脉冲偏压电弧离子镀大颗粒净化的理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文改进和完善了脉冲偏压电弧离子镀的大颗粒净化的理论模型,系统研究了脉冲偏压作用下的等离子体鞘层的物理特性和大颗粒在鞘层中的充电、受力以及运动行为,从理论上给出脉冲偏压工艺对于大颗粒净化效应的合理解释;对在不同工艺下制备的TiN薄膜样品进行了实验观测和分析,得到薄膜的表面形貌和大颗粒的数量及尺寸分布情况,得到了与计算预见相吻合的实验结果,为大颗粒净化的物理模型提供了佐证。
     在脉冲偏压电弧离子镀技术的开发中,该模型保证在不明显降低沉积效率的前提下,对得到洁净表面高质量薄膜的工艺优化,有重要指导作用。
     具体完成了如下工作:
     (1)大颗粒净化模型的完善
     对黄美东博士等建立的大颗粒净化模型进行了进一步的改进和完善,对大颗粒在鞘层中的充电和受力进行了定量的计算,考虑了离子拖拽力的影响。
     (2)脉冲偏压鞘层的物理特性
     采用Edelberg和Aydil的无碰撞鞘层模型,以实验中所得的基体偏压数据作为边界条件,计算得到在不同的脉冲偏压下鞘层中的电势分布、鞘层厚度、鞘层中的电子、离子平均速度和离子密度。
     (3)大颗粒在鞘层中的充电、受力和运动
     利用鞘层中大颗粒表面的充电平衡条件,计算得出大颗粒表面电势,进而得到大颗粒所带电量,并对大颗粒在鞘层中受到电场力、离子拖拽力和重力等进行计算。
     计算表明,大颗粒在脉冲偏压鞘层中始终带负电,但是电量随着靠近基体而不断的减少;在大部分鞘层区域内,电场力大于离子拖拽力
    
    脉冲偏压电弧离子镀大颗粒挣化的理论与实验研究
    和重力之和,故而可能使大颗粒不落到基体上。这是大颗粒能够被净化
    的理论依据。
    (4)试验结果
     采用JSM一5600LV型扫描电镜观察在不同工艺制度下制备的TIN
    薄膜样品表面形貌,然后将得到的SEM图片输入Qso0IW型图像分析
    仪,对大颗粒的尺寸分布及面密度进行统计分析。
     结果表明脉冲偏压对大颗粒有明显的净化作用,即薄膜表面比直流
    偏压下大颗粒尺度和数量都少得多,其净化效果随不同的脉冲参数组合
    有很大的差别,而且主要反映在小尺度颗粒的净化效果。偏压幅值越高,
    占空比越大(在一定范围内),净化效果越好。
    (5)工艺实践
     应用大颗粒净化的物理模型在正交实验基础上进行优化选择,得
    到净化效果达54%的优化工艺,该工艺满足合成Ti/TIN纳米多层超硬
    薄膜的要求。
In this paper the academic mode of decontamination of Mps is improved and perfected. The characteristic of pulsed bias sheath ,charge forces and motion of Mps in sheath are studied systemically. A logical explainer of Mps' decontamination under pulsed bias is given theoretically. TiN film samples from different craftwork are observed and analyzed. Configuration of film surface and MPs quantity and dimension are obtained. Analysis and statistic indicate that the experimental result is in accord with calculation result. So it can be proved that the academic mode is correct.
    In the development of PBAIP our mode give important instruction for gaining clean surface and enhancing film quality on the premise of that aggradations efficiency is not fallen evidently. The idiographic work:
    (1) Perfection of the mode of MPs decontamination perfection
    The decontamination mode of Dr Meidong Huang's is improved and perfected. Charge and forces on Mps are calculated quantitatively, ion drag force is considered.
    (2) Pulsed-Bias sheath characteristic
    The collisionless sheath mode of Edelberg and Aydil is adopted. The datum come from experiment are regarded boundary condition, voltage distribution in sheath, thickness of sheath, ion and electrons density in sheath are all studied.
    (3) Charge, forces and motion of Mps in sheath
    Making use of the charge balance condition the surface potential of MPs can be gained. Then the charge is obtained. Ion drag force, electric force and gravitation are calculated.
    It is indicated that the charge on Mps is always negative in the sheath but is reducing when Mps close with electrode. At most region of sheath electric force is greater than the summation of ion drag force and gravitation, so Mps may deviate from electrode. This is the academic gist of Mps decontamination.
    (4) Experimental result
    JSM-5600LV model scanning electron microscope is used to observe the surface morphologies of film come from different craftwork. Then the SEM photos are put into Q500IM model picture analyzer, Mps dimensional distribution and surface density are analyzed statistically.
    
    
    
    It is indicated that the film surface under pulsed biases is cleaner than the film surface under dc biases. The pulsed parameters are influential to film surface. Little dimensional Mps are cleansed more easily. Voltage and duty cycle are greater the effect is better. (5) Craftwork practice
    On the base of mode and cross experiment the optimized craftwork is obtained, decontaminative impact is 54%. The craftwork meets the request of composing nanometer multiplayer films of Ti/TiN.
引文
[1] M.D. Mattox, J. Appl. Phys., 1963, 34:2493—2498.
    [2] D. L. Chamber, D.C.Carmichael, R/D Magazine, 1971, 32:22—26.
    [3] R.F.Bunshah and A.C. Ranghuram, Activated reacitive evaporation progress for high rate deposition of.compounds, J. Vac. Sci.Technol., 1972, 9:1385—1388.
    [4] J.R.Morley and H.R.Smith, High rate ion production for vacuum deposition, J. Vac. Sci.Technol., 1972, 9: 1377—1378.
    [5] S.Komiya, K. Tsuruoka, Japan J.Appl.Phys.Suppl.j 2,1974, Pt. 1:415—420
    [6] Y. Mulayama, K. Mashimoto, Equipment of radio frequency ion plating, Applied Physics. 1994, 42:687—691
    [7] 闻立时,黄荣芳:离子镀硬质薄膜的最新进展和展望,TFC99,全国薄膜学术讨论会议论文集,34/39中国,上海(1999).
    [8] 信觉俗,多弧离子镀技术,真空,1987(3):43-45.
    [9] 凌国伟,沈辉宇,周福堂,阴极电弧沉积技术及其发展,真空,1996(1):1-12.
    [10] J.-E. Sundgren, B.-O. Johanaaon, H.T.G. Hentzell and S.-E. Karlsson, Mechanisms of reactiye sputtering of TiN and TiC Ⅲ: Influence of substrate bias on composition and structure, Thin Solid Films, 1983, 105:385-393.
    [11] G. Hakansson, L. Hultman, J.-E. Sundgren, J.E. Greene and W.-D. Munz, Microstructure of TiN films grown by various physical vapour deposition techniques, Surf. Coat. Technol.,1991, 48:51-67.
    [12] M. Benmaslekl P. Gimenez, J.P. Peyre and C. Tournier, Characterization and comparison of TiN layers deposited by different physical vapour deposition processes, Surf. Coat. Technol., 1991, 48:181-187.
    [13] T. Jamal, R. Nimmagadda and R.F. Bunshah, Friction and adhesive wear of titanium carbide and titanium nitride overlay coations, Thin Solid Films, 1980, 73:245-254.
    [14] A.J. Perry, Adhesion studies of ion-plating TiN on steel, Thin Solid Films, 1981, 81:357-366.
    [15] P.D. Ding, Z. Ni, S.Z. Zhou and F.S. Pan, A study of TiN coatings on a low alloy high speed steel, Surf. Coat. Technol., 1991, 49:203-207.
    [16] G. Este and W.D. Westwood, Stress control in reactively sputtered AIN and TiN films, J. Vac. Sci. Technol., 1987, A5(4):1892,1897.
    
    
    [17] P.A.Steinmann and H.E. Hintermann, A review of the mechanical tests for assessment of thin-film adhesion, J. Vac. Sci. Technol., 1989, A7(3): 2267-2272.
    [18] C.N.Tai, E.S.Koh and K.Akari, Macroparticles on TiN films prepared by the arc ion plating process, Sur. Coat. Technol., 1990, 43:324—325.
    [19] P.A. Lindfors, W. M. Mularie and G..K.. Wehner, Cathodic arc deposition technology, Surf. Coat. Technol., 1986, 29:275-290.
    [20] A. Matthews and A.R. Lefkow, Problems in the physical vapour deposition of titanium nitride, Thin Solid Films, 1985, 126:283-291.
    [21] E. Erturk and H.-J. Heuvel, Adhesion and structure of TiN arc coatings, Thin Solid Films, 1987, 153:135-147.
    [22] R.L. Boxman and S. Goldsmith, Macroparticle contamination in cathodic arc coatings. Generation, transport and control, Surf. Coat. Technol., 1992, 52:39-50.
    [23] R.Hovsepian and D. Popov, Cathode poisoning during reactive arc evaporation of titanium in nitrogen atmosphere, Vacuum, 1994, 45:603-607.
    [24] K.Koshi, J. Holsa and P.Juliet, Surface defects and arc generation in reactive magnetron sputtering of aluminium oxide thin films, Surf. Coat. Technol., 1999, 115:163-171.
    [25] G.Gautier and J. Machet, Study and elaboration of ternary chromium based compounds (Cr, O, N) deposited by vacuum arc evaporation, Surf. Coat. Technol., 1997, 94/95:422-427.
    [26] I.I. Aksenov, V.A. Belous, V.G. Padalka and V. M. Khoroshikh, Sov. J. Plasma Phys. 1978, 4:425-428.
    [27] A. Bendavid, P.J. Martin and L. Wieczorek, Morphology and optical properties of gold thih films prepared by filtered arc deposition, Thin Solid Films, 1999, 354:169-175.
    [28] P.J. Martin, A. Bendavid and H. Takikawa, Ionized plasma vapor deposition and filtered arc deposition: processes, properties and applications, J. Vac. Sci. Technol., 1999, A17(4):2351-2359.
    [29] D.A. Baldwin,. S. Fallabella, Deposition Process utilizing a new filtered Cathodic Arc Source, Proc. of the 38th Annual Conf., Society of Vacuum Coaters, Chicago, April2-7, 1995,p309-316.
    [30] I.I. Aksenov, V.A. Belous, V.V.Vasil'ev, Y.Y. Volkov, V.E. Strel'nitsbij, A rectilinear plasma filtering system for vacuum-arc deposition of diamond-like carbon coatings, Diam. Relat. Matter., 1999, 8:468-471.
    [31] X. Shi, D.I. Flynn, B.K. Beng, H.S. Tan, Filtered Cathodic Arc Source,
    
    US Patent 6 031 239, Feb. 29,2000.
    [32] B.K. Tay, X. Shi, H.S. Yang, H.S. Tan, D. Chua and S.Y.Teo, The effect of deposition conditions on the properties of TiN thin films prepared by filtered cathodic vacuum-are technique, Surf. Coat. Technol., 1999, 111:229-233.
    [33] W. Olbrich, J. Fessmann, G. Kampschulte and J. Ebberink, Improved control of TiN coating properties using cathodic arc evaporation with a pulsed bias, Sur. Coat. Teehnol., 1991,49:258-262.
    [34] J. Fessmann, W. Olbrich, G. Kampschulte and J. Ebberink, Cathodic arc deposition of TiN and Zr(C, N) at low substrate temperature using a pulsed bias voltage,Mater, Sci,Eng.,1991, A140:830-837.
    [35] W. O.lbrich and G. Kampschulte, Superimposed pulse bias voltage used in arc and sputter technology, Sur. Coat. Technol., 1993, 59:274-280.
    [36] A.J. Perry, A.F. Tian, J.R. Treglio and C. Loomis, Thin TiN and TiB_2 coating with low residual stress deposited at different temperatures by cathodic arc ion plating,Sur. Coat. Technol., 1994, 68/69:528-535.
    [37] A.J. Perry, J.R. Treglio and A.F. Tian, Low-temperature deposition of titanium nitride, Sur. Coat. Technol., 1995, 76/77:815-820.
    [38] L.S. Wen and R.F. Huang, Low temperature deposition of titanium nitride, J. Mater. Sci. Technol., 1998, 14:289-293.
    [39] A.J. Perry, A.F. Tian, J. R. Treglio and C. Loomis, Thin TiN and TiB_2 coatings with low residual stress deposited at different temperatures by cathodic arc ion plating, Surf. Coat. Technol., 1994, 68/69:528-535.
    [40] A.J. Perry, J.R. Treglio and A.F. Tian, Low-temperature deposition of titanium nitride, Surf. Coat. Technol., 1995, 76/77:81.5-820.
    [41] 曾鹏,胡社军,谢光荣等,脉冲偏压对真空电弧沉积TiN薄膜组织与性能的影响,材料热处理学报,2001;22:62.
    [42] E.Erturk, H.J.Heuvel, H.G.Dederichs, Surf.Coat.Technol., 1989; 39/40: 455.
    [43] 黄美东,林国强,董闯,孙超,闻立时.偏压对电弧离子镀薄膜表面形貌的影响机理.金属学报,2003:39(5):510.
    [44] 黄美东,孙超,董闯.电弧离子镀中不同偏压模式对TiN薄膜形貌的影响,真空,20001(3):36-38.
    [45] 黄美东,大连理工大学博士学位论文,大连理工大学,2002.
    [46] R. N. Nowlin and R. N. Carlile, The electrostatic nature of contaminative particles in a semiconductor processing plasma, J. Vac.Sic. Techol. A, 1991,7,p2825.
    [47] J. J. Wu and R. J. Miller. Measurements of charge on submieron particles
    
    generated in a sputtering process, J. Appl. Phys., 1990, 67, p1051.
    [48] T.Nitter, T.K. Aslaksen, F. Melands and O. Havnes, Levitation and dynamics of collection of dust particles in a fully ionzied plasma sheath, IEEE Trans. on Plasma Sci., 1994, 22(2):159-172.
    [49] Erik A. Edelberg andEray S. Aydil, Modeling of the energy distribution of ions bombarding rf-biased substrates in high density plasma reactors and conparison to experimental measurements, J.Appl.Phys. 1999; 86:p4799.
    [50] Isak I. Beilis, Michael Keidar, Raymond L. Boxman and Samuel Goldsmith, Nonequilibrium macroparticle charging in low-density discharge plasma, IEEE Transaction on Plasma Science. 1997, Vol. 25, p346.
    [51] A.W. Baouchi and A.J. Perry, A study of the macroparticle distribution in cathodic-arc-evaporated TiN films, Surf. Coat. Technol., 1991, 49:253-257.
    [52] 侯璐景,王友年,尘埃颗粒在射频等离子体鞘层中的非线性共振现象的理论研究,物理学报,2003;52:p434.
    [53] T.Nitter and O.Havnes, "Dynamics of dust in a plasma sheath and injection of dust into the plasma sheath above moon and steroidal surfaces",Earth,moon Planets .vol. 56,pp7—34,1992.
    [54] Nitter T Levitation of dust in rf and de glow discharges, Plasma Sources Sci.Technol. 1996; 5:93.
    [55] C. N. TAL and E. S. KOH, Surf. Coat. Technol., 43/44 (1990) 324-335.
    [56] Li Zhengyang, Zhu Wubiao, Zhang Yong, Li Guiying, Cao Eryan, Surf.. Coat. Technol., 131 (2000) 158-161.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700