Fe/Cu纳米多层薄膜调制结构及力学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用双室高真空多功能磁控溅射装置,在背底真空优于2×10~(-5)Pa、溅射Ar气气压0.3 Pa、溅射功率100 W的条件下,以30 mm×3 mm×380μm的Si(100)为基体,室温直流溅射沉积设计调制比为1、设计调制周期为5-40 nm的Fe/Cu纳米多层薄膜。利用小角/广角X射线(SA/WAXRD)和高分辨透射电子显微镜(HRTEM)分析Fe/Cu纳米多层薄膜的成分、相结构和界面结构等调制结构。利用表面轮廓仪和纳米压痕仪测量Fe/Cu纳米多层薄膜残余应力和纳米硬度。测定的Fe/Cu纳米多层薄膜的调制比约为1,调制周期为5.63-34.0 nm,与设计值吻合。在各调制周期下,Fe/Cu纳米多层薄膜界面清晰,近基体平直,后渐呈波浪状,基体与多层薄膜之间存在2 nm厚的非晶层。Fe亚层为具有(110)择优取向的bcc-Fe,Cu亚层为具有(111)择优取向的fcc-Cu。调制周期为5 nm的Fe/Cu多层薄膜的界面局部存在共格,Fe亚层为体稳定bcc-Fe,Cu亚层为体稳定fcc-Cu与亚稳bcc-Cu交替变化的结构。两种亚层的晶粒均为贯穿亚层生长的柱状晶,调制周期由5 nm增至40 nm,平均晶粒尺寸由5 nm增至19 nm。Fe/Cu纳米多层薄膜的残余应力为张应力,沉积后随时间的变化释放不显著,调制周期由5 nm增至40 nm,残余应力由183 MPa增至627 MPa,主要归因于晶粒尺寸的变化和热失配的作用。Fe/Cu纳米多层薄膜的硬度随调制周期由5 nm增至40 nm,先增大后减小,调制周期10 nm达到峰值7.29±0.29 GPa。Fe/Cu纳米多层薄膜亚层的模量差异和亚层的互混程度决定多层薄膜的硬化性能。
Fe/Cu nanometer-scale multilayers with nominal modulation wavelengths ranging from 5to 40 nm and alternating Fe and Cu sublayers thickness ratio 1:1 are direct current sputteringdeposited onto single crystal Si (100) substrates with dimensions of 30 mm×3 mm×380μmat room temperature using the high-vacuum duplex chamber multi-functional magnetronsputtering apparatus with a base pressure better than 2×10~(-5) Pa. The working pressure ofresearch-grade Ar and the target power are 0.3 Pa and 100 W, respectively. Modulationstructures including concentration profile, phase state and interfacial structure arecharacterized by using small angle / wide angle x-ray diffraction (SA/WAXRD) and highresolution transmission electron microscopy (HRTEM). Residual stress and nanoindentationhardness are examined by using profilometry and nanoindentation, respectively. The actualsublayer thickness ratio is close to 1:1, and the actual modulation wavelengths are 5.63-34.0nm, which agree with the designed values. Fe/Cu nanometer-scale multilayers have clearinterfaces between the alternating Fe and Cu sublayers which are planar near the substrate andwaved near the surface. There is an amorphous layer with a thickness of 2 nm betweenmultlayers and substrate. In all conditions, the multilayers have Fe (110) and Cu (111)textures. For the multilayers with nominal modulation wavelength of 5 nm, the crystalstructure of Fe sublayers is bcc, and the one of Cu sublayers is alternative stable bcc andmetastable fcc. The columnar grains of Fe and Cu grow through the sublayers, and theaverage grain size increases from 5 to 19 nm with increasing the modulation wavelength from5 to 40 nm. The tensile residual stress in the Fe/Cu multilayers which relaxes insignificantlyincreases from 183 to 627 MPa with increasing the modulation wavelength from 5 to 40 nm.The evolution of the residual stress is interpreted by the increasing grain size. Thermal misfitsignificantly contributes to the residual stress. The hardness of the Fe/Cu multilayersincreases firstly and then deceases with increasing the modulation wavelength, and reachespeak value of 7.29±0.29 GPa at the nominal modulation wavelength of 10 nm. The evolutionof the hardness of the multilayers depends on layer miscibility and modulus differencebetween sublayers.
引文
[1] 刘明升,姜恩永,刘裕光.磁性多层膜研究进展:理论和实验.真空科学与技术,1994,14:147-154.
    [2] M.N. Baibich, J.M. Broto, A. Fert. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Physical Review Letters, 1988, 61: 2472-2475.
    [3] A. Fert, P. Grunberg, L.M. de Barth. Layered magnetic structures: Interlayer exchange coupong and giant magnetoresistance. Journal of Magnetism and Magnetic Materials, 1995, 140-144: 1-8.
    [4] A.C. Ehrlich. Influence of interlayer quantum-well state on giant magnetoresistance in magneticmultilayers. Physical Review Letters, 1993, 71:2300-2303.
    [5] R.E. Camley, J. Bamas. Theory of giant magnetoresistance effect in magnetic layered structures with antiferromagnetic coupling. Physical Review Letters, 1989, 63: 664-647.
    [6] S.S.P. Parkin, N. More, K.P. Roche. Oscillation in exchange coupling and magnetoresistance in metallic superlattice structures: Co/Ru, Co/Cr, and Fe/Cr. Physical Review Letters, 1990, 64: 2304-2307.
    [7] S. Pizzini, F. Baudelet, D. Chandesris, A. Fontaine, H. Magnan, J.M. George, F. Petroff, A. Barthelemy, A. Fert. Structural characterization of Fe/Cu multilayers by x-ray absorption spectroscopy. Physical Review B, 1992, 46: 1253-1256.
    [8] T. Kingestu, F. Yoshizaki. Dependedce of magnetoresistance and antiferromagnetic coupling on growth orientation and interface roughness in epitaxial Co/Cu superlattices. Japanese Journal of Applied Physics, 1994, 33: 6168-6172.
    [9] R. Schad, J. Barnas, P. Belien. Influence of different kinds of interface roughness on the giant magnetoresistance in Fe/Cr superlattices. Journal of Magnetism and Magnetic Materials, 1996, 156: 339-340.
    [10] 阿特伍德 著.张杰 等译.软X射线与极紫外辐射的原理和应用.北京:科学出版社,2003
    [11] P. He, W.A. William, J.A. Woollam, F. Sequeda, T. Mcdaniel, H. Do. Magneto-optical Kerr effect and perpendicular magnetic anisotropy of evaporated and sputtered Co/Pt multilayer structures. Journal of Applied Physics, 1991, 69: 4021-4028.
    [12] S. Logothetidis, N.K. Flevaris. Optical and electronic properties modifications in Pd-Ni multilayers. Journal of Applied Physics, 1994, 75: 7978-7982.
    [13] R. Atkinson, P.M. Dodd. Optical and magneto-optical properties of sputtered-deposited Co/Cu multilayers. Journal of Magnetism and Magnetic Materials, 1997, 173: 202-214.
    [14] Y. Wang, L.Y. Chen, S.M. Zhou, Y.X. Zheng, A. Hu, H.R. Zhai, R. Naik, G.L. Dunifer, G.W. Auner. Studies of optical and electronic properties in Co/Ag multilayers. Journal of Applied Physics, 1997, 81: 5256-5258.
    [15] R.C. Cammarata. Surface and interface stress effects in thin films. Progress in Surface Science, 1994, 46: 1-38.
    [16] L.B.Freund,S.Suresh,卢磊 等 译.薄膜材料-应力、缺陷的形成和表面演化.北京:科学出版社,2006
    [17] W.D. Nix. Mechanical properties of thin films. Metallurgical Transaction A, 1989, 20: 2217-2245.
    [18] M. Ohring. The materials science of thin films. Boston: Academic Press, 1992
    [19] R.J. Needs, M.J. Godfrey, M. Mansfield. Theory of surface stress and surface reconstruction. Surface Science, 1991,242:215-221.
    [20] P. Gumbsch, M. Daw. Interface stresses and their effects on the elastic moduli of metallic multilayers Physical Review B, 1991, 44: 3934-3938.
    [21] J. Chevallier K. O. Schweitz J. Bottiger. Interface stress in Au/Ni multilayers. Journal of Applied Physics, 2000, 88: 1401-1406.
    [22] J.A. Ruud, A. Witvrouw, F. Spaepen. Bulk and interface stresses in silver-nickel multilayered thin films. Journal of Applied Physics, 1993, 74: 2517-2523.
    [23] S. Berger, F. Spaepen. The Ag/Cu interface stress. Nanostructured Materials, 1996, 6: 201-204.
    [24] A.L. Shull, F. Spaepen. Measurements of stress during vapor deposition of copper and silver thin films and multilayers. Journal of Applied Physics, 1996, 80: 6243-6256.
    [25] X. Zhang, A. Misra. Residual stresses in sputter-deposited copper/330 stainless steel multilayers. Journal of Applied Physics, 2004, 96: 7173-7178.
    [26] A. Misra, H. Kung. Deformation behavior of nanostructured metallic multilayers. Advanced Engineering Materials, 2001, 3:217-222.
    [27] J.S. Koehler. Attempt to design a strong solid. Physical Review B, 1978, 2: 547-551.
    [28] S.L. Lehoczky. Strength enhancement in thin-layered A1-Cu laminates. Journal of Applied Physics, 1978, 49: 5479-5485.
    [29] W.M.C. Yang, T. Ysakalakos, J.E. Hilliard. Enhanced elastic modulus in composition-modulated gold-nickel and copper-palladium foils. Journal of Applied Physics, 1977, 48: 876-879.
    [30] S. Tixier, P. Boni, H. Van Swygenhoven. Hardness enhancement of sputtered Ni_3Al/Ni multilayers. Thin Solid Films, 1999, 342: 188-193.
    [31] J.A. Ruud, T.R. Jervis, F. Spaepen. Nanoindentation of Ag/Ni multilayered thin films. Journal of Applied Physics, 1994, 75: 4969-4974.
    [32] H.C. Barshilia, K.S. Raiam. Characterization of Cu/Ni multilayer coatings by nanoindentation and atomic force microscopy. Surface and Coatings Technology, 2002, 155: 195-202.
    [33] S. Labat, F. Bocquet, B. Gills, O. Thomas. Stresses and interfacial structure in Au-Ni and Ag-Cu metallic multilayers. Scripta Materialia, 2004, 50: 717-721.
    [34] A.C. Lewis, D. Josell, T.P. Weihs. Stability in thin film multilayers and microlaminates: the role of free energy, structure, and orientation at interfaces and grain boundaries. Scripta Materialia, 2003, 48: 1079-1085.
    [35] S. Labat, C. Guiched, O. Thomas. Microstructural analysis of Au/Ni multilayers interfaces by SAXS and STM. Applied Surface Science, 2002, 188:182-187.
    [36] J.D. Embury, C.W. Sinclair. The mechanical properties of free-scale two-phase materials. Materials Science and Engineering A, 2001, 319-321: 37-45.
    [37] W.C. Wang, R.N. Singh. Influence of the microstructure on the mechanical properties of Ni/Sn multilayered composites. Materials Science and Engineering A, 1999, 271: 306-314.
    [38] 李戈扬,许俊华,顾明元.纳米多层膜的微结构与超硬效应.上海交通大学学报,2001,35:457-461.
    [39] P.M. Anderson, T. Foecke, P.M. Hazzledine. Dislocation-based deformation mechanisms in metallic nanolaminates. Materials Research Society Bulletin, 1999, 24: 27-33.
    [40] X. Chu, S.A. Barnett. Model of superlattice yeild stress and hardness enhancement. Journal of Applied Physics, 1995, 77:4403-4411.
    [41] R.C. Cammarata, K. Sieradzki. Effects of surface stress on the elastic moduli of thin films and superlattices. Physical Review B, 1989, 62: 2005-2008.
    [42] N.J. Petch. The cleavage strength of polycrystals. Journal of The Iron and Steel Institute, London, 1953, 173: 25-28.
    [43] J.D. Embury, J.P. Hirth. On dislocation storage and the mechanical response of fine scale microstructures. Acta Metallurgica et Materialia, 1994, 42:2051-2056.
    [44] W.D. Nix. Elastic and plastic properties of thin films on substrates: nanoindentation techniques. Materials Science and Engineering A, 1997, 234-236: 37-44.
    [45] M. Shinn, L. Hultman, S.A. Barnett. Growth, structure, and microhardness of epitaxial TiN/NbN superlattices. Journal of Materials Research, 1992, 7:901-911.
    [46] T.B. Massalski, H. Okamoto, P.R. Subramanian, L. Kacprzak (Eds.). Binary Alloy Phase Diagrams. Ohio: American-Society of Metals Publication, 1990
    [47] Y. Kozono, M. Komuro, S. Narishige, M. Hanazono, Y. Sugita. Structures and magnetic properties of Fe/Cu multilayered films fabricated by a magnetron sputtering method. Journal of Applied Physics, 1987, 61: 4311-4313.
    [48] D.W. Lee, D.H. Ryan, Z. Altounian, A. Kuprin. Structural and magnetic properties of Cu/Fe multilayers. Physical Review B, 1999, 59: 7001-7009.
    [49] A.P. Kuprin, L. Cheng, D.W. Lee, Z. Altounian, D.H. Ryan. Magnetism and structure of Fe/Cu multilayers studied by low-temperature conversion electron mossbauer spectroscopy. Journal of Applied Physics, 1999, 85: 5738-5740.
    [50] M. Arita, A. Kuwahara, Y. Yamada, M. Doi, M. Matsui. Microstructure of Fe/Cu(Au) artificial superlattice. Thin Solid Films, 1998, 318:180-185.
    [51] N.R. Shamsutdinov, A.J. Bottger, F.D. Tichelaar. The effect of Cu interlayers on grain size and stress in sputtered Fe-Cu multilayered thin films. Scripta Materialia, 2006, 54: 1727-1732.
    [52] M.K. Lei, Z.L. Wu, T. Chen, B.S. Cao. Microstructural evolution of Fe/Ti multilayers submitted to in situ thermal annealing. Thin Solid Films, 2006, 500: 174-179.
    [53] E. Fullerton, I.K. Schuller, H. Vanderstraeten, Y. Bruynseraede. Structural refinement of superlattices from x-ray diffraction. Physical Review B, 1992, 45: 9292-9310.
    [54] 进藤大辅,平贺贤二 著,刘安生 译.材料评价的高分辨电子显微方法.北京:冶金工业出版社,1998
    [55] 朱瑛,姚英学,周亮.纳米压痕技术及其实验研究.工具技术,2004,38:13-16.
    [56] 谢存毅.纳米压痕技术在材料科学中的应用.物理,2001,30:432-435.
    [57] F. Spaepen. Interfaces and stresses in thin films. Acta Materialia, 2000, 48:31-42.
    [58] J.A. Floro, E. Chason, R.C. Cammarata, D.J. Srolovitz. Physical origins of intrinsic stresses in Volmer-Weber thin films. Materials Research Society Bulletin, 2002: 19-25.
    [59] http://www.matweb.com/.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700