硅烷类自组装复合层的制备及摩擦学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在科学技术高速发展的时代,许多电子机械器件逐渐向微型化、多功能集成化、质量轻、智能化的方向发展,促使微电子机械系统(mircroelectromechanical system, MEMS)和纳电子机械系统(Nanoelectromechanical system, NEMS)的出现,并且受到各方的广泛关注。微电子机械系统尺寸微型化后,器件之间的间隙非常小,通常处于纳米级范围内,相对滑移表面之间的摩擦及磨损行为对微电子机械系统的稳定性和可靠性产生很大的影响。降低器件表面的粘附力,减小摩擦,改善抗磨损性能是确保微电子机械系统高速稳定运转的关键问题。材料表面改性被认为是解决这一关键问题的有效途径,其中近二三十年发展起来的分子自组装技术为解决这一难题提供了新的思路
     目前,由于单晶硅在MEMS中普遍应用,有机硅烷在单晶硅基片上的自组装膜的摩擦磨损性能研究得到广泛关注。研究结果表明:有机硅烷自组装膜能够有效降低单晶硅表面的粘附力,起到减摩降磨的效果,但其抗磨损性能不尽如人意。为此,我们将自润滑性能良好的无机纳米粒子组装到具有活性官能团的有机分子自组装膜表面,形成有机-无机复合自组装膜,以期提高自组装膜的抗磨损性能。
     采用湿化学还原法制备得到尺寸均一的Au溶胶,然后利用巯基(-SH)与Au之间能够形成共价键的作用,将Au纳米粒子组装到3-巯基丙基三乙氧基硅烷(MPTS)组装膜表面,形成MPTS/Au复合自组装膜。用X射线光电子能谱仪测定薄膜的化学成分;用原子力显微镜(AFM)观察薄膜表面形貌;用接触角测量仪测量薄膜的接触角;在摩擦试验机上考察薄膜的摩擦学性能,并分析了自组装膜摩擦学性能与表面形貌、表面性质之间的关系。
     水在MPTS薄膜上的接触角随着组装时间的增加先增加后减小然后再增加,表明MPTS分子在单晶硅基片上的自组装是逐层进行的,当MPTS完成一层组装时,其薄膜表面自由能较低,所表现出的接触角较大;薄膜的摩擦磨损性能与接触角成对应关系,接触角增大,摩擦因数减小,抗磨损能力提高。
     Au纳米粒子在MPTS薄膜上组装后,使得水在薄膜表面的接触角增大,自由能降低,表面粗糙度有所下降,摩擦系数减小,耐磨性能得到极大的改善。我们还从化学热力学角度分析了Au纳米粒子在MPTS薄膜表面组装的可能性,并根据接触角随组装时间的变化,从化学动力学角度分析了Au纳米粒子在MPTS薄膜表面自组装的可行性。
     此外,我们还试验将十八烷基三甲氧基硅烷(OTS)分别与3-胺基丙基三乙氧基硅烷(APTES)和3-巯基丙基三甲氧基硅烷(MPTS)组合,在羟基化单晶硅基片上制备得到分子碳链不同、端基不同的双组分有机自组装膜,比较了双组分有机硅烷自组装膜与单组分自组装膜的不同,考察了双组分有机硅烷自组装膜的摩擦学性能随载荷、滑移速度的变化情况。APTES、MPTS、OTS及OTS/APTES, OTS/MPTS都能有效地减小基片的摩擦。在法向载荷为20g,滑移速率为2mm/s的测试条件下,单晶硅基片的摩擦系数是0.76,APTES薄膜的摩擦系数是0.25,MPTS薄膜是0.2,OTS薄膜为0.06,OTS/APTES双组分薄膜为0.06,OTS/MPTS双组分膜为0.06。APTES与MPTS薄膜的耐磨损性能较差,很快被磨穿。OTS薄膜及其复合膜的减摩降磨效果都很好,试验周期内其摩擦系数都保持不变,尤其复合膜的摩擦系数波动很小,稳定性比OTS单组分膜更佳。
     该论文有图51幅,表8个,参考文献172篇
As the rapid development of science and technology, many electronic component are gradually microminiaturizing, multifunction integrating, intelligentizing and having ligter weight. These development precipitate emerge of micro/nanoelectro mechanical systems(MEMs/NEMs). As the dimension of the systems decrease sharply, the interfacial clearance between the components are always a few of nanometers. Therefore tribological limitations such as stiction, friction and wear are the major problems that limited the efficiency, power output, steady-state motion, and reliability of MEMS/NMES devices. Therefore controlling the surface force as adhesion and friction acting in devices on the molecular level is of critical importance to successful operation of MEMS systems. Surface modification is regarded the effective approach to reducing the adhesion and friction in MEMS device. Attempt to deposit the organosilane films on the hydroxylated silicon substrate have been employed to reduce the adhesion between the contacting surfaces.
     MEMS components are routinely made from Si, which is a poor triblologycial material. The tribological properties of organosilane SAMs deposited on monocrystalline silicon were studed entensively. The results indicated that the organsilane SAMs possess excellent lubrication and adhesive-resistant ability. However, the SAMs could be worn easily. In order to improve anti-wear ability of SAMs, some kinds of inorganic nanoparticle with fine self-lubricating ability were bonded to surface modificated with function group by chemical force.
     Gold colloids were prepared via chemical reduction of HAuCl4 using sodium citrate as reductant. The Au nanoparicles were covalently bonded to silicon wafers surface modified with sulfhydryl group through Au-S bonds and form MPTS/Au composite film.The chemical composite of films were characterized by X-ray photoelectron spectroscopy (XPS); the contact angles of ultra-pure water on the MPTS films were determined with JC2000PC contact angle meter. Atomic force microscope (AFM) has been employed to study the morphology of the prepared films. The tribological properties of as-prepared films were tested on tribometer in a ball-on-plate contact configuration. It was investigated that the influence of surface topography and surface property on the tribological behavior.
     Some properties of films deposited on silicon wafers changed after Au nanoparticles convalently bonded to MPTS films, for example, contact angle increased and surface Gibbs free energy decreased. The change of surface properties improved the tribological behavior of films. The contact angle of MPTS/Au dual-layers film is greater than that of MPTS film; the surface roughness of the dual-layers is lower than the MPTS, so the friction coefficient is lower than that of the MPTS films. Furthermore, the feasibility of Au colloids chemisorbed on the thiol modified silicon wafer surface were analysed from angle of thermodynamics. According to the variation of contact angle with assembly time, we studied the practicability of the reaction between the Au and sulfhydryl group.
     In addition, the dual-components films with different chain length and functional group were prepared by self-assembling technology and the tribological properties of as-prepared films were evaluated on a friction and wear tester. It was found that the friction coefficients of MPTS and APTES film were higher than that of the OTS/MPTS and OTS/APTES dial-component films. Moreover, the results indicated that APTES and MPTS films have poor anti-wear ability, whereas the OTS/MPTS and OTS/APTES have fine anti-wear ability and stable friction coefficient.
     In this paper, there are 52 figures, 8 tables and 172 reference articles.
引文
[1] K. Komvopoulos, Surface engineering and microtribology for microelectromechanical systems[J]. Wear, 1996, 200: 305-327.
    [2] S.M. Spearing, Materials issues in MEMS[J]. Acta Mater., 2000, 48: 179-196.
    [3]姜岩峰.微电子机械系统[M].北京:化学工业出版社,2006.
    [4]于东英.微型机械摩擦学[J].机械设计与研究.1995, (4): 45-46.
    [5]王慧,胡元中,郭炎.分子有序有机超薄膜及其在摩擦学中的应用[J].摩擦学进展, 1996, 1(1): 3-8.
    [6]兰惠清,张嗣伟.有序分子膜的摩擦学特性研究进展[J].石油大学学报(自然科学版),2002, 26(1): 114-119.
    [7] R. Arvind Singh , Jinseok Kim, Sung Wook Yang et al. Tribological properties of trichlorosilane-based one- and two-component self-assembled monolayers[J]. Wear, 2008,265: 42-48.
    [8] Junfei Ou, Jinqing Wang, Sheng Liu et al. Self-Assembly and Tribological Property of a Novel 3-Layer Organic Film on Silicon Wafer with Polydopamine Coating as the Interlayer[J]. J. Phys. Chem. C 2009, 113, 20429-20434.
    [9] Bai Tao, Cheng Xian-Hua. Investigation of the tribological behavior of 3-mercaptopropyl trimethoxysilane deposited on silicon[J]. Wear 2006, 261: 730-737.
    [10] Gu Qinlin, Cheng Xianhua.Tribological behaviors of self-assembled 3-aminopropyltrieth oxysilane films on silicon[J]. Current Applied Physics, 2008, 8: 583-588.
    [11] Kum-Hwan Cha, Dae-Eun Kim Investigation of the tribological behavior of octadecyltri- chlorosilane deposited on silicon[J]. Wear 2001, 251: 1169-1176
    [12] Yufei Mo, Min Zhu, Mingwu Bai. Preparation and nano/microtribological properties of perfluorododecanoic acid (PFDA)–3-aminopropyltriethoxysilane (APS) self-assembled dual-layer film deposited on silicon[J]. Colloids and Surfaces A, 2008, 322: 170-176.
    [13] Major, R. C., Kim, H. I.; Houston, J. E. et al. Tribological Properties of Alkoxyl Monolayers on Oxide Terminated Silicon[J]. Tribol. Lett. 2003, 14, 237-244
    [14] Ren, S. L.; Yang, S. R.; Zhao, Y. P. Micro- and Macro-Tribological Study on Self-ssembled Dual-Layer Film [J]. Langmuir 2003, 19, 2763-2767.
    [15] Ma, J. Q.; Liu, J. X.; Mo, Y. F.; Bai, M. W. Effect of multiply-alkylated cyclopentane (MAC) on durability and load-carrying capacity of self-assembled monolayers on silicon wafer[J]. Colloids Surf., A, 2007, 301, 481-488.
    [16] Ma, J. Q.; Pang, C. J.; Mo, Y. F.; Bai, M. W. Preparation and tribological properties ofmultiply-alkylated cyclopentane (MAC)-octadecyltrichlorosilane (OTS) double-layer film onsilicon[J]. Wear 2007, 263: 1000-1007.
    [17] S.Valizadeh, E.B.Svedberg, P.Leisner. Electrodeposition of compositionally modulated Au/Co alloy layers[J]. Journal of Applied Electrochemistry, 2002, 32: 97-104,
    [18]张乔根,万江文,徐式如.离子束技术制备Ag-Cu固体润滑膜的研究[J].真空科学与技术, 1995, 15(6): 424-428.
    [19]张萍,张波萍,焦力实等. Au/SiO2纳米多层薄膜的制备及其性质表征[J].物理学报, 2006, 55(7): 3730-3735.
    [20] Bigelow W.C., Pickett D.L., Zisman W.A. J.Collid. Sci., 1946, 1: 513.
    [21] A.Ulman. Surface absorption of monolayers[J]. Mrs.Bulletin, 1995, 6:46-51.
    [22]钱林茅,雒建斌,温诗铸.有序分子膜及超滑技术研究综述[J].润滑与密封, 1997, 5: 2-7.
    [23] Sagiv J. Organized monolayers by absorption formation and structure of oleophobic mixed monolayers on solid surfaces[J]. J.Am.Chem.Soc., 1980, 102: 92.
    [24] Bhushan Bharat. Springer Handbook of Nanotechnology[M]. Springer-Verlag Berlin Heidelberg: 2007, 1387.
    [25] Tao Y. T.. Structural comparision of self-assembled monolayers of n-alkanoic acids on the surfaces of silver, coper, and aluminum[J]. J.Am.Chem, 1993, 115:4350-4358.
    [26] E. Hoque, J. A. DeRose, P. Hoffmann et al. Alkylperfluorosilane Self-Assembled monolayers on Aluminum: A Comparison with Alkylphosphonate Self-Assembled Monolayers. J. Phys. Chem. C 2007, 111, 3956-3962.
    [27] V. Ganesh, Ravi R.Pandey, B.D.Malhotra. Electrochemical characterization of self-assembled monolayers (SAMs) of thiophenol and aminothiophenols on polycrystalline Au: Effects of potential cycling and mixed SAM formation[J]. Journal of Electroanalytical Chemistry, 2008, 619: 87-97.
    [28] R.K. Shervedani, A. Hatefi-Mehrjardi, M.K. Babadi. Comparative electrochemical study of self-assembled monolayers of 2-mercaptobenzoxazole, 2-mercaptobenzothiazole, and 2-mercapt-obenzimidazole formed on polycrystalline gold electrode[J]. Electrochimica Acta 2007, 52: 7051–7060.
    [29] Vladimir V.Tsukruk, Igor Luzinov, Daungrut Julthongpiput, Sticky Molecular Surfaces: Epoxysilane Self-Assembled Monolayers. Langmuir 1999, 15, 3029-3032.
    [30] Matthew J. Brukman, Gerard Oncins Marco, Timothy D. Dunbar et al. Nanotribological Properties of Alkanephosphonic Acid Self-Assembled Monolayers on Aluminum Oxide: Effects of Fluorination and Substrate Crystallinity[J]. Langmuir 2006, 22, 3988-3998.
    [31] E. Hoque, J. A. DeRose, G. Kulik et al. Alkylphosphonate Modified Aluminum Oxide Surfaces[J]. J. Phys. Chem. B 2006, 110, 10855-10861.
    [32] Ismael D?′ez-Pe′rez, Mo′nica Luna, Fernando Tehera′n et al. Interaction of Water with Self -Assembled Monolayers of Alkylsilanes on Mica[J]. Langmuir 2004, 20, 1284-1290.
    [33] Si-Li Ren, Sheng-Rong Yang, Jin-Qing Wang et al. Preparation and Tribological Studies of Stearic Acid Self-Assembled Monolayers on Polymer-Coated Silicon Surface[J]. Chem. Mater. 2004, 16, 428-434.
    [34] Junfei Ou,,Jinqing Wang, Sheng Liu et al. Microtribological and electrochemical corrosion behaviors of polydopamine coating on APTS-SAM modified Si substrate[J]. Applied surface science. 2009, 256(3): 894-899.
    [35] Christian D. Lorenz, Michael Chandross, Gary S. Grest et al. Tribological Properties of Alkylsilane Self-Assembled Monolayers[J]. Langmuir 2005, 21, 11744-11748.
    [36] Erin E. Flater, W. Robert Ashurst,and Robert W. Carpick. Nanotribology of Octadecyltrichl- orosilane Monolayers and Silicon: Self-Mated versus Unmated Interfaces and Local Packing Density Effects[J]. Langmuir, 2007, 23, 9242-9252.
    [37] Scott Reese , M. A.Fox. Self-Assembled Monolayers on Gold of Thiols Incorporating Conjugated Terminal Groups. J. Phys. Chem. B 1998, 102, 9820-9824
    [38] Z. Suo, W. Lu. Forces that drive nanoscale self-assembly on solid surfaces[J]. Journal of nanoparticle research, 2000, 2: 333-344.
    [39]王金清,杨生荣,王博,等.单晶硅表面有机硅烷/Ag2O纳米微粒复合组装膜的制备和表征[J].化学物理学报,2003, 16(1): 41-44.
    [40] Wade R.Thompson, Jeanne E.Pemberton. Characterization of ocatadecylsiane and stearic acid layers on Al2O3 surfaces by raman spectroscopy[J]. Langmuir, 1995, 11:1720-1725.
    [41]张会臣,李崇,李亚斌,等.氨基硅烷自组装分子膜的制备与摩擦特性[J].大连海事大学学报, 2003,29(2):60-63.
    [42] Gu Qinlin, Cheng Xianhua. Tribological behaviors of lanthanum-based phosphonate 3-amino -propyl triethoxysilane self-assembled films[J]. Applied Surface Science 2007, 253: 6800–6806.
    [43] S. R. Wasserman, Y. T. Tao, G.M. Whitesides. Structure and reactivity of alkylsiloxane monolayers formed by reaction of alkylchlorosilanes on silicon substrates[J]. Langmuir, 1989, 5: 1074–1089.
    [44] Oleg A., Mazyar G., Kane Jenningsn et al. Frictional Dynamics of Alkylsilane Monolayers on SiO2:Effect of 1-n-butyl-3-methylimidazolium nitrate as a Lubricant[J]. Langmuir 2009, 25(9): 5103–5110
    [45]谷国团,张治军,党鸿辛.二甲基-γ-全氟辛酰氧丙基硅烷自组装膜的制备及其摩擦学性能研究. 2002, 32(2):170-174.
    [46] B. Bhushan. Handbook of nanotechnology[M]. Springer 2007.
    [47] J. Christopher Love, Lara A. Estroff, Jennah K. Kriebel. Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology. Chem. Rev. 2005, 105, 1103-1169.
    [48] Paul E.Laibinis,George M.Whitesides,David L.Allara,et al.Comparision of the structureand wetting properties of self-assembled monolayers of n-alkanethios on the coinage metal surfaces. Cu, Ag, Au[J]. J.Am.Chem. Soc., 1991, 113: 7152-7167.
    [49] Yu-tai Tao, Kannaiyan Pandian, Wen-Chung Lee. Hydrogen sulfide-induced deposition reorganization of self-assmbled monolayers of alkanethiol and its derivatives[J]. J.AM.Chem, Soc. 2000, 122: 7072-7079.
    [50] Yu-Tai tao. Structural comparision of self-assembled monolayers of n-alkanoic acids on the surfaces of silver, coper,and aluminum[J]. J.Am.Chem, 1993, 115: 4350-4358.
    [51] Seunghwan Lee, Astrid Puck, Michael Graupe et al. Structure, wettability, and frictional properties of phenyl-terminated self-assembled monolayers on gold[J]. Langmuir. 2001, 17: 7364-7370.
    [52] Scott Reese, Marye Anne Fox. Self-Assembled monolayers on gold of thiols incorporating conjugated terminal groups [J]. J. Phys. Chem. B, 1998, 102: 9820-9824.
    [53] Buriak J.M. Organometallic chemistry on Silicon and Germanium Surfaces[J]. Chem.Rev., 2002, 102: 1272-1308.
    [54] Xia Y.N., Whitesides G.M. Soft lithography[M]. Angew Chem.Int.Ed. 1998, 37(5): 550-575.
    [55] Qing Zhang, Lynden A. Archer. Interfacial Friction of Surfaces Grafted with One- and Two-Component Self-Assembled Monolayers[J]. Langmuir 2005, 21, 5405-5413
    [56] Lu Zuo, Ye Xiong, Xincheng Xie et al. Enhanced Lubricity in Mixed Alkanethiol Mono- layers[J]. J. Phys. Chem. B 2005, 109, 22971-22975
    [57]刘莎,季世军,闰锦等. OTS/MPS复合自组装分子膜的摩擦特性分析.大连海事大学学报,2003,29(4):76-78.
    [58] J.Q. Ma, C.J. Pang, Y.F. Mo et al. Preparation and tribological properties of ultiply-alkylated cyclopentane(MAC)–octadecyltrichlorosilane (OTS) double-layer film on silicon. Wear 2007, 263: 1000–1007.
    [59] R. Arvind Singh a, Jinseok Kima, Sung Wook Yang et al. Tribological properties of trichlorosilane-based one- and two-component self-assembled monolayers[J]. Wear 2008, 265: 42–48.
    [60] K. Mougin and H. Haidara. Nanoscale Friction of Self-assembled Monolayers. NanoScience and Technology, 2007, Part 7, 619-645.
    [61] Junfei Ou,Jinqing Wang, Sheng Liu et al. Self-Assembly and Tribological Property of a Novel 3-Layer Organic Film on Silicon Wafer with Polydopamine Coating as the Interlayer. J. Phys. Chem. C 2009, 113, 20429–20434.
    [61]张俊彦,杨生荣,薛群基.硅烷自组装膜及硅烷/二氧化钛复合膜的XPS表征与摩擦性能研究.摩擦学学报, 2000, 20(4): 241-243.
    [62]王金清,刘晓红,许世红.硅烷化单晶硅表面自组装ZrO2薄膜及其摩擦学性能研究.机械工程材料,2004,28(9): 41-44.
    [63] Sili Ren, Shengrong Yang, Yapu Zhao. Preparation and Tribological Studies of C60 Thin Film Chemisorbed on a Functional Polymer Surface[J]. Langmuir 2004, 20, 3601-3605.
    [64]黄兰,顾倩颐,何元康等.含C60的聚电解质自组装膜微摩擦性能的研究[J].高等学校化学学报, 2002, 23(6): 1193-1197.
    [65] Yufei Mo, Mingwu Bai. Preparation and Adhesion of a Dual-Component Self-Assem-bled Dual-Layer Film on Silicon by a Dip-Coating Nanoparticles Method[J]. J. Phys. Chem. C 2008, 112, 11257–11264.
    [66] C. Grossiord, J.M. Martin, Th. Le Mogne et al. UHV friction of tribofilms derived from metal dithiophosphates[J]. Tribology Letters 1999, 6: 171–179.
    [67] Oleg A. Mazyar, G. Kane Jennings, and Clare McCabe. Frictional Dynamics of Alkylsilane Monolayers on SiO2: Effect of 1-n-Butyl-3-methylimidazolium Nitrate as a Lubricant[J]. Langmuir, 2009, 25(9): 5103–5110
    [68] Decher G., Hong J.D.Sehmitt. Thin Solid Films, 1992, 210/211: 83l.
    [69] Vladimir Troitsky, Tatiana Berzina, Dmitry Shchukin et al. Simple method of hydrophilic /hydrophobic patterning of solid surfaces and its application to self-assembling of nanoengineered polymeric capsules[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2004, 245: 163-168.
    [70] ElPzbieta Malinowska_, Lidia Gawart, Pawe? Parzuchowski. Novel approach of immobiliza-tion of calixarene type ionophore in‘self-plasticized’polymeric membrane[J]. Analytica Chimica Acta 2000, 421: 93-101.
    [71] Tsukruk, V. V. AdV. Mater. 2001, 13, 95-108.
    [72] Maeda, N.; Chen, N. H.; Tirrell, M.; Israelachvili, J. N. Science, 2002, 19, 379-382.
    [73] Tadmor, R., Janik, J., Klein, J. et al. J. Phys. ReV. Lett. 2003, 91: 115503-115506.
    [74] Yan, X.; Perry, S. S.; Spencer, N. D.; et al. Langmuir 2004, 20, 423-428.
    [75] Ohsedo, Y.; Takashina, R.; Gong, J. P.; Osada, Y. Langmuir, 2004, 20: 6549–6555.
    [76] Bao, G.; Li, S. F. Y. Langmuir 1998, 14, 1263–1271.
    [77] Tomlinson, G. A., A molecular theory of friction. Philos. Mag. 1929, 7(46): 905- 939.
    [78] Hyun-Joon Kim, Dae-Eun Kim. Nano-scale Friction : A Review[J]. INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING, 2009, 10(2): 141-151.
    [79] Kontorova, T., Frenkel, Y. I.. On the theory of the plastic deformation and twinning. Zh. Eksp. Teor. Fiz., 1938, (8): 89-95.
    [80] Weiss M., Elmer F.-J. Dry friction in the Frenkel-Kontorova-Tomlinson model: Static properties. Phys. Rev. B, 1996, 53(11): 7539-7549.
    [81] Gyalog, T., Thomas, H. Friction between atomically flat surfaces. Europhys. Lett., 1997, 37(3): 195-200.
    [82] Bowden F.P., Tabor D. The friction and Lubrication of Solids. Oxford : Clarendon Press, 2001: 78-89.
    [83] Mate, C. M., McClelland, G. M., Erlandsson, R. et al.Atomic-scale friction of a tungsten tip on a graphite surface[J]. Phys. Rev. Lett., 1987, 59(17): 1942-1945.
    [84] Akamine, S., Barrett, R. C., Quate, C. F. Improved atomic force microscope images using microcantilevers with sharp tips. Appl. Phys. Lett., 1990, 57(3): 316-318.
    [85] Fujisawa, S., Sugawara, Y., Ito, S. et al. The two-dimensional stick-slip phenomenon with atomic resolution. Nanotechnology, 1993, 4(3): 138-142.
    [86] Ruan, J.-A. Bhushan, B. Frictional behavior of highlyoriented pyrolytic graphite. J. Appl. Phys., 1994, 76(12): 8117-8120.
    [87] Bhushan, B. Kulkarni, A.V. Effect of normal load on microscale friction measurements. Thin Solid Films, 1996, 278(1): 49-56.
    [88] Tambe, N. S. Bhushan, B. Scale dependence ofmicro/nano-friction and adhesion of MEMS/NEMS materials, coatings and lubricants[J]. Nanotechnology, 2004, 15(11): 1561-1570.
    [89] Tambe, N. S., Bhushan, B. Friction model for the velocity dependence of nanoscale friction[J]. Nanotechnology, 2005, 16(10): 2309-2324.
    [90] Bhushan, B., Sundararajan, S. Micro/nanoscale friction and wear mechanisms of thin films using atomic force and friction force microscopy[J]. Acta Mater., 1998, 46(11):3793-3804.
    [91] Nair, R. P. Zou, M. Surface nano-texturing by aluminuminduced crystalliuzation of amorphous silicon[J]. Surf. Coat. Technol., 2008, 203(5-7): 675-679.
    [92] Sung, I.-H., Lee, H.-S. Kim, D.E. Effect of surface topography on the frictional behavior at the micro/nano-scale[J]. Wear, 2003, 254(10): 1019-1031,
    [93] R.Arvind Singh, Eui-Sung Yoon, Hung-Gu Han et al. Friction mechanisms of silicon wafer and silicon wafer coated with diamond-like carbon film and two monolayers. J. Mech. Scien. Techn.2006, 20(6): 738-747.
    [94] D. Dominguez, R.L. Mowery, N.H. Turner, Tribol. Trans., 1994, 37(1): 59-63.
    [95] Xiao XD, Hu J, Chayuch D.H, et al. Chainlength dependence of the frictional properties of alkylsilane molecules self-assembled on mica studied by atomic force microscopy. Langmuir, 1996, 12: 235–240.
    [96] Salmeron M. Generation of defects in model lubricant monolayers and their contribution to energy dissipation in friction. Tribology Letters, 2001, 10: 69–79.
    [97] H.J. Eyring, J. Chem. Phys., 1935, 3: 107.
    [98] Frisbie CD, Lawrence FR, Noy A et al. Functional group imaging by chemical force microscopy. Science 1994, 265: 2071–2074.
    [99] Kim HI, Graupe M, Oloba O, et al. Molecularly specific studies of the frictional properties of monolayerfilms: A systematic comparison of CF3-, (CH3)2CH-, and CH3-terminated films. Langmuir, 1999, 15: 3179-3185.
    [100] F.Tian, X. Xiao,M.M. Moy et al. Langmuir, 1999.15,224-232.
    [101] B. Bhushan, H. Liu. Phys. Rev. B, 2001, 63, 24512.
    [102] Om P. Khatri, Sanjay K. Biswas. Load Induced Microstructure Evolution and Friction in an Organic Monolayer Self-assembled on a Silicon Substrate. Tribol. Lett. 2008, 32: 179–188.
    [103]张会臣孙昌国严立.官能团对自组装分子膜摩擦特性的影响材料研究.学报, 2004, 18(3): 301-307.
    [104]石淼森.固体润滑材料[M].北京:化学工业出版社,2000.
    [105]王海斗,徐滨士,刘家浚.固体润滑膜层技术与应用[M].北京:国防工业出版社,2009.
    [106] http://www.liaohe.net.cn/lifefashion/show1.asp?id=7950
    [107]高晓明,孙嘉奕,胡明等.低温沉积Cu膜的晶体结构及摩擦磨损性能的初步研究[J].摩擦学报,2007,27(4): 308-312.
    [108]姜德生,余海湖,周灵德.自组装金纳米粒子薄膜AFM研究.电子显微学报, 2004, 23(2): 177-182.
    [109] Yang Y. Ruths M. Langmuir, 2009, 25(20): 12151-12159.
    [110] Khatri, O.P., Colin, D.B. and Sanjay, K.B. (2005) J. Phys. Chem. B, 109: 23405-23414.
    [111] Houston, J.E., Kim H.I. Acc. Chem. Res. 2002, 35: 547-553.
    [112] Burton, Z., Bhushan, B. Nano Lett., 2005, 5(8): 1607-1613.
    [113] Khatri, O.P., Biswas S.K. () J. Phys. Chem. C, 2007, 111: 2696-2701.
    [114] Schrader, M.E., Loeb, G.I. Modern Approachesto Wettability; New York: Plenum, 1992.
    [115] Hu, Y.Z. Ma, T.B. Comprehensive Nanoscience and Technology[M]. 2011, 3: 383-418.
    [116] Sehkevich, J.J., Mitchell, C.J., Yang G.R. Surface chemistry of mercaptan and growth of Pydridine short-chain alkoxysilane molecular layers[J]. Langmuir; 2002, 18: 1587-1594.
    [117] Lisa Henke, Noemi Nagy, Ulrich J. Krull. An AFM determination of the effects on surface roughness caused by cleaning of fused silica and glass substrates in the process of optical biosensor preparation. Biosensors and Bioelectronics[J]. 2002, 17: 547-555.
    [118] C. Fan, G.P. Lopinski. STM and HREELS investigation of gas phase silanization on hydroxylated Si(100)[J]. Surface Science, 2010, 604: 996-1001.
    [119] Kenneth E. Collins ,Vanessa R. de Camargo, Alessandra. DimirasPhysisorbed water layer formation on fully hydroxylated mesoporous silicas[J]. Journal of Colloid and Interface Science, 2005, 291: 353-360.
    [120] Sili Ren, Shengrong Yang, Yapu Zhao. Micro- and Macro-Tribological Study on a Self- Assembled Dual-Layer Film[J]. Langmuir, 2003, 19, 2763-2767.
    [121] Juhhongpiput D, Ahn Hyo-Sok, Kim Doo, et a1. Tribological behavior of grafted polymer gel nanocoatings[J]. Tribology Letter, 2002, 13: 35-40.
    [122]张丙伍,苏中兴,张俊彦.硅表面自组装双层膜制备及其摩擦磨损性能研究.摩擦学报,2007,27(3):199-203.
    [123]彭倚天,胡元中,王慧.碳纳米管在APTES自组装膜表面沉积的研究.微细加工技术, 2006, 3: 54-57.
    [124]王烨,凤泉,谷胡娇.静电组装金纳米粒子制备局域表面等离子体共振传感膜.高等学校化学学报, 2008, 8: 1539-1543.
    [125]赵凯,陈星,常启飞. DNA-金纳米粒子网状结构的合成及在癌胚抗原检测中的初步应用.生物学杂志, 2009, 26(2): 1-3.
    [126] Wang XianXiang, Huang Shuo, Shan Zhi et al. Preparation of Fe3O4@Au nano- composites by self-assembly technique for immobilization of glucose oxidase.中国化学通报:英文版,2009,7:1176-1181.
    [127] FrensG. Nat.Phys.Sci.[J]. 1973,241:20.
    [128] T K San, A Pal, T Pal. Size regime dependent catalysis by gold nanoparticles for the reduction of eosin[J]. J Phys Chem B,2001,105(38): 9266-9272.
    [129]李中春,周全法. SDS/Vc/H2O微乳液中纳米金的合成[J].稀有金属材料科学与工程,2007,36(6):1055-1057.
    [130] J. Turkevich, G. Gartion, P. C. Stevenson. J.Colloid Sci,1954,9(1):26.
    [131] A I Kozlov,A P Kozlova,H C Liu,et al.A new approach to active supported Au cataly- sts[J].Appl Catal A,1999,182(1):9-28.
    [132] C Burda,T Green,C Landers,et al.Optical spectroscopy of nanophase material[M]. New York:Wiley,2000.
    [133] Wang Chuan yi,Liu Chun yan et al.Chinese Science Bulletin,1998, 43(3): 268-276. Lee, S., Heeb, R., Venkataraman, N.V., Spencer, N.D. (2007) Trib. Lett.; 28:229–239.
    [134]王俊,曾百肇,周性尧.自组装膜技术在电化学分析中的应用[J].分析科学学报, 2000, 16(3): 253-258.
    [135] Evans S D,Urankar E,Ulman A et al.Self-assembled monolayers of alkanethiols contai- ning a polar aromatic group:effects of the dipole position on molecular packing,orient- ation,and surface wetting properties[J].J Am Chem Soc,1991,113:4121.
    [136] Nuzzo R G,Dubois L H,Allara D L.Fundamental studies of microscopic wetting on org- anic surfaces:formation and structural characterization of a self-consistent series of poly- functional organic monolayers[J].J Am Chem Soc,1990,112:558.
    [137] Whitesides G M,Laibinis P E.Wet chemical approaches to the characterization of organ- ic surfaces:self-assembled monolayers,wetting,and the physical-organic chemistry of the solid-liquid interface[J].Langmuir,1990,6:87.
    [138] Ishibashi M,Itoh M,Nishihara H et al.Permeability of alkanethiol self-assembled monol- ayers adsorbed on copper electrodes to molecular oxygen dissolved in 0.5M/L Na2SO4 solution[J].Electrochim Acta,1996,41:241.
    [139] Bliznyuk V M,Everson M P,Tsukruk V V.Nanotribological properties of organic bound- ary lubricants:Langmuir films versus self-assembled monolayers.Journal of Tribology, 1998, 120:489-495.
    [140]傅献彩,沈文霞等.物理化学第五版.北京:高等教育出版社,2006.
    [141]何会新,陈海峰,张华等.利用化学力显微技术直接测定化学键的强度.电子显微学报,1999,18(1):65-68
    [142] Lu X C,Shi B,Lawrence K Y et al. Investigation on microtribological behavior of thin films using friction force microscopy[J]. Surface and Coatings Technology, 2002, 128-129:341-345.
    [143] Chen Y X, Liu W M, Ye C F et al. Preparation and characterization of self-assembled alkanephosphate monolayers on glass substrate coated with nano-TiO2 thin film[J].Mater-ials Research Bulletin, 2001, 36: 2605–2612.
    [144] Giuseppe C,Angela D B,Rosario S C.The effect of self-assembled nanometric spacers on surface enhanced Raman spectra of terthiophene ultrathin films[J]. Materials Science and Engineering C, 2001, 15: 37–39.
    [145] Li D, Ding W, Wang X et al. Modifying substrate surfaces with self-assembled polye-lectrolyte layers to promote the formation of uniform[J]. Applied Surface Science, 2001, 183:259-263.
    [146] Freeman R ,Grabar K,Allison K et al.Science[J],1995,267:1629.
    [147] Grabar K,Freeman R,Hommer M et al.Anal.Chem[J].,1995,67:735.
    [148] Grabar K,Smith P ,Musick M et al.J.A m.Chem.Soc.[J],1996,118:1148.
    [149] Grabar K,Allison K,Baker B et al.Langmuir,1996,12:2353.
    [150] Chumanov G,Sokolov K,Gregory B et al.J.Phys .Chem.,1995,99:9466.
    [151] Doron A,Katz E,Willner I.Langmuir,1995,11:1313.
    [152] Lavrich D J,Wetterer S M,Bernasek S L.Physisorption and Chemisorption of Alkanet- hiols and Alkyl Sulfides on Au(111)[J].The Journal of Physical Chemistry B.1998,102: 3456-3465.
    [153] Wetterer S M,Lavrich D J,Cummings T,et al. Energetics and Kinetics of the Physisorpt- ion of Hydrocarbons on Au(111) [J].The Journal of Physical Chemistry B.1998,102: 9266.
    [154] Schessler H M,Karpovich D S,Blanchard G J.Quantitationg the Balance between Enth- alpic and Entropic Forces in Alkanethiol/Au(111)Monolayer Self-Assembly[J].Journal of the American Chemical Society,1996,118:9645-9651.
    [155] Schreiber F.Structure and growth of self-assembling monolayers.Progress in Surface [J]. Science ,2000,65:151-256.
    [156] Grange J D Le,Markham J L.Effects of surface hydration on the deposition of silane monolayers on silica[J].Langmuir,1993,9:1749-1753.
    [157] C.D. Bain, J.Evall, G.M.Whitesides, Structure of monolayers formed by coadsorption of two n-alkanethiols of different chain lengths on gold and tis relation to wetting[J]. J. Phys.Chem. 1992,96: 5097-5105.
    [158] Om P. Khatri, Colin D. Bain, Sanjay K. Biswas. Effects of Chain Length and Heat treatment on the Nanotribology of Alkylsilane Monolayers Self-Assembled on a Rough Aluminum Surface[J]. J. Phys. Chem. B 2005, 109, 23405-23414.
    [159] C.H.Mastrangelo. Adhesion-related failure mechanisms in micromechanical devices[J]. Tribol. Lett. 1997, 3: 223-238.
    [160] R.Maboudian, R.T. Howe, Critical review: adhesion in surface mictomechanical structure[J], J.Vac.Sci. Technol.B, 1997, 15: 1-20.
    [161] E.S. Yoon, R.A. Singh, H.J.Oh, H. Kong. The effect of contact are on nano/micro-scale friction[J], Wear, 2005, 259: 1424-1431.
    [162] Om P. Khatri, Sanjay K. Biswas. Load Induced Microstructure Evolution and Friction in an Organic Monolayer Self-assembled on a Silicon Substrate[J]. Tribol Lett. 2008 32:179–188.
    [163] K. Mougin, H. Haidara. Nanoscale Friction of Self-assembled Monolayers[J]. NanoScience and Technology, 2007, 7: 619-645
    [164] E. Riedo, F. L′evy, H. Brune, Phys. Rev. Lett., 2002, 88, 185505.
    [165] B. Bushan, J.N. Israelachvili, U. Landman, Nature, 1995, 374, 607.
    [166] M. Schoen, C. Rhykerd, D. Diestler, J. Cushamn, Science, 1989, 245, 1223
    [167] Igor Luzinov, Daungrut Julthongpiput, Andrea Liebmann-Vinson et al. Epoxy-Terminated Self-Assembled Monolayers: Molecular Glues for Polymer Layers[J]. Langmuir, 2000, 16: 504-516.
    [168] B. Bhushan, T. Kasai, G. Kulik, L. Barbieri, P. Hoffmann: AFM study of perfluorosilane and alkylsilane self-assembled monolayers for anti-stiction in MEMS/NEMS[J]. Ultramicroscopy, 2005, 105: 176–188.
    [169] H. Schonherr, G. J. Vancso. Tribological propertiesof self-assembled monolayers of fluorocarbon andhydrocarbon thiols and disulfides on Au(111) studied by scanning force microscopy[J]. Mater. Sci. Eng.C, 1999, 8-9: 243–249.
    [170] M. Fujihira, Y. Tani, M. Furugori, et al. Chemical force microscopy of self-assembled monolayers on sputtered gold films patterned by phase separation, Ultramicroscopy, 2001,86: 63–73.
    [171] B. Bhushan: Adhesion and stiction: Mechanisms, measurement techniques, J. Vacuum Sci. Technol.B, 2003, 21: 2262–2296.
    [172] N. S. Tambe, B. Bhushan: A new atomic force microscopy based technique for studying nanoscale friction at high sliding velocities, J. Phys. D, 2005, 38: 764–773.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700