶剂作为介质,在一定温度条件和自生压力作用下,进行反应的过程。本论文采用合适的实验条件,将金纳米颗粒负载在钛基体上,从而制备出负载金纳米颗粒的钛基电极,并通过电化学测试方法对各电极电催化性能进行了研究。论文的主要内容和研究结论如下:
     1.对纳米颗粒的制备方法和小分子的电氧化研究进展进行了概述,系统总结了金电极研究进展和应用。
     2.确定了制备纳米金修饰钛电极的具体实验条件。
     3.运用扫描电镜和能谱分析测试技术,对所制备催化剂的形貌、结构与成分等进行了分析。对nanoAu/Ti电极而言,SEM和EDS分析表明,在钛基表面沉积了尺寸均匀的Au球形小颗粒,直径大小约300nm,并且这些球形小颗粒相互连接,形成三维网络状结构,具有巨大的表面积。Au-Ru/Ti电极,则在钛基表面沉积了尺寸均匀的Au-Ru金属球形颗粒,球形颗粒表面由向外突出的纳米晶片组成,并且这些球形小颗粒相互紧密连接呈多孔状结构,具有数目巨大的活性位点。
     此外,利用电化学沉积技术,直接从无支持电解质的低浓度氯金酸溶液中,沉积Au纳米颗粒到钛基体表面上,并且研究了电极对葡萄糖、肼和甲醛的电催化氧化过程。
     4.采用循环伏安、电位阶跃和交流阻抗等电化学方法,在碱性介质中研究了电极对葡萄糖、肼和甲醛的电催化氧化过程,并对电极过程进行了动力学分析。主要结论如下:
     (1)伏安特性研究表明,在碱性溶液中,nanoAu/Ti电极对葡萄糖、肼和甲醛氧化表现出很好的电催化活性。nanoAu/Ti电极对葡萄糖、肼和甲醛电化学氧化起始电位与多晶金电极相比均有所提前;在电极几何面积相同的条件下,nanoAu/Ti电极上葡萄糖、肼和甲醛的氧化电流也大于多晶金电极。电位阶跃实验表明,稳态电流十分稳定,表明nanoAu/Ti电极具有良好的稳定性。
     (2)对所制备的双金属Au-Ru/Ti电极的电化学测试研究表明:这些电极对葡萄糖的催化活性与Au和Ru的比例有关,含5%Ru的Au95Ru5/Ti电极对葡萄糖氧化表现出最优异的催化性能。Ru的加入明显改善了电催化剂对葡萄糖的电化学氧化性能,可能是Ru与Au产生协同作用,促进了氧化反应的发生。
     目前关于小分子电催化氧化的研究报道虽然较多,但探索制备性能优良的催化剂仍是这一领域的研究难点。本文制备的金纳米颗粒催化剂,其颗粒具有新颖的微观结构,在电氧化反应中表现出优异的催化活性。这些工作对燃料电池阳极材料的研发、以及新型电化学传感器的研发具有一定的指导意义。
We all know that, since the end of 20th century, the electrocatalytic oxidation of small molecules has been receiving extensive investigation. The electrocatalytic oxidation process is of significant application both in fundamental research as model systems and in the fuel cells (FC). Small molecule electrocatalytic oxidation on noble metals has been widely studied. Development of electrocatalysts with significantly activities was a much challenging problem.
     Hydrothermal method as a soft chemistry method, has been applied to preparing the novel electrode materials in this paper. The electrocatalytic properties of electrocatalysts made by hydrothermal method are different from that by the traditional method. Novel titanium-supported gold electrodes were synthesized in this paper. Electro-catalytic activities of the electrodes were investigated by voltammetric responses, chronoamperometric measurements and electrochemical impedance spectra, etc. The main contents are as follows:
     1. The electrooxidation mechanism of glucose, hydrazine and formaldehyde was elaborated. The application of gold electrodes and small molecules electrooxidation are reviewed briefly.
     2. The electrodes were synthesized by the hydrothermal process.
     3. To investigate the morphology and element compositions of the electrodes obtained by the hydrothermal process, scanning electron microscopy and energy disperse spectroscopy are employed in the process. SEM and EDS images of nanoAu/Ti show that the surface of Ti substrate is covered by gold particles. The gold particles were present as small balls with a size of around 300nm. The gold particles are connected with each other and form 3D structures. The surface of the Au-Ru/Ti was covered by dentritic particles. The roughened surface of the dentritic particles is made up of variform flakes protruding from the surface. These flakes exhibit a variety of shapes but they have a similar thickness of ca. 30~35 nm. The presence of nanoporous features and the protruded flakes results in the high surface area of the Au-Ru/Ti catalyst.
     Using an electrochemical deposition technique, the titanium-supported Au/Ti electrodes are fabricated using HAuCl4 solutions as raw materials. Results show that the electrode presented high catalytic activity for glucose (hydrazine, formaldehyde) oxidation.
     4. Cyclic voltammetry, pseudo-steady state polarization, chronoamperometry and electrochemical impedance spectroscopy (EIS) were used to study the electrooxidation of glucose (hydrazine, formaldehyde) in sodium hydroxide solution on the nanoAu/Ti electrode.
     (1) It can be seen from CVs in alkaline solutions that the nanoAu/Ti electrodehas high catalytic activity for glucose (hydrazine, formaldehyde) oxidation. Compared to the polycrystalline Au electrode, the onset potential for oxidation of glucose (hydrazine, formaldehyde) was more negative on the nanoAu/Ti. From chronoamperometric measurements, we find that the steady-state current on the nanoAu/Ti was high and without pronounced decay, indicating the high stability of the nanoAu/Ti electrode in the electrooxidation process.
     (2) Electrochemical measurements show that Au99Ru5/Ti electrode presented highest catalytic activity for glucose oxidation. The different catalytic activity gives evidence of the important role of Ru playing in the stable immobilization of Au particles on the Ti substrate. The prepared nanoporous Au and Au-Ru electrocatalysts present novel morphological structures and significantly high electroactivity.
引文
[1] A. Abbadi, H. Bekkum. Effect of pH in the Pt-catalyzed oxidation of -glucose to -gluconic acid [J]. Journal of Molecular Catalysis A: Chemical, 1995, 97 (2) : 111-118.
    [2]黄德欢.纳米技术与应用[M].上海:中国纺织大学出版社, 2001: 129-135.
    [3]夏和生,王琪.纳米技术进展[J].高分子材料科学与工程, 2001, 17 (4) : 1-6.
    [4] M. Haruta, T. Kobayashi, H. Sano, et al. Novel Gold Catalysts for the Oxidation of Carbon Monoxide at a Temperature Far Below 0℃[J]. Chemistry Letters, 1987, 16: 405-408.
    [5] F. Moreau, G. C. Bond. Gold on titania catalysts,influence of some physicochemical parameters on the activity and stability for the oxidation of carbon monoxide[J]. Applied Catalysis A: General, 2006, 302 (1) : 110-117.
    [6] D. T. Thompson. Perspective on industrial and scientific aspects of gold catalysis [J]. Applied Catalysis A: General, 2003, 243(2): 201-205.
    [7] K. A. Friedrich, F. Henglein, U. Stimming, et al. Size dependence of the CO monolayer oxidation on nanosized Pt particles supported on gold[J]. Electrochimica Acta, 2000, 45[20]: 3283-3293.
    [8] G. Che, B. B. Lakshmi, E. R. Fisher, et al. Carbon nanotubule membranes for electrochemical energy storage and production[J]. Nature, 1998, 393: 346-349
    [9] L. Roué, D. Guay, R. Schulz. Hydrogen electrosorption in nanocrystalline Ti-based alloys[J]. Journal of Electroanalytical Chemistry, 2000, 480, [1-2], 64-73.
    [10] S. D. Ramírez-Raya, O. Solorza-Feria, E. Ordo?ez-Regil, et al. Synthesis and characterization of W0.12Ru2.1Se and W0.013Ru1.27Se electrocatalysts [J]. Nanostructured Materials, 1998, 10(8): 1337-1346.
    [11]黄德欢.纳米技术与应用[M].上海:中国纺织大学出版社, 2001: 120-125.
    [12]顾家山,褚道葆,董宗木.纳米TiO2-Pt修饰电极上甲醇的电催化氧化[J].精细化工, 2004,21(10): 759-862.
    [13] M. M. Maye, Y. Lou, C. J. Zhong, et al. Nanoparticle Assembly as Novel Electrocatalyst of CO Oxidation [J]. Langmuir, 2000, 16 (19): 7520–7523.
    [14]董相廷,曲晓刚,洪广言,等. CeO2纳米晶的制备及其在电化学上的应用[J].科学通报, 1996,41(9): 40-45.
    [15] H. Warner, B. W. Robinson. A glucose fuel cell [C]/ /Digest of the 7th International Conference on Medical and Biological Engineering [D]. Stockholm: Ljunglofs litografiska, 1967: 520 - 531.
    [16] J. D. Qiu, W. M. Zhou, J. Guo, et al. Amperometric sensor based on ferrocene-modified multiwalled carbon nanotube nanocomposites as electron mediator for the determination of glucose[J]. Analytical Biochemistry, 2009, 385, [J]: 264-269.
    [17] B. Y. C. Wan, A. C. C. Tseung. Some studies related to electricity generation from biological fuel cells and galvanic cells [J]. Journal of Medical and Biological Engineering, 1974, 12: 14 - 28.
    [18] A. Habrioux, E. Sibert, K. Servat. Activity of Platinum-Gold Alloys for Glucose Electrooxidation in Biofuel Cells [J]. The Journal of Physical Chemistry B, 2007, 111: 10329 - 10333.
    [19] R. F. Drake, B. K. Kusserow, S, Messinger, et al. A Tissue Implantable Fuel Cell Power Supply[J]. ASAIO Journal, 1970, 16 (1): 199-205.
    [20] S. K. J. Wolfson, S. J. Yao, A. Geisel,, et al. A Single Electrolyte Fuel Cell Utilizing Permselective Membranes[J]. ASAIO Journal, 1970, 16(1):193-198.
    [21] C. F. Ding, F. Zhao, R. Ren, et al. An electrochemical biosensor forα-fetoprotein based on carbon paste electrode constructed of room temperature ionic liquid and gold nanoparticles[J], Talanta, 2009, 78(3): 1148-1154.
    [22] N. Caifeng, Z. Yan, Z. Guomei, et al. Activation of nylon net and its application to a biosensor for determination of glucose in human serum[J]. Enzyme and Microbial Technology, 2009, 44: 249 - 253.
    [23] X. L. Xu, G. L. Zhou, H. X. Li, et al. A novel molecularly imprinted sensor for selectively probing imipramine created on ITO electrodes modified by Au nanoparticles [J]. Talanta, 2009, 78: 26– 32.
    [24] Y. B. Vassilyev, O. A. Khazova, N. N. Nikolaeva. Kinetics and mechanism of glucose electrooxidation on different electrode-catalysts: Part I. Adsorption and oxidation on platinum [J]. Journal of Electroanalytical Chemistry, 1985, 196(1): 105-125.
    [25] L. C. Clark, C. Lyons. Electrode systems for continuous monitoring in cardiovascular surery[J]. Annals of the New York Academy of Sciences, 1962, 102: 29-45.
    [26] S. J. Updike, G. P. Hicks. The enzyme electrode [J]. Nature, 1967, 214(6): 986-988.
    [27] P. Suarez,孙世刚,吴辉煌.葡萄糖电化学氧化机理—伏安法与原位FTIR反射光谱法研究[J].科学通讯, 1991, 22: 1707-1710.
    [28]赵琨,宋海燕,常竹.铂纳米颗粒修饰直立方碳纳米管电极的葡萄糖生物传感器[J].高等学校化学学报, 2007, 28(7): 1251-1254.
    [29] R. S. S. Guzmán, J. R. Vilche, A .J. Arvía. The kinetics and mechanism of the nickel electrode—III. The potentiodynamic response of nickel electrodes in alkaline solutions in the potential region of Ni(OH)2 formation [J]. Corrosion Science, 1978, 18(8): 765-778.
    [30] L. H. E. Yei, B. Beden, C. Lamy. Electrocatalytic oxidation of glucose at platinum in alkaline medium: on the role of temperature [J], Journal of Electroanalytical Chemistry, 1988, 246(2): 349-362.
    [31]褚道葆,李晓华,冯德香.葡萄糖在碳纳米管/纳米TiO2膜载Pt复合电极上的电催化氧化[J].化学学报, 2004, 24: 2403-2406.
    [32] P. K. Shen, A. C. C. Tseung. In situ monitoring of electrode polarisation during the operation of an electrochromic device based on WO3[J]. Journal of Electroanalytical Chemistry, 1995, 389:219- 222.
    [33] X. Zhang, K. Y. Chan, A. C. C. Tseung. Electrochemical Oxidation of glucose by Pt/WO3 electrode[J].J.Electroanal.Chem, 1995, 386: 241-243.
    [34] L. A. Larew, D. C.Johnson. Concentration dependence of the mechanism of glucose oxidation at gold electrodes in alkaline media [J]. Journal of Electroanalytical Chemistry, 1989, 262:167-182.
    [35] S. B. Aoun, Z. Dursun, T. Koga, et al. Effect of metal ad-layers on Au(1 1 1) electrodes on electrocatalytic oxidation of glucose in an alkaline solution[J], Journal of Electroanalytical Chemistry, 2004, 567(2): 175-183.
    [36] A. Mirescu, H. Berndt, A. Martin, et al. Long-term stability of a 0.45% Au/TiO2 catalyst in the selective oxidation of glucose at optimised reaction conditions [J]. Applied Catalysis A: General, 2007, 317(2): 204-209.
    [37] X. Zhang, K. Y. Chan, J. K. You, et al. Partial oxidation of glucose by a Pt/WO3 electrode[J]. Journal of Electroanalytical Chemistry, 1997, 430(1-2): 147-153.
    [38] X. Zhang, K. Y. Chan, A. C. C. Tseung. Electrochemical oxidation of glucose by Pt/WO3 electrode[J]. Journal of Electroanalytical Chemistry, 1995, 386(1-2): 241-243.
    [39] T. Zerihun, P. Gründler. Oxidation of formaldehyde, methanol, formic acid and glucose at ac heated cylindrical Pt microelectrodes [J], Journal of Electroanalytical Chemistry, 1998, 441(1-2): 57-63.
    [40] I. Danaee, M. Jafarian, F. Forouzandeh, et al. Impedance spectroscopy analysis of glucose electro-oxidation on Ni-modified glassy carbon electrode [J]. Electrochimica Acta, 2008, 53(22): 6602-6609.
    [41] O. Enea. Molecular structure effects in electrocatalysis—II. Oxidation of d-glucose and of linear polyols on Ni electrodes[J]. Electrochimica Acta, 1990, 35( 2): 375-378.
    [42] S. Hermans, M. Devillers. On the role of ruthenium associated with Pd and/or Bi in carbon-supported catalysts for the partial oxidation of glucose[J]. Applied Catalysis A: General, 2002, 235(1-2): 253-264.
    [43]汪海燕,吴蓉,金葆康.纳米金葡萄糖氧化酶修饰电极对葡萄糖的电化学行为研究[J].分析科学学报, 2009, 25(1): 51-54.
    [44] Q. F. Yi, W. Q. Yu. Electrocatalytic activity of a novel titanium-supported nanoporous gold catalyst for glucose oxidation[J]. Microchimica Acta, 2009, 165(3-4): 381-386.
    [45] F. Jia, K. W. Wong, R. X. Du. Direct growth of highly catalytic palladium nanoplates array onto gold substrate by a template-free electrochemical route[J]. Electrochemistry Communications, 2009, 11(3): 519-521.
    [46] Y. Li, Y. Y. Song, C.Yang, et al. Hydrogen bubble dynamic template synthesis of porous gold for nonenzymatic electrochemical detection of glucose [J]. Electrochemistry Communications, 2007, 9(5):981-988.
    [47] J. J. Yu, S. Lu, J. W. Li, et al. Characterization of gold nanoparticles electrochemically deposited on amine-functioned mesoporous silica films and electrocatalytic oxidation of glucose[J]. Journal of Solid State Electrochemistry, 2007, 11(9): 1211-1219.
    [48] M. Tominaga, T. Shimazoe, M. Nagashima, et al. Composition–activity relationships of carbonelectrode-supported bimetallic gold–silver nanoparticles in electrocatalytic oxidation of glucose[J]. Journal of Electroanalytical Chemistry, 2008, 615(1):51-61.
    [49] M. Tominaga, T. Shimazoe, M. Nagashima, et al. Electrocatalytic oxidation of glucose at gold–silver alloy, silver and gold nanoparticles in an alkaline solution[J]. Journal of Electroanalytical Chemistry, 2008, 590(1): 37-46.
    [50] M. Tominaga, Y. Taema, I. Taniguchi. Electrocatalytic glucose oxidation at bimetallic gold–copper nanoparticle-modified carbon electrodes in alkaline solution[J]. Journal of Electroanalytical Chemistry, 2008, 624(1-2): 1-8.
    [51] C. C. Jin, Y. S. Song, Z. D. Chen. A comparative study of the electrocatalytic oxidation of ethylene glycol on PtAu nanocomposite catalysts in alkaline, neutral and acidic media[J]. Electrochimica Acta, 2009, 54(16): 4136-4140.
    [52] R. Ramaraj. Nanostructured metal particlemodified electrodes for electrocatalytic and sensor applications[J]. Journal of Chemical Sciences, 2006, 118(6): 593-600.
    [53]A. J. Bard. Chronopotentiometric Oxidation of Hydrazine at a Platinum Electrode [J]. Analytical Chemistry, 1963, 35 (11):1602–1607.
    [54] L. D. Burke, K. J. O’Dwyer. Mediation of oxidation reactions at noble metal anodes by low levels of in situ generated hydroxy species[J]. Electrochimica Acta, 1989, 34(12): 1659-1664.
    [55] M. R. Andrew, W. J. Gressler, J. K. Johnson, et al. Engineering aspects of hydrazine-air fuel-cell power systems[J]. Journal of Applied Electrochemistry, 1972, 2 (4): 327-336.
    [56] S. G. Meibuhr. Surface-catalyzed anodes for hydrazine fuel cell[J]. Journal of The Electrochemical Society, 1974, 121 (21): 1264-1271.
    [57] K. Tamura, T. Kahara. Investigation of PEM type direct hydrazine fuel cell [J]. Journal of Power Sources, 2003, 115(2): 236-242.
    [58] S. Takahashi, S. Higuchi, R. Fujii, et al. Report of Governmental Industrial Research Institute [J]. 1974, 346 :115-118.
    [59] S. Saito, Y. Fujita. Developmental Regulation of the Proteolysis of the p35 Cyclin-Dependent Kinase 5Activator by Phosphorylation[J]. The Journal of Neuroscience, 2003, 23(4): 1189-1192.
    [60] B. Alvarez-Ruiz, R. Gomez, J. M. Orts, et al. Role of the metal and surface structure in the electro-oxidation of hydrazine in acidic media[J]. Journal of The Electrochemical Society, 2002, 149 (5): 35-45.
    [61] C. Nishihara, I. A. Raspini, H. Kondoh, et al. Behavior of hydrazine and its effects on the adsorption of hydrogen at Pt(322) and Pt(111) electrodes in sulfuric acid solutions[J]. Journal of Electroanalytical Chemistry, 1992, 338 (10): 299–315.
    [62] V. Rosca, M. T. M. Koper. Electrocatalytic oxidation of hydrazine on platinum electrodes in alkaline solutionsElectrochim[J]. Electrochimica Acta, 2008, 53(2): 5199–5205.
    [63] K. Yamada, K. Yasuda, K. Yamada, et al. Immunochemical characterisation and epitope mapping of a novel fimbrial protein (Pg-II fimbria) of Porphyromonas gingivalis[J]. FEMS Immunology & Medical Microbiology, 2006, 11(3): 247-255.
    [64] Q. F. Yi, L. Li, W. Q Yu, et al. A novel titanium-supported Ag/Ti electrode for the electro-oxidation of hydrazine[J]. Journal of Molecular Catalysis A: Chemical, 2008, 295(1-2): 34-38.
    [65] G. Y. Gao, D. J. Guo, C. Wang, et al. Electrocrystallized Ag nanoparticle on functional multi-walled carbon nanotube surfaces for hydrazine oxidation[J]. electrochemistry communications, 2007, 9(12): 1582-1586.
    [66] G. W. Yang, G. Y. Gao, C. Wang. Controllable deposition of Ag nanoparticles on carbon nanotubes as a catalyst for hydrazine oxidation[J]. Carbon, 2008, 46(1):747-752.
    [67] M. Felischmann, K. Korinek, D. Plrtcher. Oxidation of hydrazine at a nickel anode in alkaline solution[J], Journal of Electroanalytical Chemistry, 1972, 34(2): 499-506.
    [68] E. Kirowa-Eisner, Y. Bonfil, D. Tzur, et al. Thermodynamics and kinetics of upd of lead on polycrystalline silver and gold[J]. Journal of Electroanalytical Chemistry, 2003, 552 (30): 171-183.
    [69] Y. Bonfil, E. Kirowa-Eisner. Determination of nanomolar concentrations of lead and cadmium by anodic-stripping voltammetry at the silver electrode[J]. Analytica Chimica Acta, 2002, 457(2): 285-296.
    [70] J. J. Zhang, W. J. Pietro, A. B. P. Lever. Rotating ring-disk electrode analysis of CO2 reduction electrocatalyzed by a cobalt tetramethylpyridoporphyrazine on the disk and detected as CO on a platinum ring[J]. Journal of Electroanalytical Chemistry, 1996, 403(1-2): 93-100.
    [71] Y. Matsumura, G. N. Wanyoike, O. O. Toshihide, et al. Enantioselective substitution of N-acylatedα-amino acids by electrochemical oxidation[J]. Electrochimica Acta, 1994, 39(5): 847-854.
    [72] H. R. Zare, A. M. Habibirad, A. M. Habibirad. Electrochemistry and electrocatalytic activity of catechin film on a glassy carbon electrode toward the oxidation of hydrazine[J]. Journal of Solid State Electrochemistry, 2006, 10(6): 348-359.
    [73] C. U. Ferreira, Y. Gushikem, L. T. Kubota. Electrochemical properties of Meldola's Blue immobilized on silica-titania phosphate prepared by the sol-gel method[J]. Journal of Solid State Electrochemistry, 2000, 4 (5): 298-303.
    [74] J. Li, X. Q. Lin. Electrocatalytic oxidation of hydrazine and hydroxylamine at gold nanoparticle—polypyrrole nanowire modified glassy carbon electrode[J]. Sensors and Actuators B: Chemical, 2007, 126 (2): 527-535.
    [75] V. Rosca, M. T. M. Koper. Electrocatalytic oxidation of hydrazine on platinum electrodes in alkaline solutions[J]. Electrochimica Acta, 2008, 53(16): 5199-5205.
    [76] N. Maleki, A. Safavi, E. Farjami, et al. Palladium nanoparticle decorated carbon ionic liquid electrode for highly efficient electrocatalytic oxidation and determination of hydrazine[J]. Analytica Chimica Acta, 2008, 611(2): 151-155.
    [77] G. Y. Gao, D. J. Guo, C. Wang, et al. Electrocrystallized Ag nanoparticle on functional multi-walled carbon nanotube surfaces for hydrazine oxidation[J]. Electrochemistry Communications, 2007, 9(7): 1582-1586.
    [78]杨辉,陆天红,薛宽宏,等.循环伏安和现场反射光谱研究甲醛在金电极上的氧化[J].物理化学学报, 1996, 129, (6): 527-531.
    [79] M. I. Manzanares, A. G. Pavese, V. M. Solis. Comparative investigation of formic acid and formaldehyde electro-oxidation on palladium in acidic medium: Effect of surface oxides[J]. Journal of Electroanalytical Chemistry, 1991, 310(1-2): 159-167.
    [80] K. Nishimura, K. Kunimatsu, K. Machida, et al. Electrocatalysis of Pd + Au alloy electrodes: Part IV. IR spectroscopic studies on the surface species derived from formaldehyde and formate in alkaline solutions[J]. Journal of Electroanalytical Chemistry, 1989, 260(1): 181-192.
    [81] H. Yang, T. H. Lu, K. H. Xue, et al. Electrocatalytic mechanism for formaldehyde oxidation on the highly dispersed gold microparticles and the surface characteristics of the electrode[J]. Journal of Molecular Catalysis A: Chemical, 1999, 144(2): 315-321.
    [82] R. Ramanauskas, I. Jurgaitien?, A. Vaskelis. Electrocatalytic oxidation of formaldehyde on copper single crystal electrodes in alkaline solutions[J]. Electrochimica Acta, 1997, 42(2): 191-195.
    [83] K. Yahikozawa, K. Nishimura, M. Kumazawa, et al. Electrocatalytic properties of ultrafine gold particles supported onto glassy carbon substrates toward formaldehyde oxidation in alkaline media[J]. Electrochimica Acta, 1992, 37(3): 453-455.
    [84] A. Pavese, V. Solís. Comparative investigation of formic acid and formaldehyde oxidation on palladium by a rotating ring-disc electrode and on-line mass spectroscopy in acidic solutions[J]. Journal of Electroanalytical Chemistry, 1991, 301(1-2): 117-127.
    [85] Q. F. Yi, W. Huang, X P Liu, et al. Electroactivity of titanium-supported nanoporous Pd-Pt catalysts towards formic acid oxidation[J]. Journal of Electroanalytical Chemistry, 2008, 15(1): 619-620.
    [86] A. Safavi, N. Maleki, F. Farjami, et al. Electrocatalytic oxidation of formaldehyde on palladium nanoparticles electrodeposited on carbon ionic liquid composite electrode[J]. Journal of Electroanalytical Chemistry, 2009, 626(1-2): 75–79.
    [87] Q. F. Yi, J. J. Zhang, A. C. Chen, et al. Activity of a novel titanium-supported bimetallic PtSn/Ti electrode for electrocatalytic oxidation of formic acid and methanol[J]. Journal of Applied Electrochemistry, 2008, 38: 695–701.
    [88] M. I. Manzanares, A. G. Pavese, V. M. Solis. Comparative investigation of formic acid and formaldehyde electro-oxidation on palladium in acidic medium : Effect of surface oxides[J]. Journal of Electroanalytical Chemistry, 1991, 310(1-2): 159-167.
    [89] K. Nisimura, K. Kunimatsu, K. Machida, et al. Electrocatalysis of Pd + Au alloy electrodes: Part IV. IR spectroscopic studies on the surface species derived from formaldehyde and formate in alkaline solutions[J].Journal of Electroanalytical Chemistry, 1989, 260(1): 181-192.
    [90] A. Pavese, V Solis. Comparative investigation of formic acid and formaldehyde oxidation on palladium by a rotating ring-disc electrode and on-line mass spectroscopy in acidic solutions[J]. Journal of Electroanalytical Chemistry, 1991, 301(1-2): 117-127.
    [91]杨玉花,袭著革,晁福寰.甲醛污染与人体健康研究进展[J].解放军预防医学杂志, 2005, 63(1):68- 71.
    [92] P. H. Yu. Deamination of methylamine and angiopathy; toxicity of formaldehyde ,oxidative stress and relevance to protein glycoxidation in diabetes[J]. Journal of Neural Transmission-Supplement, 1998, 52: 201 - 216.
    [93] R. Lemus, A. A. Abdelghani, T. G. Akers, et al. Potential health risks fromexposure to indoor formaldehyde[J]. Reviews on Environmental Health, 1998, 13: 91- 98.
    [94] M. Mizuki, T. Tsuda. Relationship between atopic factors and physical symptoms induced by gaseous formaldehyde exposure during an anatomy dissection course[J]. Japanese Journal of Allergology, 2001, 50 (1): 21 - 28.
    [95]刘金玲,崔毅.甲醛职业暴露与胃癌关系的回顾性队列研究[J].中国慢性病预防与控制, 1998,69(4): 175 - 176.
    [96]易建华,张敬华,高宇香.甲醛对小鼠精子毒作用实验[J].工业卫生与职业病, 2000, 26(5): 263 - 264.
    [97] V. J. Peron, J. H. Arts, et al. Health risks associated with inhaled nasal toxicants[J]. Crit Rev Toxicol, 2001, 31 (3): 313 - 347.
    [98] F. Wantke, Focke M, et al. Formaldehyde and phenol exposure during an anatomy dissection course: a possible source of IgE - mediated sensitization[J]. Allergy, 1996,51 (11) :837 - 841.
    [99] R. Parsons, T. V. Noot. The oxidation of small organic molecules: A survey of recent fuel cell related research[J]. Journal of Electroanalytical Chemistry, 1988, 257(1-2): 9-45
    [100] Z. B. He, J. H. Chen, D. Y. Liu, et al. Electrodeposition of Pt–Ru nanoparticles on carbon nanotubes and their electrocatalytic properties for methanol electrooxidation[J]. Diamond and Related Materials, 2004, 13(10): 1764-1770.
    [101] T. Frelink, W. Visscher, J. A. R. Veen. On the role of Ru and Sn as promotors of methanol electro-oxidation over Pt[J]. Surface Science, 1995, 335: 353-360.
    [102] Y. Chen, K. Y. Chen, A. C. C. Tseung. An electrochemical alcohol sensor based on a co-electrodeposited Pt /WO3 electrode[J]. Journal of Electroanalytical Chemistry, 1999, 471(2): 151-155.
    [103] J. Shim, C. R. Lee, H. K. Lee, et al. Electrochemical characteristics of Pt–WO3/C and Pt–TiO2/C electrocatalysts in a polymer electrolyte fuel cell[J]. Journal of Power Sources, 2001, 102(1-2): 172-177.
    [104] Y. Y. Mu, H. P. Liang, J. S. Hu, et al. Controllable Pt nanoparticle deposition on carbon nanotubes as an anode catalyst for direct methanol fuel cells[J]. The Journal of Physical Chemistry B, 2005, 109 (47): 22212–22216.
    [105] R.. Stadler, Z. Jusys, H. Baltruschat. Hydrogen evolution during the oxidation of formaldehyde on Au: The influence of single crystal structure and Tl-upd[J]. Electrochimica Acta, 2002, 47(28): 4485-4500.
    [106] R. B. de Lima, M. P. Massafera, E. A. Batista, et al. Catalysis of formaldehyde oxidation by electrodeposits of PtRu[J]. Journal of Electroanalytical Chemistry, 2007, 603(1): 142-148.
    [107] P. A. Seidl, A. Anders, F. M. Bieniosek, et al. Progress in beam focusing and compression for warm-dense matter experiments[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, 2009, 606(1-2): 75-82.
    [108]杨宏洲,邓友全. Au/PAni/GC电极的制备及对甲醛的电催化氧化研究[J].化学学报, 2002, 60(4): 569-573.
    [1]日根文男(日),安家驹等译.电解槽工学[M].北京:化学工业出版社,1985.
    [2]周伟航等,电化学测量[M].上海:上海科学技术出版社,1985.
    [3]李荻.电化学原理[M].北京:北京航天航空大学出版社,1989.
    [4]南安普顿电化学小组(英),柳厚田等译.电化学中的仪器方法[M].上海:复旦大学出版社, 1992.
    [5]田昭武.电化学研究方法[M].北京:科学出版社,1984.
    [6]杨辉,卢文庆.应用电化学[M].北京:科学出版社,2002.
    [7]阿伦.J.巴德,拉里.R.福克纳著,邵元华,朱果逸,董献堆等译.电化学方法原理和应用(第二版) [M].北京:化学工业出版社,2005.
    [8]易清风,李东艳.环境电化学研究方法[M].北京:科学出版社,2006.
    [9]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2002.
    [1] L. H. E. Yei, B.Beden, C.Lamy. Electrocatalytic oxidation of glucose at platinum in alkaline medium: on the role of temperature[J]. J. Electroanal. Chem., 1988,246:349-362.
    [2]褚道葆,李晓华,冯德香等.葡萄糖在碳纳米管/纳米TiO2膜载Pt复合电极上的电催化氧化[J].化学学报, 2004,24:2403-2406.
    [3] Pei Kang Shen, Alfred C.C.Tseung, In situ monitoring of electrode polarisation during the operation of an electrochromic device based on WO3[J]. J. Electroanal. Chem., 1995, 389: 219- 222
    [4] Xin Zhang,Kwong-Yu Chan, Alfred C. C. Tseung. Electrochemical Oxidation of glucose by Pt/WO3 electrode[J]. J. Electroanal. Chem., 1995, 386: 241-243.
    [5] Larry A.Larew, Dennis C.Johnson. Concentration dependence of the mechanism of glucose oxidation at gold electrodes in alkaline media[J]. J. Electroanal. Chem., 1989, 262:167-182.
    [6] Y. B. Vassilyev, O. A. Khazova, N. N. Nikolaeva. Kinetics and mechanism of glucose ele- ctrooxidation on different electrode-catalysts Part I. Adsorption and oxidation on platinum[J]. J. Electroanal. Chem., 1985, 196: 105-125.
    [7]任湘菱,唐芳琼.超细银-金复合颗粒增强酶生物传感器的研究[J].化学学报, 2002, 60 (3): 393-397.
    [8]唐芳琼,孟宪伟.纳米颗粒增强的葡萄糖生物传感器[J].中国化学(B辑), 2000, 30(2): 119- 124.
    [9] P. F. Luo, T. Kuwana, D. K. Paul, et al. Electrochemical and XPS study of the nickel-titanium electrode surface[J]. Anal. Chem., 1996, 68(19): 3330-3337.
    [10]孙娟,沈嘉年,姚书典.贵金属掺杂Ti/TiO2电极的制备及其电催化性能研究[J].化学学报, 2006, 64(7): 647-651.
    [11]吴仲达,李松梅,林文廉,等.钛基体中离子注入镍和钼的电催化活性[J].高等学校化学学报, 1991, 12(12): 1666-1668.
    [12] T. Arikawa, Y. Murakami, Y. Takasu. Simultaneous determination of chlorine and oxygen evolving at RuO2/Ti and RuO2–TiO2/Ti anodes by differential electrochemical mass spectroscopy[J]. J. Appl. Electrochem., 1998, 28: 511-516.
    [13] A. M. Polcaro, S. Palmas, F. Renoldi, On the performance of Ti/SnO2 and Ti/PbO2 anodesin electrochemical degradation of 2-chlorophenol for wastewater treatment[J]. J. Appl. Electrochem., 1999, 29: 147-151.
    [14] X. Peng, K. Koczkur, A. Chen, et al. Fabrication and electrochemical properties of novel nanoporous platinum network electrodes[J]. Chem. Commun., 2004, 24: 2872- 2873.
    [15]易清风.甲酸在钛基纳米多孔网状铂电极上的电化学氧化[J].化工学报, 2007, 58(2): 446-451.
    [16]易清风, Chen AiCheng,黄武,等.一种新型的钛基纳米多孔网状铂电极对甲醇氧化反应的电催化活性[J].高等学校化学学报, 2007, 28(9): 1768-1770.
    [17] Q. F. Yi, A. C. Chen, W. Huang, et al. Titanium-supported nanoporous bimetallic Pt-Ir electrocatalysts for formic acid oxidation[J]. Electrochem. Commun., 2007, 9: 1513- 1518.
    [18] K. Koczkur, Q. F. Yi, A. C. Chen. Nanoporous Pt-Ru Networks and Their Electrocatalytical Properties[J]. Adv. Mater., 2007, 19:2648-2652.
    [19] Q. F. Yi, W. Huang, X. P. Liu, et al. Electroactivity of Titanium-Supported Nanoporous Pd-Pt Catalysts towards Formic Acid Oxidation[J]. J. Electroanal. Chem., 2008, 619-620: 197-205.
    [20] Q. F. Yi, J. J. Zhang, A. C. Chen, et al. Activity of a novel titanium- supported bimetallic PtSn/Ti electrode for electrocatalytic oxidation of formic acid and methanol[J]. J. Appl. Electrochem., 2008, 38: 695-701.
    [21] Q. F. Yi, L. Li, W. Q. Yu, et al. Hydrothermal synthesis of titanium-supported PtIrRu/Ti electrode and its electrocatalytic activity[J]. J. Alloys and Compounds, 2008, 466(1-2): 52-58.
    [22] S. Trasatti, O. A. Petrii. Real surf ace area measurements in electrochemistry[J]. Pure&Appl Chem., 1991, 63: 711-734.
    [23] M. Tominaga, Y. Taema, I. Taniguchi. Electrocatalytic glucose oxidation at bimetallic gold–copper nanoparticlemodified carbon electrodes in alkaline solution[J]. J. Electroanal. Chem., 2008, 624:1-8.
    [24] M. Tominaga, T. Shimazoe, M. Nagashima, et al. Composition–activity relationships of carbon electrode-supported bimetallic gold–silver nanoparticles in electrocatalytic oxidation of glucose. J. Electroanal. Chem., 2008, 615: 51–61.
    [1] D.A. Geraldo, C.A. Togo, J. Limson, et al. Electrooxidation of hydrazine catalyzed by noncovalently functionalized single-walled carbon nanotubes with CoPc[J]. Electrochim. Acta, 2008, 53(27): 8051–8057.
    [2] L. Zheng, J.F. Song. Curcumin multi-wall carbon nanotubes modified glassy carbon electrode and its electrocatalytic activity towards oxidation of hydrazine[J]. Sensors Actuators B: Chem. 2009, 135(2), 650–655.
    [3] Q. F. Yi, L. Li, W. Q. Yu, et al. A novel titanium-supported Ag/Ti electrode for the electro-oxidation of hydrazine [J]. Mol. Catal. A: Chem. 2008, 295(1-2): 34–38.
    [4] A. Salimi, L. Miranzadeh, R. Hallaj. Amperometric and voltammetric detection of hydrazine using glassy carbon electrodes modified with carbon nanotubes and catechol derivatives[J]. Talanta, 2008, 75(1): 147–156.
    [5] K. Yamada, K. Yasuda, H. Tanaka, et al. Effect of anode electrocatalyst for direct hydrazine fuel cell using proton exchange membrane [J]. J. Power Sources, 2003, 122(2): 132–137.
    [6] K. Yamada, K. Asazawa, K. Yasuda, et al. Investigation of PEM type direct hydrazine fuel cell[J]. J. Power Sources, 2003, 115(2): 236–242.
    [7] T. Kodera, M. Honda, H. Kita. Electrochemical Behaviour of hydrazine on platinum in alkaline solution[J]. Electrochim. Acta., 1985, 30(5): 669–675.
    [8] M. D. Garcia, M. L. Marcos, J. G. Velasco. On the mechanism of electrooxidation of hydrazine on platinum electrodes in acidic solutions[J]. Electroanalysis, 1996, 8(3): 267–273.
    [9] C. Nishihara, I. A. Raspini, H. Kondoh, et al. Behavior of hydrazine and its effects on the adsorption of hydrogen at Pt(322) and Pt(111) electrodes in sulfuric acid solutions[J]. Electroanal. Chem., 1992, 338(1-2): 299–316.
    [10] R. Gómez, J.M. Orts, A. Rodes, et al. The electrochemistry of nitrogen-containing compounds at platinum single crystal electrodes.: Part 1. Hydrazine behaviour on platinum basal planes in sulphuric acid solutions[J]. J. Electroanal. Chem., 1993, 358(1-2): 287–305.
    [11] F. J. Vidal-Iglesiasa, J. Solla-Gullóna, J. M. Feliua, et al. DEMS study of ammonia oxidation on platinum basal planes[J]. J. Electroanal. Chem., 2006, 588(2): 331-338.
    [12] V. Rosca, M. T. M. Koper. Electrocatalytic oxidation of hydrazine on platinum electrodes in alkaline solutions[J]. Electrochim. Acta, 2008, 53(16): 5199–5205.
    [13]S. M. Celebi, P. Kadir, O. Haluk. Electrochemical synthesis of Pd particles on poly(vinylferrocenium)[J]. Catalysis Communications, 2008, 9 (13) : 2175-2178.
    [14] W. Ye, B. Yang, G. Cao, et al. Electrocatalytic oxidation of hydrazine compound on electroplated Pd/WO3 film[J]. Thin Solid Films, 2008, 516(10): 2957–2961.
    [15] N. Maleki, A. Safavi, E. Farjami, et al. Palladium nanoparticle decorated carbon ionic liquid electrodefor highly efficient electrocatalytic oxidation and determination of hydrazine[J]. Anal. Chim. Acta., 2008, 611(2):151–155.
    [16] B. Dong, B. L. He, J. Huang, et al. High dispersion and electrocatalytic activity of Pd/titanium dioxide nanotubes catalysts for hydrazine oxidation[J]. J. Power Sources, 2008, 175(1): 266–271.
    [17] D. J. Guo, H. L. Li. High dispersion and electrocatalytic properties of palladium nanoparticles on single-walled carbon nanotubes[J]. Coll. Inter. Sci., 2005, 286(1): 274–279.
    [18] D.J. Guo, H.L. Li. Electrochemical synthesis of Pd nanoparticles on functional MWNT surfaces[J]. Electrochem. Commun. 2004, 6 (10): 999–1003.
    [19] C. Batchelor-McAuley, C. E. Banks, A. O. Simm, et al. The electroanalytical detection of hydrazine: A comparison of the use of palladium nanoparticles supported on boron-doped diamond and palladium plated BDD microdisc array[J]. Analyst, 2006, 131: 106–110.
    [20] H. Razmi-Nerbin, M. H. Pournaghi-Azar. Nickel pentacyanonitrosylferrate film modified aluminum electrode for electrocatalytic oxidation of hydrazine[J]. J. Solid State Electrochem, 2002, 6: 126–133.
    [21] S. J. R. Prabakar, S. S. Narayanan. Amperometric determination of hydrazine using a surface modified nickel hexacyanoferrate graphite electrode fabricated following a new approach[J]. Electroanal. Chem. 2008, 617(2): 111–120.
    [22] M. R. Majidi, A. Jouyban, K. Asadpour-Zeynali. Electrocatalytic oxidation of hydrazine at overoxidized polypyrrole film modified glassy carbon electrode[J]. Electrochim. Acta, 2007, 52(21): 6248–6253.
    [23] M. M. Ardakani, P. E. Karami, P. Rahimi, et al. Electrocatalytic hydrazine oxidation on quinizarine modified glassy carbon electrode Electrochim. Acta 2007 52 (20)6118–6124.
    [24] H. R. Zare, N. Nasirizadeh. Hematoxylin multi-wall carbon nanotubes modified glassy carbon electrode for electrocatalytic oxidation of hydrazine[J]. Electrochim. Acta, 2007, 52(12): 4153–4160.
    [25] J. S. Pinter, K. L. Brown, P. A. DeYoung, et al. Amperometric detection of hydrazine by cyclic voltammetry and flow injection analysis using ruthenium modified glassy carbon electrodes[J]. Talanta, 2007, 71(3): 1219–1225.
    [26] H. M. Nassef, A. E. Radi, C. K. O’Sullivan. Electrocatalytic oxidation of hydrazine at o-aminophenol grafted modified glassy carbon electrode: Reusable hydrazine amperometric sensor[J]. Electroanal. Chem., 2006, 592(2): 139–146.
    [27] A. A. Ensafi, E. Mirmomtaz. Electrocatalytic oxidation of hydrazine with pyrogallol red as a mediator on glassy carbon electrode[J]. Electroanal. Chem., 2005, 583(2): 176–183.
    [28] M. H. Pournaghi-Azar, H. Nahalparvari. Preparation and characterization of electrochemical and electrocatalytic behavior of a zinc pentacyanonitrosylferrate film-modified glassy carbon electrode[J]. Electroanal. Chem., 2005, 583(2): 307–317.
    [29] G.. Y. Gao, D. J. Guo, C. Wang, et al. Electrocrystallized Ag nanoparticle on functional multi-walled carbon nanotube surfaces for hydrazine oxidation[J]. Electrochem. Commun., 2007, 9(7): 1582–1586.
    [30] G. W. Yang, G. Y. Gao, C. Wang, et al. Controllable deposition of Ag nanoparticles on carbon nanotubes as a catalyst for hydrazine oxidation[J]. Carbon, 2008, 46(5): 747–752.
    [31] I. Ivanov, T. R. Vidakovic, K. Sundmacher. The influence of a self-assembled monolayer on the activity of rough gold for glucose oxidation[J]. Electrochem. Commun., 2008, 10(9): 1307-1310.
    [32] C. Baatz, N. Decker, U. Prübe. New innovative gold catalysts prepared by an improved incipient wetness method [J]. Catal., 2008, 258(1): 165–169.
    [33] T. Ishida, K. Kuroda, N. Kinoshita, et al. Direct deposition of gold nanoparticles onto polymer beads and glucose oxidation with H2O2[J]. Coll. Inter. Sci., 2008, 323(1): 105–111.
    [34] W. Yan, X. Feng, X. Chen, et al. A super highly sensitive glucose biosensor based on Au nanoparticles–AgCl@polyaniline hybrid material[J]. Biosens. Bioelectron., 2008, 23(7): 925–931.
    [35] A. Va?kelis, R. Tarozaite, A. Jagminiene, et al. Gold nanoparticles obtained by Au(III) reduction with Sn(II): Preparation and electrocatalytic properties in oxidation of reducing agents[J], Electrochim. Acta, 2007, 53(2): 407–416.
    [36] J. Li, X. Lin. Electrocatalytic oxidation of hydrazine and hydroxylamine at gold nanoparticle—polypyrrole nanowire modified glassy carbon electrode[J]. Sensors Actuators B: Chem., 2007, 126(2): 527–535.
    [37] K. I. Ozoemena, T. Nyokong. Electrocatalytic oxidation and detection of hydrazine at gold electrode modified with iron phthalocyanine complex linked to mercaptopyridine self-assembled monolayer[J]. Talanta, 2005, 67(1): 162–168.
    [38] Q. F. Yi, W. Huang, J. J. Zhang, et al. A novel titanium-supported nickel electrocatalyst for cyclohexanol oxidation in alkaline solutions[J]. Electroanal. Chem., 2007, 610(2): 163–170.
    [39] Q. F. Yi, L. Li, W. Q. Yu, et al. Hydrothermal synthesis of titanium-supported PtIrRu/Ti electrode and its electrocatalytic activity[J]. Alloys Comp., 2008, 466(1-2): 52–58.
    [40] Q. F. Yi, W. Q. Yu. Electrocatalytic activity of a novel titanium-supported nanoporous gold catalyst for glucose oxidation[J]. Microchim. Acta, 2009, 165: 381–386.
    [41]阿伦.J.巴德,拉里.R.福克纳.电化学方法原理和应用[M].北京:化学工业出版社, 2005: 256-289.
    [42] S. Majdi, A. Jabbari, H. Heli. A study of the electrocatalytic oxidation of aspirin on a nickel hydroxide-modified nickel electrode[J]. J. Solid State Electrochem., 2006, 11: 601–607.
    [1] Q. F. Yi, W. Huang, X. P. Liu, et al. Electroactivity of titanium-supported nanoporous Pd-Pt catalysts towards formic acid oxidation[J]. Journal of Electroanalytical Chemistry, 2008, 15(1): 619-620.
    [2] A. Safavi , N. Maleki , F. Farjami , et al. Electrocatalytic oxidation of formaldehyde on palladium nanoparticles electrodeposited on carbon ionic liquid composite electrode[J]. Journal of Electroanalytical Chemistry, 2009, 626(1-2): 75–79.
    [3] Q. F. Yi, J. J. Zhang, A. C. Chen, et al. Activity of a novel titanium-supported bimetallic PtSn/Ti electrode for electrocatalytic oxidation of formic acid and methanol[J]. Journal of Applied Electrochemistry, 2008, 38: 695–701.
    [4]杨辉,陆天红,薛宽宏,等.循环伏安和现场反射光谱研究甲醛在金电极上的氧[J].物理化学学报, 1996, 129, (6): 527-531.
    [5] M. I. Manzanares, A. G. Pavese, V. M. Solis. Comparative investigation of formic acid and formaldehyde electro-oxidation on palladium in acidic medium : Effect of surface oxides[J]. Journal of Electroanalytical Chemistry, 1991, 310(1-2): 159-167.
    [6] K. Nishimura, K. Kunimatsu, K. Machida, et al. Electrocatalysis of Pd + Au alloy electrodes : Part IV. IR spectroscopic studies on the surface species derived from formaldehyde and formate in alkaline solutions[J]. Journal of Electroanalytical Chemistry, 1989, 260(1): 181-192.
    [7] A. Pavese, V. Solis. Comparative investigation of formic acid and formaldehyde oxidation on palladium by a rotating ring-disc electrode and on-line mass spectroscopy in acidic solutions[J]. Journal of Electroanalytical Chemistry, 1991, 301(1-2): 117-127.
    [8] YY. Mu, H. Liang, J Hu, L. Jiang, et al. Controllable Ptnanoparticle deposition on carbon nanotubes as an anodecatalyst for direct methanol fuel cells[J]. J Phys Chem B, 2005, 109(47): 22212–22216.
    [9] R. Stadler, Z. Jusys, H Baltruscat. Hydrogen evolution during the oxidation of formaldehyde on Au: The influence of single crystal structure and Tl-upd[J]. Electrochimica Acta, 2002, 47(28): 4485-4500.
    [10] R. B. Lima, M. P. Massafera, E. A. Batista, et al. Catalysis of formaldehyde oxidation by electrodeposits of PtRu Journal of Electroanalytical Chemistry[J]. 2007, 603(1): 142–148.
    [11] S. Afsaneh, M. Norouz, F. Fatemeh, et al. Electrocatalytic oxidation of formaldehyde on palladium nanoparticles electrodeposited on carbon ionic liquid composite electrode[J]. Journal of Electroanalytical Chemistry. 2009, 626(1-2): 75–79.
    [12]杨宏洲,邓友全. Au/ PAni/ GC电极的制备及对甲醛的电催化氧化研究[J].化学学报, 2002, 60(4) : 569-573.
    [13] Q. F. Yi. Electrochemical oxidation of formicacid on novel titanium supported nanoporous networkplatinum electrode[J]. Journal of Chemical Industry and Engineering (China), 2007 , 58 ( 2): 446-451.
    [14] Y. Kunugi, Y. Ono, T. Nonaka. Electroreduction of aldehydes in hydration/dehydration equilibria[J]. J. Electroanal. Chem, 1992, 333(1-2): 325-329.
    [15] M. Beltowska-Brzezinska. Electrochemical oxidation of formaldehyde on gold and silver[J]. Electrochim. Acta, 1985, 30(9): 1193-1198.
    [16] G. Y. Gao, D. J. Guo, H. L. Li. Electrocatalytic oxidation of formaldehyde on palladium nanoparticles supported on multi-walled carbon nanotubes[J]. Journal of Power Sources, 2006, 162 (2): 1094–1098.
    [17] S. Strbac, M. Avramov-Lvic. Oxidation of formaldehyde and ethanol on Au(1 1 1) and Au(1 1 1) modified by spontaneously deposited Ru in sulfuric acid solution[J]. Electrochimica Acta, 2009, 54(23): 5408-5412.
    [1] M. J. Shao, X. K. Xing, C. C. Liu. Cyclic voltammetric study of glucose oxidation on an oxide-covered platinum electrode in the presence of an underpotential-deposited thallium layer[J]. Bioelectrochemistry and Bioenergetics, 1987, 17: 59-70.
    [2] L. H. E. Yei, B. Beden, C. Lamy. Electrocatalytic oxidation of glucose at platinum in alkaline medium: on the role of temperature[J]. J. Electroanal. Chem., 1988, 246(2): 349-362.
    [3] C. P. Wilde, M. Zhang. Oxidation of glucose at electrodeposited platinum electrodes[J]. J. Electroanal. Chem., 1992, 340(1-2): 241-255.
    [4] H. W. Lei, B. Wu, C.-S. Cha, et al. Electro-oxidation of glucose on platinum in alkaline solution and selective oxidation in the presence of additives[J]. J. Electroanal. Chem., 1995, 382(1-2): 103-110.
    [5] A. Nirmala Grace, K. Pandian, Organically dispersible gold and platinum nanoparticles using aromatic amines as phase transfer and reducing agent and their applications in electro-oxidation of glucose[J]. Colloid Surf. A, Physicochem. Eng. Aspects, 2007, 302: 113-120.
    [6] C. Jin, Z. Chen. Electrocatalytic oxidation of glucose on gold–platinum nanocomposite electrodes and platinum-modified gold electrodes[J]. Synth. Met., 2007, 157: 592-596.
    [7] N. Yuhashi, M. Tomiyama, J. Okuda, et al. Development of a novel glucose enzyme fuel cell system employing protein engineered PQQ glucose dehydrogenase[J]. Biosens. Bioelectron., 2005, 20(10), 2145-2150.
    [8] F. Kurniawan, V. Tsakova, V. M. Mirsky. Gold nanoparticles in nonenzymatic electrochemical detection of sugars[J]. Electroanalysis, 2006, 18: 1937-1942.
    [9] S. Kerzenmacher, J. Ducre, R. Zengerle, et al. An abiotically catalyzed glucose fuel cell for powering medical implants: Reconstructed manufacturing protocol and analysis of performance[J]. J.Power Sources, 2008, 182: 66-75.
    [10] S. Kerzenmacher, J. Ducree, R. Zengerle, et al. Energy harvesting by implantable abiotically catalyzed glucose fuel cells[J]. J.Power Sources, 2008, 182(1): 1-17.
    [11] A. Heller, B. Feldman. Electrochemical glucose sensors and their applications in diabetes management[J]. Chem. Rev., 2008, 108(7): 2482-2505.
    [12] Q. F. Yi, W. Q. Yu. Electrocatalytic activity of a novel titanium-supported nanoporous gold catalyst for glucose oxidation[J]. Microchim. Acta, 2009, 165: 381-386.
    [13] I. Ivanov, T. R. Vidakovi, K. Sundmacher. The influence of a self-assembled monolayer on the activity of rough gold for glucose oxidation[J]. Electrochem. Commun., 2008, 10(9): 1307-1310.
    [14] C. Baatz, N. Decker, U. Prbe. New innovative gold catalysts prepared by an improved incipient wetnessmethod [J]. Catal., 2008, 258(1): 165-169.
    [15] T. Ishida, K. Kuroda, N. Kinoshita,et al. Direct deposition of gold nanoparticles onto polymer beads and glucose oxidation with H2O2 [J]. Colloid Interf. Sci. 2008, 323(1): 105-111.
    [16] W. Yan, X. Feng, X. Chen, et al. A super highly sensitive glucose biosensor based on Au nanoparticles–AgCl @ polyaniline hybrid material[J]. Biosens. Bioelectron., 2008, 23(7): 925 -931.
    [17] G. G. Neuburger, D. C. Johnson. Pulsed coulometric detection of carbohydrates at a constant detection potential at gold electrodes in alkaline media[J]. Anal. Chim. Acta, 1987, 192: 205-213.
    [18] D. C. Johnson, W. R. Lacourse. Chapter 10 Pulsed Electrochemical Detection of Carbohydrates at Gold Electrodes Following Liquid Chromatographic Separation[J]. Chromatogr. Library, 1995, 58: 391-429.
    [19] D. C. Johnson, D. Dobberpuhl, R. Roberts, et al. Pulsed amperometric detection of carbohydrates, amines and sulfur species in ion chromatography—the current state of research[J].Chromatogr. A, 1993, 640(1-2), 79-96.
    [20] L. A. Larew, D. C. Johnson. Transient generation of diffusion layer alkalinity for the pulsed amperometric detection of glucose in low capacity buffers having neutral and acidic pH values [J]. Electroanal. Chem., 1989, 264(1-2): 131-147.
    [21] L. A. Larew, D. C. Johnson. Concentration dependence of the mechanism of glucose oxidation at gold electrodes in alkaline media[J]. Electroanal. Chem., 1989, 262(1-2): 167-182.
    [22] P. J. Vandeberg, D. C. Johnson. A study of the voltammetric response of thiourea and ethylene thiourea at gold electrodes in alkaline media [J]. Electroanal. Chem., 1993, 362(1-2): 129-139.
    [23] Y. Li, Y.-Y. Song, C. Yang, X. H. Xia. Hydrogen bubble dynamic template synthesis of porous gold for nonenzymatic electrochemical detection of glucose[J]. Electrochem.Commun. 2007, 9(5): 981-988.
    [24] M. Tominaga, T. Shimazoe, M. Nagashima, et al. Electrocatalytic oxidation of glucose at gold nanoparticle-modified carbon electrodes in alkaline and neutral solutions[J]. Electrochem. Commun., 2005, 7(2): 189-193.
    [25] M. Tominaga, T. Shimazoe, M. Nagashima, et al. Electrocatalytic oxidation of glucose at gold–silver alloy, silver and gold nanoparticles in an alkaline solution[J]. Electroanal. Chem., 2006, 590(1), 37-46.
    [26] C. Shin, W. Shin, H. G. Hong. Electrochemical fabrication and electrocatalytic characteristics studies of gold nanopillar array electrode (AuNPE) for development of a novel electrochemical sensor[J]. Electrochim. Acta 2007, 53(2),720-728.
    [27] G. A. Nirmala, K. Pandian. Synthesis of gold and platinum nanoparticles using tetraaniline as reducing and phase transfer agent—A brief study and their role in the electrocatalytic oxidation of glucose[J]. J. Phys. Chem. Solids, 2007, 68(12): 2278-2285.
    [28] G. A. Nirmala, K. Pandian. Organically dispersible gold and platinum nanoparticles using aromatic amines as phase transfer and reducing agent and their applications in electro-oxidation of glucose[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 302(1-3): 113-120.
    [29] B.-Y. Wu, S. H. Hou, F. Yin, et al. Amperometric glucose biosensor based on multilayer films via layer-by-layer self-assembly of multi-wall carbon nanotubes, gold nanoparticles and glucose oxidase on the Pt electrode[J]. Biosens. Bioelectron., 2007, 22(12): 2854-2860.
    [30] Y. Bai, H. Yang, W. Yang, et al. Gold nanoparticles-mesoporous silica composite used as an enzyme immobilization matrix for amperometric glucose biosensor construction Sens[J]. Actuators B, Chem., 2007, 124(1), 179-186.
    [31] S. Thibault, H. Aubrient, C. Arnoult, D. Ruch, Gold nanoparticles and a glucose oxidase based biosensor: an attempt to follow-up aging by XP[J]. Microchim.Acta, 2008, 163: 211-217.
    [32] J. Zhao, J. J. Yu, F. Wang, et al. Fabrication of gold nanoparticle-dihexadecyl hydrogen phosphate film on a glassy carbon electrode, and its application to glucose sensing[J]. Microchim. Acta, 2006,156(3-4):277-282.
    [33] X. Ren, X. Meng, F. Tang, et al. Preparation of Ag–Au nanoparticle and its application to glucose biosensor[J]. Electroanal. Chem. 2005, 110(2): 358-363.
    [34] M. Tominaga, T. Shimazoe, M. Nagashima, et al. Electrocatalytic oxidation of glucose at gold–silver alloy, silver and gold nanoparticles in an alkaline solution[J]. Electroanal. Chem. 2006, 590(1): 37-46.
    [35] M. Tominaga, T. Shimazoe, M. Nagashima, et al. Composition–activity relationships of carbon electrode-supported bimetallic gold–silver nanoparticles in electrocatalytic oxidation of glucose[J]. J. Electroanal. Chem., 2008, 615(1): 51-61.
    [36] X. Kang, Z. Mai, X. Zou, et al. A novel glucose biosensor based on immobilization of glucose oxidase in chitosan on a glassy carbon electrode modified with gold–platinum alloy nanoparticles/multiwall carbon nanotubes[J]. Mo, Anal. Biochem., 2007, 369(1): 71-79.
    [37] C. Jin, Z. Chen. Electrocatalytic oxidation of glucose on gold–platinum nanocomposite electrodes and platinum-modified gold electrodes[J]. Synth. Met., 2007, 157(13-15), 592-596.
    [38] F. Xiao, F. Zhao, D. Mei, et al. Nonenzymatic glucose sensor based on ultrasonic-electrodeposition of bimetallic PtM (M = Ru, Pd and Au) nanoparticles on carbon nanotubes–ionic liquid composite film[J]. Biosens. Bioelectron., 2009, 24(12): 3481-3486.
    [39] S. B. Aoun, G. S. Bang, T. Koga, et al. Electrocatalytic oxidation of sugars on silver-UPD single crystal gold electrodes in alkaline solutions[J]. Electrochem. Commun., 2003, 5(4): 317-320
    [40] S. B. Aoun, Z. Dursun, T. Koga, et al. Effect of metal ad-layers on Au(1 1 1) electrodes on electrocatalytic oxidation of glucose in an alkaline solution[J]. Electroanal. Chem. 2004, 567(2): 175-183.
    [41] M. T. Sulak, O. Gokdogan, A. Gulce, et al. Amperometric glucose biosensor based on gold-deposited polyvinylferrocene film on Pt electrode[J]. Biosens. Bioelectron., 2006, 21(9): 1719-1726
    [42] Q. F. Yi, W. Q. Yu. Nanoporous gold particles modified titanium electrode for hydrazine oxidation[J]. J. Electroanal. Chem. 2009, 633(1): 159-164.
    [43] L. Declan Burke, L. M. Hurley. An investigation of the electrochemical responses of superactivated goldelectrodes in alkaline solution[J]. J. Solid State Electrochem, 2002, 6: 101-110.
    [44] T Luczak. Activity of gold towards methylamine electrooxidation[J]. J. Appl. Electrochem., 2007, 37: 461-466.
    [45] T Luczak. Electrochemical oxidation of alcoholamines at gold[J]. J. Appl. Electrochem. 2007, 37: 653-660.
    [46] T Luczak. Structure––reactivity relationships: the oxidation of aliphatic amines on the gold electrode[J]. J. Appl. Electrochem. 2007, 37, 269-274.
    [47] T. Luczak. Electrochemical behaviour of benzylamine 2-phenylethylamine and 4-hydroxyphenylethylamine at gold. A comparative study[J]. J. Appl. Electrochem. 2008, 38, 43-50.
    [48] A. M. A. Ouf, A. M. Abd Elhafeez, A. A. El-Shafei. Ethanol oxidation at metal–zeolite-modified electrodes in alkaline medium. Part-1: gold–zeolite-modified graphite electrode[J]. J. Solid State Electrochem. 2008, 12(5): 601-607.
    [49] A. L. Ocampo, M. Miranda-Hernandez, J. Morgado, et al. Characterization and evaluation of Pt-Ru catalyst supported on multi-walled carbon nanotubes by electrochemical impedance[J]. Power Sources, 2006, 160(2): 915-924.
    [50] F. Seland, R. Tunold, D. A. Harrington, Impedance study of formic acid oxidation on platinum electrodes[J]. Electrochim. Acta, 2008, 539(23): 6851-6864.
    [1] Q. F. Yi, L. Li, W. Q Yu, et al. Hydrothermal synthesis of titanium-supported PtIrRu/Ti electrode and its electrocatalytic activity[J]. Journal of Alloys and Compounds, 2007, 466: 52-58.
    [2] L. Ying, S. Yan-Yan, Y. Chen, et al. Hydrogen bubble dynamic template synthesis of porous gold for nonenzymatic electrochemical detection of glucose[J]. Electrochemistry Communications, 2007, 9(5): 981–988.
    [3] S. Takuya, G. Vinay, M. Norio. Effects of electrochemical-deposition method and microstructure on the capacitive characteristics of nano-sized manganese oxide[J]. Electronchimica. acta, 2006, 51: 4412-4419.
    [4]阿伦.J.巴德,拉里.R.福克纳.电化学方法原理和应用[M].北京:化学工业出版社, 2005: 211-228.
    [5]阿伦.J.巴德,拉里.R.福克纳.电化学方法原理和应用[M].北京:化学工业出版社, 2005: 256-289.
    [6]易清风.甲酸在钛基纳米多孔网状铂电极上的电化学氧化[J].化工学报, 2007, 58: 446-449.
    [7]阿伦.J.巴德,拉里.R.福克纳.电化学方法原理和应用[M].北京:化学工业出版社, 2005: 156-178.
    [8] L. D. Burke, K. J. O'Dwyer. Application of the hydrous oxide mediation model of electrocatalysis to reactions at noble metal anodes in base—II. Au, Ru, and Ir[J]. Elecrrochimica Acta, 1990, 35(11-12): 1829-1835.
    [9] S. Afsaneh, M. Norouz, F. Fatemeh, et al. Electrocatalytic oxidation of formaldehyde on palladium nanoparticles electrodeposited on carbon ionic liquid composite electrode[J]. Journal of Electroanalytical Chemistry, 2009, 626(1-2): 75–79.
    [10]G. Y. Gao, D. J. Guo, H. L Li. Electrocatalytic oxidation of formaldehyde on palladium nanoparticles supported on multi-walled carbon nanotubes[J]. Journal of Power Sources, 2006, 162 (2): 1094–1098.
    [11] R. B. Lima, M. P. Massafera, E. A. Batista, et al. Catalysis of formaldehyde oxidation by electrodeposits of PtRu[J]. Journal of Electroanalytical Chemistry, 2007, 603(1): 142–148.
    [12] S. Strbac, M. A. Ivic. Oxidation of formaldehyde and ethanol on Au(1 1 1) and Au(1 1 1) modified by spontaneously deposited Ru in sulfuric acid solution[J]. Electrochimica Acta, 2009, 54(23): 5408-5412.
    [13]阿伦J巴德,拉里R福克纳.电化学方法原理和应用[M].北京:化学工业出版社, 2005: 260-279.
    [14] K. Yoshihito, O. YasushIi, N. Tsutomu. Electro-organic reactions on organic electrodes: Part 17. Electrolysis using composite-plated electrodes: VI Electroreduction of aldehydes in hydration/dehydration equilibria[J]. Journal of Electroanalytical Chemistry, 1992, 333(1-2): 325-329.
    [15] B. B. Maria. Electrochemical oxidation of formaldehyde on gold and silver[J]. Electrochimica. Acta, 1985, 30(9): 1193-1198.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700