Nb-Ag和Nb-Cr纳米多层膜的力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文就金属纳米多层膜的力学性能,选取了Cr/Nb和Ag/Nb两个具有鲜明特色的系统。系统的选择是在考虑晶体结构、晶胞参数、弹性模量差等因素下,着重突出生成热这个因素而得出的。多层膜采用电子束蒸发镀膜制备,其力学性能通过纳米压痕实验测得。
     实验制备的Cr/Nb多层膜呈多晶态,具有显著的协调应变效应。在调制波长Λ> 6nm的范围内,多层膜的硬度随Λ的减小没有产生相应的增加,反而略有下降。这主要是由于生成热为负的Cr/Nb系统没有形成理想的界面结构,故在Λ减小时,晶界滑移的效应超过了Hall-Petch的贡献。在Λ=3nm时,多层膜的硬度有了一些增加,这恰巧和小角掠入射X射线衍射中观察到的新相的形成同时出现。进一步的退火实验表明,Cr/Nb中的亚稳新相对多层膜的硬度强化起了重要作用。另外Cr/Nb体系虽然有较大的协调应变,但相邻层的相反作用(Nb受到压应变和Cr受到拉应变)相互抵消,因而Cr/Nb体系的弹性模量并没有很大的变化。
     Ag/Nb体系由于小的晶格尺寸差和模量差,突出了生成热为正的因素。X射线反射率实验表明Ag/Nb多层膜具有较好的层状调制结构。Ag/Nb多层膜具有强烈的Ag(111)和Nb(110)织构。多层膜的力学性能测试表明,硬度随着Λ的减小而单调增加,到Λ=4nm处增幅达80%,而薄膜的弹性模量变化在8%之内。通过高分辨电镜观察多层膜的截面,发现多层膜的层间和晶粒间存在着无序的非晶区域。在非平衡制备条件下产生的非晶合金对位错的形成和扩展起了阻碍作用,因而提高了其硬度。至于模量的微小变化,是来自非晶合金的自由体积对模量的负作用和多层膜层间间距减小的正作用相互抵消的结果。
The comprehensive study of mechanical properties of metallic nano-multilayers in this thesis is carried out in Cr/Nb and Ag/Nb systems with distinctive characteristics. The choice of systems is based on the factors of enthalpy of formation, crystal structure, lattice constant and modulus difference, with focus on the factor of enthalpy of formation. Multilayers were prepared by e-gun evaporation equipment, and the mechanical properties were measured by nano-indentation method.
     Cr/Nb multilayers are in polycrystalline state, and have a remarkable reconciling effect. The hardness of multilayers does not increase with decreasing modulation wavelength (Λ), but in contrast, it drops a little whenΛis down to 6nm. This phenomenon can be interpreted by the weak interfaces, formed in Cr/Nb system with a negative enthalpy of formation, that the effect of grain boundary sliding takes place of Hall-Petch effect. WhenΛ= 3nm, the hardness of multilayers has a noticeable climb, in coincide with the formation of a new phase detected in the small angle grazing X-ray diffraction pattern. Through a further annealing experiment, it is demonstrated that the formed meta-stable phase has a great contribution to this hardness enhancement. In regards to modulus, although the reconciling strain is obvious in Cr/Nb multilayers, compressive strain in Nb and tensile strain in Cr between neighboring layers have a cancellation, and therefore the modulus of Cr/Nb multilayer is almost unchanged.
     The small difference of crystal parameter and modulus makes the factor of positive enthalpy of formation dominant in Ag/Nb system. The result of X-ray reflectivity indicates a well modulated layer structure in Ag/Nb multilayers as designed. Multilayers have a strong Ag(111) and Nb(110) texture. The hardness of multilayers increases monotonically with decreasingΛ, reaching about 80% enhancement whenΛ= 4nm, whereas the fluctuation of modulus is within 8%. Through the exploration of cross-sections of multilayers by a high resolution transmission electron microscope, it is seen that some disordered amorphous locations exist in some parts of interfaces and grain boundaries. These amorphous alloys, formed during the nonequilibrium preparation, make the formation and propagation of dislocations more difficult than in crystalline state, and therefore contribute to hardness enhancement. As to the little change of modulus, it is due to cancellation between the negative effect of the free volume in amorphous alloys and positive effect with decreasingΛof mutilayers.
引文
[1] Kaner R B, Gilman J J, and Tolbert S H. Materials science - Designing superhard materials. Science 2005, 308:1268-1269
    [2] Liu A Y and Cohen M L. Prediction of New Low Compressibility Solids. Science 1989, 245:841-842
    [3] Brazhkin V V, Lyapin A G, and Hemley R J. Harder than diamond: dreams and reality. Philos. Mag. A. 2002, 82:231-253
    [4] Hubert H, Devouard B, Garvie L A J, et al. Icosahedral packing of B-12 icosahedra in boron suboxide (B6O). Nature 1998, 391:376-378
    [5] Solozhenko V L, Andrault D, Fiquet G, et al. Synthesis of superhard cubic BC2N. Appl. Phys. Lett. 2001, 78:1385-1387
    [6] Haines J, Leger J M, and Bocquillon G. Synthesis and design of superhard materials. Ann. Rev. Mater. Res. 2001, 31:1-23
    [7] Haines J and Leger J M. Phase transitions in ruthenium dioxide up to 40 GPa: Mechanism for the rutile-to-fluorite phase transformation and a model for the high-pressure behavior of stishovite SiO2. Phys. Rev. B 1993, 48:13344-13350
    [8] Dubrovinskaia N A, Dubrovinsky L S, Saxena S K, et al. Thermal expansion and compressibility of Co6W6C. J. Alloy. Compd. 1999, 285:242-245
    [9] Chung H Y, Weinberger M B, Levine J B, et al. Synthesis of ultra-incompressible superhard rhenium diboride at ambient pressure. Science 2007, 316:436-439
    [10] Zhang S, Sun D, Fu Y, et al. Recent advances of superhard nanocomposite coatings: a review. Surf. Coat. Tech. 2003, 167:113-119
    [11] Veprek S and Reiprich S. A concept for the design of novel superhard coatings. Thin Solid Films 1995, 268:64-71
    [12] Musil J, Karvankova P, and Kasl J. Hard and superhard Zr-Ni-N nanocomposite films. Surf. Coat. Tech. 2001, 139:101-109
    [13] Hao S Q, Delley B, Veprek S, et al. Superhard nitride-based nanocomposites: Role of interfaces and effect of impurities. Phys. Rev. Lett. 2006, 97:Art. No. 086102
    [14] Helmersson U, Todorova S, Barnett S A, et al. Growth of single-crystal TiN/VN strained-layer superlattices with extremely high mechanical hardness. J. Appl. Phys. 1987, 62:481-484
    [15] Sproul W D. New routes in the preparation of mechanically hard films. Science 1996, 273:889-892
    [16] Chu X and Barnett S A. Model of superlattice yield stress and hardness enhancements. J. Appl. Phys. 1995, 77:4403-4411
    [17] Shih K K and Dove D B. Ti/Ti-N Hf/Hf-N and W/W-N multilayer films with high mechanical hardness. Appl. Phys. Lett. 1992, 61:654-656
    [18] Xu J, Kamiko M, Zhou Y, et al. Superhardness effects of hetero- structure NbN/TaN nanostructured multilayers. J. Appl. Phys. 2001, 89:3674-3678
    [19] Barshilia H C, Jain A, and Rajam K S. Structure, hardness and thermal stability of nanolayered TiN/CrN multilayer coatings. Vacuum 2003, 72:241-248
    [20] Xu J H, Hattori K, Seino Y, et al. Microstructure and properties of CrN/Si3N4 nano-structured multilayer films. Thin Solid Films 2002, 414:239-245
    [21] Musil J. Hard and superhard nanocomposite coatings. Surf. Coat. Tech. 2000, 125:322-330
    [22] Misra A and Kung H. Deformation behavior of nanostructured metallicmultilayers. Adv. Eng. Mater. 2001, 3:217-222
    [23] Yang W M C, Tsakalakos T, and Hilliard J E. Enhanced elastic modulus in composition-modulated gold-nickel and copper-palladium foils. J Appl. Phys. 1977, 48:876-879
    [24] Henein G E and Hilliard J E. Elastic modulus in composition- modulated silver-palladium and copper-gold foils. J. Appl. Phys. 1983, 54:728-733
    [25] Tsakalakos T and Hilliard J E. Elastic modulus in composition- modulated copper-nickel foils. J. Appl. Phys. 1983, 54:734-737
    [26] Itozaki H I, Ph.D. thesis, Northwestern University, 1982.
    [27] Danner R, Huebener R P, Chun C S L, et al. Surface acoustic waves in Ni/V superlattices. Phys. Rev. B 1986, 33:3696-3701
    [28] Clemens B M and Eesley G L. Relationship between Interfacial Strain and the Elastic Response of Multilayer Metal Films. Phys. Rev. Lett. 1988, 61:2356-2359
    [29] Davis B M, Seidman D N, Moreau A, et al. "Supermodulus effect'' in Cu/Pd and Cu/Ni superlattices. Phys. Rev. B 1991, 43:9304-9307
    [30] Moreau A, Ketterson J B, and Mattson J. New measurements of the elastic properties of composition modulated Cu-Ni thin films. Appl. Phys. Lett. 1990, 56:1959-1961
    [31] Baral D, Ketterson J B, and Hilliard J E. Mechanical properties of composition modulated Cu-Ni foils. J. Appl. Phys. 1985, 57:1076-1083
    [32] Cammarata R C, Schlesinger T E, Kim C, et al. Nanoindentation study of the mechanical properties of copper-nickel multilayered thin films. Appl. Phys. Lett. 1990, 56:1862-1864
    [33] Fartash A, Fullerton E E, Schuller I K, et al. Evidence for the supermoduluseffect and enhanced hardness in metallic superlattices. Phys. Rev. B 1991, 44:13760-13763
    [34] Huang H B and Spaepen F. Tensile testing of free-standing Cu, Ag and Al thin films and Ag/Cu multilayers. Acta Mater. 2000, 48:3261-3269
    [35] Koehler J S. Attempt to Design a Strong Solid. Phys. Rev. B 1970, 2:547-551
    [36] Lehoczky S L. Retardation of Dislocation Generation and Motion in Thin-Layered Metal Laminates. Phys. Rev. Lett. 1978, 41:1814-1818
    [37] Lehoczky S L. Strength enhancement in thin-layered Al-Cu laminates. J. Appl. Phys. 1978, 49:5479-5485
    [38] Misra A, Verdier M, Lu Y C, et al. Structure and mechanical properties of Cu-X (X = Nb,Cr,Ni) nanolayered composites. Scripta Mater. 1998, 39:555-560
    [39] Xu J H, Kamiko M, Zhou Y M, et al. Structure transformations and superhardness effects in V/Ti nanostructured multilayers. 2002, 81:1189-1191
    [40] Li G Y, Han Z H, Tian J W, et al. A study on the interface microstructure and superhardness effect of W/Mo multilayer. Rare Metal Mat. Eng. 2003, 32:1-4
    [41] Wolf D and Lutsko J F. Structurally induced supermodulus effect in superlattices. Phys. Rev. Lett. 1988, 60:1170-1173
    [42] Streitz F H, Cammarata R C, and Sieradzki K. Surface-stress effects on elastic properties. II. Metallic multilayers. Phys. Rev. B 1994, 49:10707-10716
    [43] Rao S I and Hazzledine P M. Atomistic simulations of dislocation- interface interactions in the Cu-Ni multilayer system. Philos. Mag. A 2000, 80:2011-2040
    [44] Henager C H, Kurtz R J, and Hoagland R G. Interactions of dislocations with disconnections in fcc metallic nanolayered materials. Philos. Mag. 2004, 84:2277-2303
    [45] Hoagland R G, Hirth J P, and Misra A. On the role of weak interfaces inblocking slip in nanoscale layered composites. Philos. Mag. 2006, 86:3537-3558
    [46] Akasheh F, Zbib H M, Hirth J P, et al. Dislocation dynamics analysis of dislocation intersections in nanoscale metallic multilayered composites. J. Appl. Phys. 2007, 101:084314
    [47] Hall E O. The deformation and ageing of mild steel: III Discussion of results. Proc. Phys. Soc. London Sect. B 1951, 64:747-753
    [48] Petch N J. The cleavage strength of polycrystalline. J. Iron Steel Inst. 1953, 173:25-28
    [49] Friedman L H and Chrzan D C. Scaling theory of the Hall-Petch relation for multilayers. Phys. Rev. Lett. 1998, 81:2715-2718
    [50] Cahn J W. Hardening by spinodal decomposition. Acta Metall. 1963, 11:1275-1282
    [51] Kato M, Mori T, and Schwartz L H. Hardening by Spinodal Modulated Structure. Acta Metall. 1980, 28:285-290
    [52] Srolovitz D J, Yalisove S M, and Bilello J C. Design of Multiscalar Metallic Multilayer Composites for High-Strength, High Toughness, and Low Cte Mismatch. Metall. Mater. Trans. A 1995, 26:1805-1813
    [53] Nix W D. Elastic and plastic properties of thin films on substrates: nanoindentation techniques. Mat. Sci. Eng. A 1997, 234:37-44
    [54] Mitchell T E, Lu Y C, Griffin A J, et al. Structure and mechanical properties of copper/niobium multilayers. J. Am. Ceram. Soc. 1997, 80:1673-1676
    [55] Freund L B. The Mechanics of Dislocations in Strained-Layer Semiconductor-Materials. Adv. Appl. Mech. 1994, 30:1-66
    [56] Phillips M A, Clemens B M, and Nix W D. A model for dislocation behaviorduring deformation of Al/Al3Sc (fcc/L1(2))metallic multilayers. Acta Mater. 2003, 51:3157-3170
    [57] Misra A, Hirth J P, and Hoagland R G. Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater. 2005, 53:4817-4824
    [58] Kim C, Qadri S B, Scanlon M R, et al. Low-Dimension Structural-Properties and Microindentation Studies of Ion-Beam-Sputtered Multilayers of Ag/Al Films. Thin Solid Films 1994, 240:52-55
    [59] Wen S P, Zong R L, Zeng F, et al. Evaluating modulus and hardness enhancement in evaporated Cu/W multilayers. Acta Mater. 2007, 55:345-351
    [60] Xu J, Kamiko M, Sawada H, et al. Structure, hardness, and elastic modulus of Pd/Ti nanostructured multilayer films. J. Vac. Sci. Technol. B 2003, 21:2584-2589
    [61] Geisler H, Schweitz K O, Chevallier J, et al. Hardness enhancement and elastic modulus behaviour in sputtered Ag/Ni multilayers with different modulation wavelengths. Philos. Mag. A 1999, 79:485-500
    [62] Schweitz K O, Chevallier J, Bottiger J, et al. Hardness in Ag/Ni, Au/Ni and Cu/Ni multilayers. Philos. Mag. A 2001, 81:2021-2032
    [63] Barshilia H C and Rajam K S. Characterization of Cu/Ni multilayer coatings by nanoindentation and atomic force microscopy. Surf. Coat. Tech. 2002, 155:195-202
    [64] Scanlon M R, Cammarata R C, Keavney D J, et al. Elastic and Hardness Properties of Fe-Ag(001) Multilayered Thin-Films. Appl. Phys. Lett. 1995, 66:46-48
    [65] Yang G, Zhao B, Gao Y, et al. Investigation of nanoindentation on Co/Momultilayers by the continuous stiffiess measurement technique. Surf. Coat. Tech. 2005, 191:127-133
    [66] McKeown J, Misra A, Kung H, et al. Microstructures and strength of nanoscale Cu-Ag multilayers. Scripta Mater. 2002, 46:593-598
    [67] De Boer F R, Boom R, Mattens W C M, et al. Cohesion in metals: Transition Metal Alloys, North-Holland, 1988.
    [68] Dieter G E. Mechanical Metallurgy, London: McGraw-Hill Education, 1988.
    [69] Malzbender J. Comment on hardness definitions. J Eur. Ceram. Soc. 2003, 23:1355-1359
    [70] Oliver W C and Pharr G M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 2004, 19:3-20
    [71] Sawa T, Akiyama Y, Shimamoto A, et al. Nanoindentation of a 10 nm thick thin film. J. Mater. Res. 1999, 14:2228-2232
    [72] Anthony C and Fischer C. Nanoindentation, Springer, 2002.
    [73] Oliver W C and Pharr G M. Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7:1564-1580
    [74] Parratt L G. Surface Studies of Solids by Total Reflection of X-Rays Phys. Rev. B 1954, 95:359-369
    [75] Cammarata R C and Sieradzki K. Effects of surface stress on the elastic moduli of thin films and superlattices. Phys. Rev. Lett. 1989, 62:2005-2008
    [76] Gao N and Lai W S. Calculation of Elastic Constants of Ag/Pd Superlattice Thin Films by Molecular Dynamics with Many-Body Potentials. Chinese Phys. Lett. 2006, 23:2913-2916
    [77] Chokshi A H, Rosen A, Karch J, et al. On the Validity of the Hall-Petch Relationship in Nanocrystalline Materials. Scr. Metall. 1989, 23:1679-1684
    [78] Schiotz J, Di Tolla F D, and Jacobsen K W. Softening of nanocrystalline metals at very small grain sizes. Nature 1998, 391:561-563
    [79] Koch C C and Narayan J. The Inverse Hall-Petch Effect–Fact or Artifact? Mater. Res. Soc. Symp. Proc. 634, B 2001, 5:B5.1.1-B5.1.11
    [80] Conrad H and Narayan J. On the grain size softening in nanocrystalline materials. Scripta Mater. 2000, 42:1025-1030
    [81] Soe W H and Yamamoto R. Mechanical properties of polycrystalline TiN/TaN multilayers. J Mater. Sci. Technol. 1997, 13:245-248
    [82] Hahn H and Padmanabhan K A. A model for the deformation of nanocrystalline materials. Philos. Mag. B 1997, 76:559-571
    [83] Obi Y, Ikebe M, Fujishiro H, et al. Pinning mechanism studies on the Nb/Ag superconducting multilayer. Jpn. J. Appl. Phys. 1993, 32:1952-1955
    [84] Jin O and Liu B X. Unusual alloying behavior observed in the immiscible Ag-Mo and Ag-Nb systems under ion irradiation. Nucl Instr. Meth. B 1996, 114:56-63
    [85] Tai K P, Gao N, Dai X D, et al. Icositetrahedral and icosahedral atomic configurations observed in the Nb-Ag metallic glasses synthesized by ion beam mixing. Appl. Phys. Lett. 2006, 89:094108-094110
    [86] Li J and Chou T W. Elastic field of a thin-film/substrate system under an axisymmetric loading. Int. J. Solids. Struct. 1997, 34:4463-4478
    [87] King R B. Elastic analysis of some punch problems for a layered medium. Int. J. Solids Struct. 1987, 23:1657-1664
    [88] Doerner M F and Nix W D. A method for interpreting the data fromdepth-sensing indentation instruments. J. Mater. Res. 1986, 1:601-609
    [89] Saha R and Nix W D. Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Mater. 2002, 50:23-38
    [90] Jager I L. Comment on: "Effects of the substrate on the determination of thin films mechanical properties by nanoindentation" by Saha and Nix [Acta Mater 2002;50 : 23]. Scripta Mater. 2002, 47:429-432
    [91] Mesarovic S D and Fleck N A. Spherical Indentation of Elastic-Plastic Solids. Proc. R. Soc. London, Ser. A 1999, 455:2707-2728
    [92] Joslin D L and Oliver W C. A new method for analyzing data from continuous depth-sensing microindentation tests. J. Mater. Res. 1990, 5:123-126
    [93] Cheng Y T and Cheng C M. Relationships between hardness, elastic modulus, and the work of indentation. Appl. Phys. Lett. 1998, 73:614-616
    [94] Bao Y W, Wang W, and Zhou Y C. Investigation of the relationship between elastic modulus and hardness based on depth-sensing indentation measurements. Acta Mater. 2004, 52:5397-5404
    [95] Veprek S, Reiprich S, and Shizhi L. Superhard nanocrystalline composite materials: The TiN/Si3N4 system. Appl. Phys. Lett. 1995, 66:2640-2642
    [96] Liu B X, Lai W S, and Zhang Z J. Solid-state crystal-to-amorphous transition in metal–metal multilayers and its thermodynamic and atomistic modelling. Adv. Phys. 2001, 50:367-429
    [97] Kwon K W, Lee H J, and Sinclair R. Solid-state amorphization at tetragonal-Ta/Cu interfaces. Appl. Phys. Lett. 1999, 75:935-937
    [98] Van Den Beukel A and Radelaar S. On the Kinetics of Structural Relaxation in Metallic Glasses. Acta Metall. 1983, 31:419-427

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700