脉冲偏压电弧离子镀基体沉积温度的计算与纳米多层硬质薄膜的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基体沉积温度是离子镀工艺中影响薄膜性能和限制可镀基体范围的最重要参数之一。与传统的以直流负偏压为基础的电弧离子镀(direct current bias arc ion plating,DCAIP)相比,脉冲偏压电弧离子镀技术(pulsed-bias arc ion plating,PBAIP)不仅能够有效降低沉积温度,适合于具有较低的回火温度或应力释放温度点的基体材料;同时,在相同沉积温度下,PBAIP技术中利用脉冲偏压和占空比等电参数的优化组合可以改善薄膜性能。但是,目前对于PBAIP技术中沉积温度的降低及工艺参数对沉积温度的影响还缺乏系统认识,如果能够通过计算来预测不同工艺参数下的沉积温度,达到通过工艺参数的调整来实现控制沉积温度的目的,对于薄膜的性能优化、基体材料的选择和沉积工艺的合理设计都具有重要意义。
     PBAIP与DCAIP的不同在于基体偏压的作用形式,本文从脉冲偏压的作用形式出发,用实验的方法分析了脉冲偏压电参数的特点,得到了近方波的相对规范形状的偏压偏流输出波形。同时详细探讨影响沉积温度的各因素对沉积温度的影响趋势及影响程度,分析表明:离子轰击、基体的热辐射、通过基体支撑轴的热传导散热是影响基体沉积温度的主要因素。在此基础之上,基于基体获得能量与释放能量相平衡原则,建立包含离子轰击功率密度、辐射功率密度、热传导功率密度、材料的比热容、质量及面积和温度变化等参量的温度计算模型。最后以沉积TiN为例,用实测的沉积温度对计算模型进行检验,在-1000~0V的偏压范围内理论与实验得到了好的吻合。对模型的进一步理论分析表明,脉冲偏压工艺降低沉积温度的本质在于其离子能量输入密度是相同偏压幅值下直流偏压工艺能量输入密度的D(占空比D<1)倍;在既定设备和基体上,通过脉冲工艺电参数可以实现对沉积温度的有效控制。
     脉冲偏压电弧离子镀温度控制和低温沉积机制的明确为在硬质合金等基体上制备纳米多层硬质薄膜奠定了基础。本文以Ti/TiN为例,采用间歇送人N_2的方法,制备纳米多层薄膜,展开PBAIP技术纳米多层薄膜的初步研究,为优化沉积工艺,制备纳米多层硬质薄膜提供基本实验依据。经分析证明,利用一定时间间隔送入N_2的工艺可以实现Ti/TiN纳米多层薄膜的制备;脉冲偏压电弧离子镀制备的调制周期为100nm左右的Ti/TiN多层薄膜的结合力和显微硬度,与常规直流和脉冲工艺下的TiN均质膜相比,有大幅度提高,结合力可达90N,显微硬度在Hk3000kgf/mm~2左右。通过调整Ti/TiN薄膜的调制周期和周期比,制备了具有超硬特性的Ti/TiN多层薄膜,显微硬度最高可达Hk4799 kgf/mm~2;分析表明,引起纳米多层薄膜硬的提高的原因可能有两个,一是Hall-Petch关系的晶粒细化效应,二是由于位错源在层间产生和运动受到抑制所致。
The substrate temperature is one of most important factors, which influence the properties of films and substrate. Compared with Direct Current Bias Arc Ion Plating(DCAIP), Pulsed-bias Arc Ion Plating(PBAIP) not only can decrease the substrate temperature efficiently , but also can be applied in the substrate whose temperature of temper or stress is very low; further more, at the same deposition temperature, the properties of films can be improved by the optimal combination between the bias voltage and duty cycle in PBAIP. However, till now there is no systemic report in why the substrate temperature can be decreased and how the temperature can be influenced by the electric parameters in PBAIP. If the substrate temperature can be predicted or controlled by adjusting the parameters, it is significant to improve the films properties, broaden the range of substrate material, or design the reasonable deposition techniques.
    There is a difference in bias voltage on substrate between Arc Ion Plating(AIP) and Pulsed-bias Arc Ion Plating(PBAIP). The bias voltage of substrate in PBAIP has been analyzed by experiments and its wave profile is basically rectangle. The factors, which influence the substrate temperature, are discussed in detail and the results shows that the substrate temperature is mainly decided by ion bombardment, heat radiation, heat conductivity. On the basis of energy conversation principle, a model of substrate temperature incorporates power density of ion bombardment, heat radiation and heat conductivity in PBAIP when the bias voltage varies from -1000V to 0 has been established, and experimental tests are also conducted to verify the calculation and a good agreement is observed between calculated results and experimental results. From analyzing the calculation model of substrate temperature, it is found that the input power density of PBAIP is only D(duty cycle, D<1) times as one in DCAIP and the temperature can be controlled efficiently by adjusting the parameters such as bias-voltage or duty cycle in PBAIP.
    Based on mechanism of the low substrate temperature controlled by technique parameters, multilayers can be deposited on alloy by PBAIP. In this paper, by infusing N2 to chamber periodically, Ti/TiN multilayers are produced. The results shows that nano-multilayers cae be deposited by infusing N2 periodically in PBAIP, combination force is about 90N and micro-hardness is about Hk 3000 kgf/mm2 when the modulation structure is 100nm.These properties are better than TiN films produced in PBAIP. The Ti/TiN multiplayer with super hardness has been deposited by adjusting the modulation period, and the maximum of hardness is 4799 kgf/mm2. There are two reasons in improving the hardness of films., one is the refining effect of the grain size, the other is that dislocations are blocked when moving among the layers.
引文
[1] 李鹏兴,林行方.表面工程[M].上海:上海交通大学出版社,1989.
    [2] Starling C M D, Branw J R T. The fatique of hot work tool steel with hard coating[J]. Thin Solid Films, 1997, 308-309: 436
    [3] Knotek O, Loeffler F, Kraemer G. Process and advantage of multicompoment and multiplayer PVD coatings[J]. Surface and Coatings Technology, 1993, 59(1-3): 14
    [4] Holleek H, Schier V. Multilayer PVD coatings for wear protection[J]. Surface and Coatings Technology, 1993, 76-77: 328: 629
    [5] 王福贞,闻立时.表面沉积技术[M].北京:机械工业出版社,1989
    [6] Archer N J. Plasma-assisted chemical vapor deposition of TiC and TiC_xN_([1-x])[J]. Thin Solid Films, 1981, 80(1-3): 221
    [7] 汪泓宏,田民波,离子束表面强化技术,北京:机械工业出版社,1991,p68.
    [8] 陈宝清,朱英臣,王斐杰,王玉魁,磁控溅射离子镀技术和铝镀膜的组织形貌、相组成及新相形成物理冶金过程的研究,热加工工艺,1984,5:42-49.
    [9] 张祥生,离子镀膜——一种全新的镀膜技术,真空技术,1979(1):54-67.
    [10] 王祥春,国外中空热阴极放电离子镀技术现状,材料保护,1982(3):26-36.
    [11] 田民波,真空应用,1985(2):6-9.
    [12] 毛德才,离子镀技术,新技术新工艺,1983(1):25-29.
    [13] 信觉俗,多弧离子镀技术,真空,1987(3):43-45.
    [14] R.F. Huang, L.S. Wen, J. Wu, R.J. Hong, MRS 1991 Spring Meeting, Apr. 30-May 2, 1991, San Francisco, MRS Symp. Proc. V233, Ion Beam and Plasma Modification of Materials, eds. J.M.E. Haper, K. Miyake, J.R. McNeil, S.M. Gorbtkin, p289.
    [15] Alfred Grill, Cold Plasma in Materials Fabrication——from Fundamentals to Applications, New York: IEEE Press, 1993, p14.
    [16] A. Anders, S. Anders, I.G. Brown, M.R. Dickenson and R.A. MacGill, Metal plasma immersion ion implantation and deposition using vacuum arc plasma sources, J. Vac. Sci. Technol., 1994, B12(2): 815-819.
    [17] L.S. Wen, X.Z. Chen, Q.Q. Yang, Y.Q. Zheng, Y.Z. Chuang, Proc of the 1st Conf. on Plasma Surface. Engineering, Sept. 19-23, 1988, Garnisch-Partenkirchen, FRG, Plasms Surface Engineering, eds. E. Broszeit, W.D. Munz, H. Oechsher, K.T. Rie, G.K. Woy, DGM Informations gesellsehaftmbH, 1989, V2, p1041.
    [18] L. Hultman, U. Helmerson, S.A, Barnett, J.-E. Sundgren and J.E. Greene, Low-energy ion irradiation during film growth for reducing defect densities in epitaxial TIN(100) films deposited by reactive-magnetron sputtering, J. Appl. Phys. 1987, 61: 552-555.
    [19] Petrov, L. Hultrnan, U. Helmerson, J.-E. Sundgren and J. E. Greene, Microstructure modification of TiN by ion bombardment during reactive sputter deposition, Thin Solid Films, 1989, 169: 299-314.
    [20] D.S. Rikerby and S.J. Bull, Engineering with surface coatings: the role of coating microstructure, Surf. Coat. Technol., 1989, 39/.40: 315-328.
    [21] W.D. Sproul, P.J. Rudnik and M.E. Graham, The effects of N_2 partial pressure, deposition rate and substrate bias potential on the hardness and texture of reactively sputtered TiN coatings, Surf. Coat. Technol., 1989, 39/40: 355-363.
    [22] K. Reichelt and X. Jiang, Preparation of thin films by physical vapour deposition methods, Thin Solid Films, 1990, 191: 91-126.
    [23] A. Johansen, J.H. Dontje and L. D. Zenner, Reactive arc vapor ion deposition of TiN, ZrN and HfN,
    
    Thin Solid Films, 1987, 153: 75-82.
    [24] O. Knotek, W. Bosch and T.. Leyendecher, Proc. of the 1st Inter. Conf. on Surface Engineering, Brighton, June 25-28, 1985, P681~685.
    [25] R. W. Springer and D.S. Catlett, Structure and mechanical properties of Al/Al_xO_y vacuum-deposited laminates. Thin Solid Films, 1978, 54: 197-205.
    [26] O. Knotek, E Jungblut and K. Breidenbach, Magnetron-sputtered superhard coatings within the system Ti-B-C-N, Vacuum, 1990, 41: 21842186.
    [27] R.W. Springer and C.D. Hosford, Effect of periodic chemical variation on the mechanical properties of Ta foils, J. Vac. Sci. Technol., 1979, 16: 878-881.
    [28] Minevich A A. Wear of cemented carbide cutting inserts with multiplayer Ti-based PVD coatings[J]. Surf Coat Technol, 1992, 53(2): 161
    [29] rie K T, Gebaucr a, Woehler J et al. Synthesis of TiN/Ti-C-N/TiC layer systems on steel and cerment substrates by PAVCD[J]. Surf Coat Technol, 1995, 74-75: 375
    [30] Holleck H, Lahres M, Woll P. Multilayer coatings-influence of fabrication parameters on consitution and properties[J]. Surf Coat Technol,, 1990, 41(2): 179
    [31] Helmersson U, Toderova S,. marbert Let al. Growth of single-crystal TiN/VN strained-layer supperlattices with extremely, high mechanical hardness[J]. Journal of Applied physics, 1987, 62(2): 481
    [32] Marian A, Yashar P, Shinn Metal. An X-ray diffration study of epitaxial TiN/NbN supperlattices[J]. Thin Solid Films, 1997, 302(1-2): 147
    [33] Ma K J, Bloyce A, Bell T. Examination of mechanical properties and failure mechanisms of TiN and Ti-TiN multiplayer coating[J]. Surf Coat Technol, 1995, 76-77(1-3): 297
    [34] Simmonds M C, Swygenhoven H V, Pflueger E et al. magnetron sputter deposition and characterization of Ti/TiN, Au/TiN and MoS_x/Pb multilayers[J]. Surf Coat Technol, 1997, 94-95(1-3): 490
    [35] Herranen M, Wiklund U, Carlsson J O et al. Corrosion behavior of Ti/TiN multiplayer coated tool steel[J]. Surf Coat Technol,, 1998, 99(1-2): 191
    [36] Kupfer H, Richter F, Friedrich Set al. Deposition and properties of TiN/carbon multi-layer for corrosion protection of steel[J]. Surf Coat Technol, 1995, 74-75: 333
    [37] Panjan P, Navinsek B, Cvetbar A et al. High temperature oxidation of TiN/CrN multi-layers reactively sputted at low temperature[J]. Surf Coat Technol, 1998, 98(1-3): 497
    [38] Wadsworth I, Smith I J, Donobue L A et al. Thermal stability and oxidation resitance of Ti-Al-N/CrN multi-layer coatings[J]. Surf Coat Technol,1997, 94-95(1-3): 315
    [39] W. Olbrich, J. Fessmann, G. Kampschulte and J. Ebberink, Improved control of TiN coating properties using cathodic arc evaporation with a pulsed bias, Surf. Coat. Technol., 1991, 49: 258-262.
    [40] J. Fessmann, W. Olbrich, G. Kampschulte and J. Ebberink, Cathodic arc deposition of TiN and Zr(C,N) at low substrate temperatures using a pulsed bias voltage, Mater. Sci. Eng., 1991, A140: 830-837.
    [41] W. Olbrich and G. Kampschulte, Superimposed pulse bias voltage used in arc and sputter technology, Surf. Coat. Technol., 1993, 59: 274-280.
    [42] W. Olbrich and G. Kampschulte, Additional ion bombardment in PVD processes generated by a superimposed pulse bias voltage, Surf. Coat. Technol., 1993,61: 262-267.
    [43] A.J. Perry, A.E Tian, J. R. Treglio and C. Loomis, Thin TiN and TiB_2 coatings with low residual stress deposited at different temperatures by cathodic arc ion plating, Surf. Coat. Technol., 1994,
    
    68/69:528-535.
    [44] A.J. Perry, J.R. Treglio and A.E Tian, Low-temperature deposition of titanium nitride, Surf. Coat. Technol., 1995, 76/77: 815-820.
    [45] Li Zhengyang, Zhu Wubiao, Zhang Yong, Li Guiying and Cao Eryan, Effects of superimposed pulsed bias on TiN coating in cathodic arc deposition, Surf. Coat. Technol., 2000, 131: 158-161.
    [46] 曾鹏,胡社军,谢光荣,黄拿灿,吴起白,脉冲偏压对真空电弧沉积TiN薄膜组织与性能的影响,材料热处理学报,2001,22(3):62-66.
    [47] 黄美东,孙超,董闯,黄荣芳,闻立时,电弧离子镀中不同偏压模式对TiN薄膜形貌的影响,真空,2001(3):36-38.
    [48] C.N. Tai, E.S. Koh and K. Akari, Macroparticles on TiN films prepared by the arc ion plating process, Surf. Coat. Technol.,1990, 43: 324-335.
    [49] P.A. Lindfors, W. M. Mularie and G..K.. Wehner, Cathodic arc deposition technology, Surf. Coat. Technol., 1986, 29: 275-290.
    [50] A. Matthews and A.R. Lefkow, Problems in the physical vapour deposition of titanium nitride, Thin Solid Films, 1985, 126: 283-291.
    [51] E. Erturk and H.-J. Heuvel, Adhesion and structure of TiN arc coatings, Thin Solid Films, 1987, 153: 135-147.
    [52] A.W. Baouchi and A.J. Perry, A study of the macroparticle distribution in cathodic-arc-evaporated TiN films, Surf. Coat. Technol., 1991, 49: 253-257.
    [53] 杨建宏,周伟,杨型健,多弧离子镀TiN装饰膜表面颗粒研究,真空,1995(1):20-24.
    [54] G.Gautier and J. Machet, Study and elaboration of ternary chromium based compounds (Cr, O, N) deposited by vacuum arc evaporation, Surf. Coat. Teehnol., 1997, 94/95: 422-427.
    [55] X. Shi, D.I. Flynn, B.K. Beng, H.S. Tan, Filtered Cathodic Arc Source, US Patent 6 031 239, Feb. 29, 2000.
    [56] B.K. Tay, X. Shi, H.S. Yang, H.S. Tan, D. Chua and S.Y.Teo, The effect of deposition conditions on the properties of TiN thin films prepared by filtered cathodic vacuum-arc technique, Surf. Coat. Technol., 1999, 111: 229-233.
    [57]. Perry A.J., Adhension studies of ion-plating TiN on steel[J]. Thin Solid Films, 1981, 81: 357~366
    [58]. Rudigier H, Bergmann E and Vogel J, Properties of ion-plated TiN coatings grown at low temperatures [J]. Surf. Coat. Technol., 1988,36: 675~682
    [59]. Ljungcrantz H, Hultman L, Sundgren J-E and Karisson L. Ion induced stress generation in the metal vapor vaceum arc[J]. J. Appl. Phys., 1995, 78: 832-837
    [60] Un-Hak Hwang, Effects of substrate temperature on TiN films deposited by ion plating using spatial magnetic field, Thin solid films, 1995, 254: 16-22

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700