等离子表面改性技术在刀具材料中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硬质薄膜已广泛使用于机械加工业、半导体制备与汽车零件产业。纳米复合多层硬质镀膜比起传统硬质镀膜由于具备良好的耐磨与化学稳定性,成为近年来学术研究与工业应用之热门领域。
     等离子表面涂层技术在提升涂层刀具寿命和效率方面,具有非常好的应用前景。下面介绍离了注入技术。离子注入(ion implantation)是以适当的离子能量与剂量注入靶材,以便对原材料先天不足的电性、机械、物理与化学等进行改性。因此,离子注入技术作为一种重要的材料表面改性手段,在科学技术和工业上得到广泛的应用。这项技术已被用于沉积DLC薄膜,在系统中被用于产生等离子体和薄膜沉积的气体可以是各种碳氢化合物气体。碳氢化合物的离子团在撞击工件表面的同时,会沉积含有一定量氢的类金刚石薄膜。
     本研究使用Ar、甲烷的混合气体作为工作气体,利用等离了体离子注入沉积设备在刀具材料上制备纳米多层薄膜。除克服在不锈钢基底上难以直接形成碳膜的困难外,还对薄膜的键结构、表面形貌、硬度、附着强度等性能展开研究。并通过调节偏压、Ar及甲烷气体量比率、脉冲宽度与频率,研究工艺参数对薄膜性能的影响,对等离子体注入与沉积制备纳米多层膜进行讨论。对于改性前后体系的化学组成、微观结构以及力学性能的改善进行了系统的研究,并对强化机制进行了相应的探讨。
     阴极电弧沉积技术具有高离化率、沉积速度快、可使用合金靶材等优点,近年来国内在此技术上已升发出相关系统硬件与商业化镀膜技术。本论文将介绍新开发的阴极电弧沉积系统,制备具有纳米多层结构的氮化铝钛(TiAlN/CrN)薄膜,探讨其微结构、机械性质与工业应用。并讨论了外加磁场和金属网罩产生的均匀内场对这一工艺的改进情况。
     接着,利用两种方法沉积碳薄膜:(1)过滤阴极电弧沉积;(2)射频等离子体沉积,得到了不同sp3/sp2比的单层与多层结构碳膜。在受控条件下,总应力维持在可接受的水平,同时可以通过形成一个控制层阻止薄膜的分层。并且使用拉曼光谱、扫描电镜、原子力显微镜对这些结构进行了研究。
Hard films have been widely used in mechanical industry, semiconductor manufacturing and automobile industry. In recent years, nano-multilayer hard coating films are better than traditional hard coating films on wear resistance and stability and become the hot points of academic research and industrial applications.
     Plasma surface coating technology has a good potential application in improving coating tools life and efficiency. Ion implantation is due to the ion energy and dose injected into the target, in order to modify the electrical, mechanical, physical and chemical characters of raw materials. This technique has been used for the deposition of Diamond-like carbon (DLC) film. We used plasma ion implantation and deposition equipments on cutting tools to make nanometer multilayer film, choosing Ar and methane gas as working gases. By adjusting the bias, Ar and methane gas volume ratio, pulse width and frequency, processing parameters on performance of films, plasma immersion ion implantation and deposition preparation of nanometer multilayer films are discussed. The film surface morphology, hardness, bonding, adhesive strength and performance are studied also. For the modified system of chemical composition, microstructure and mechanical properties of improvement were investigated, and the strengthening mechanism was discussed.
     Cathodic arc deposition technique has high ionization rate, fast deposition speed, can use the alloy target material advantages, in recent years the technology has developed the system hardware and the commercial coating technology. This paper introduces the new development of cathodic arc deposition system, preparation of nanometer multilayer structures of titanium aluminium nitride (TiAlN) film on the microstructure, mechanical properties and industrial application. The magnetic field and metal cages were used to improve this process.
     Then, two methods of making carbon films:(1) filtered cathodic arc deposition;(2) the RF plasma deposition, arc obtained for different SP3/SP2ratio of single layer and multilayer structure of carbon films. Under controlled conditions, the total stress is maintained at an acceptable level. A control layer can stop the film breaks. Raman spectroscopy, scanning electron microscopy and atomic force microscopy are employed on these structures.
引文
[1]Veprek S., Veprek-Heijman M.G.J., Karvankova P., Prochazka J., "Different approaches to superhard coatings and nanocomposites", Thin Solid Films 476, 1-29(2005).
    [2]Hauert R., Patscheider J., "From alloying to nanocomposites - Improved performance of hard coatings", Adv. Eng. Mater.2,247-259 (2000).
    [3]Hall E.O., "The deformation and ageing of mild steel:III discussion of results", Proc. Phys. Soc. London Sect. B 64,747-753 (1951).
    [4]Petch N.J., "The cleavage strength of polycrystals", J. Iron Steel Inst.174,25-28 (1953).
    [5]Musil J., "Hard and superhard nanocomposite coatings", Surf. Coat. Technol. 125,322-330(2000).
    [6]Dimigen H., Hubsch H., Memming R., "Tribological and electrical properties of metal-containing hydrogenated carbon films", Appl. Phys. Lett.50,1056-1058 (1987)
    [7]Klages C.P., Memming R., "Microstructure and physical properties of metal-containing hydrogenated carbon films". Mat. Sci. Forum 52-53,609-644 (1989).
    [8]Hovsepian, P.Eh., Lewis D.S., Munz W.-D., "Recent progress in large scale manufacturing of multilayer/superlattice hard coatings", Surf. Coat. Technol. 133-134,166-175(2000).
    [9]Schiotz J., Tolla F.D.D., Jacobsen K.W., "Softening of nanocrystalline metals at very small grain sizes", Nature 391,561-563 (1998).
    [10]Bewilogua K., Wittorf R., Thomsen H., Weber M., "DLC based coatings prepared by reactive d.c. magnetron sputtering", Thin Solid Films 447-448, 142-147(2004).
    [11]Lampe Th., Eisenberg S., Rodriguez Cabeo E., "Plasma surface engineering in the automotive industry-trends and future prospectives", Surf. Coat. Technol. 174-175,1-7(2003).
    [12]Munz W.-D., Lewis D.B., Hovsepian P. Eh., Schonjahn C., Ehiasarian A., Smith I.J., "Industrial scale manufactured superlattice hard PVD coatings", Surf. Eng. 17,15-27(2001).
    [13]Schiffmann K.I., Fryda M., Goerigk G., Lauer R., Hinze P., Bulack A.,,,Sizes and distances of metal clusters in Au-, Pt-, W-and Fe-containing diamond-like carbon hard coatings:a comparative study by small angle X-ray scattering, wide angle X-ray diffraction, transmission electron microscopy and scanning tunnelling microscopy". Thin Solid Films 347,60-71 (1999).
    [14]Precht W., Czyzniewski A., "Deposition and some properties of carbide/amorphous carbon nanocomposites for tribological application", Surf. Coat. Technol.174-175,979-983 (2003).
    [15]Langmuir I., Jones H.A., "Collisions between electrons and gas molecules", Phys. Rev.31,357-404(1928).
    [16]Liebermann M.A., Lichtenberg A.J., Principles of plasma discharges and materials processing (Wiley, New Jersey,2005).
    [17]Roth J.R., Industrial Plasma Engineering. Volume 1:Principles (IOP, Bristol, 1995).
    [18]Ohring M., The materials science of thin films (Academic Press, San Diego, 2002).
    [19]Auders A., Handbook of plasma immersion ion implantation and deposition (John Wiley & Sons, New York,2000).
    [20]Rossnagel S.M., "Thin film deposition with physical vapor deposition and related technologies", J. Vac. Sci. Technol. A 21, S74-S87 (2003).
    [21]Berg S., Nyberg T., "Fundamental understanding and modelling of reactive sputtering processes", Thin Solid Films 476,215-230 (2005).
    [22]Ijima S., "Helical microtubules of graphitic carbon", Nature 354,56-57 (1991).
    [23]Ekimov E.A., Sidorov V.A., Bauer E.D., Melnik N.N., Curro, N.J., Thompson J.D., Stishov S.M., "Superconductivity in diamond", Nature 428,542-545 (2004).
    [24]McKenzie D.R., "Tetrahedral bonding in amorphous carbon", Rep. Prog. Phys. 59,611-1664 (1996).
    [25]Ferrari A.C., Robertson J., "Interpretation of Raman spectra of disordered and amorphous carbon", Phys. Rev. B 61,14095-14107 (2000).
    [26]Robertson J., "Diamond-like amorphous carbon", Mater. Sci. Eng. R 37, 129-281 (2002).
    [27]Robertson J., "Amorphous carbon", Adv. Phys.35,317-374 (1986).
    [28]Zhang P., Tay B.K., Sun C.Q., Lau S.P., "Microstructure and mechanical properties of nanocomposite amorphous carbon films", J. Vac. Sci. Technol. A 20,1390-1394(2002).
    [29]Chen L.Y., Hong F.C.N., "Diamond-like carbon nanocomposite films", Appl. Phys. Lett.82,3526-3528 (2003).
    [30]Ager J.W., Anders S., Brown I.G., Nastasi M., Walter K.C., "Multilayer hard carbon films with low wear rates", Surf. Coat. Technol.91,91-94 (1997).
    [31]Logothetidis S., Charitidis C., Gioti M., Panayiotatos Y., Andrea M, Kautek W., "Comprehensive study on the properties of multilayered amorphous carbon films", Diamond Relat. Mater.9,756-760 (2000).
    [32]Bertran E., Corbella C., Pinyol A., Vives M., Andujar J.L., "Comparative study of metal/amorphous-carbon multilayer structures produced by magnetron sputtering", Diamond Relat. Mater.12,1008-1012 (2003).
    [33]Pino F.J., Bertran E., Polo M.C., Andujar J.L., "Microstructural and mechanical properties of nanometric-multilayered a-CN/a-C/.../a-CN coatings deposited by rf-magnetron sputtering and nitrogen ion-beam bombardment", Diamond Relat. Mater.10,952-955(2001).
    [34]Zhang S., Bui X.L., Fu Y., Butler D.L., Du H., "Bias-graded deposition of diamond-like carbon for tribological applications", Diamond Relat. Mater.13, 867-871 (2004).
    [35]Voevodin A.A., Phelps A.W., Zabinski J.S., Donley M.S., "Friction induced phase transformation of pulsed laser deposited diamond-like carbon". Diamond Relat. Mater.5,1264-1269 (1996).
    [36]Chen J.S., Lau S.P., Sun Z.. Chen G.Y., Li Y.J., Tay B.K., Chai J.W., ,,Metal-containing amorphous carbon films for hydrophobic application", Thin Solid Films 398-399,110-115 (2001).
    [37]Pharr G.M., Callahan D.L., McAdams S.D., Tsui T.Y., Anders S., Anders A., Ager Ⅲ J.W., Brown T.G., Bhatia C.S., Silva S.R.P., Robertson J., "Hardness, elastic modulus, and structure of very hard carbon films produced by cathodic-arc deposition with substrate pulse biasing", Appl. Phys. Lett.68, 779-781 (1996).
    [38]Spencer E.G., Schmidt P.H., Joy D.C., Sansalone F.J., "Ion-beam-deposited polycrystalline diamondlike films", Appl. Phys. Lett.29,118-120 (1976).
    [39]Lifshitz Y., Kasi S.R., Rabalais J.W., Eckstein W., "Subplantation model for film growth from hyperthermal species", Phys. Rev. B 41,10468-10480 (1990).
    [40]Roberston J., "Mechanism of sp3 bond formation in the growth of diamond-like carbon", Diamond Relat. Mater.14,942-948 (2005).
    [41]Seitz F., Koehler J.S., in:Seitz F., Turnbull D. (Eds.), Solid State Physics, Vol.2 (Academic Press, New York,1956).
    [42]Staryga E., B k G.W., "Relation between physical structure and electrical properties of diamond-like carbon thin films", Diamond Relat. Mater.14,23-34 (2005).
    [43]Fallon P.J., Veerasamy V.S., Davis C.A., Robertson J., Amaratunga G.A.J., W.I. Milne, Koskinen J., "Properties of filtered-ion-beam-deposited diamondlike carbon as a function of ion energy", Phys. Rev. B 48,4777-4782 (1993).
    [44]Polo M.C., Andujar J.L., Hart A., Robertson J., Milne W.I., "Preparation of tetrahedral amorphous carbon films by filtered cathodic vacuum arc deposition", Diamond Relat. Mater.9,663-667 (2000).
    [45]Silva S.R.P. in:Silva S.R.P. (ed.). Properties of Amorphous Carbon (INSPEC The Institution of Electrical Engineers, London,2003).
    [46]Aisenberg S., Chabot R., "Ion-beam deposition of thin films of diamondlike carbon", J. Appl. Phys.42,2953-2958 (1971).
    [47]Sanders D.M., Anders A.,,,Review of cathodic arc deposition technology at the start of the new millenium", Surf. Coat. Technol.133-134,78-90 (2000).
    [48]Voevodin A.A., Donley M.S., "Preparation of amorphous diamond-like carbon by pulsed laser deposition:A critical review". Surf. Coat. Technol.82,199-213 (1996).
    [49]Rodil S.E., PhD. Thesis "Preparation and characterisation of carbon nitride thin films" (University of Cambridge, Cambridge,2000).
    [50]Hauert R., Patscheider J., "From alloying to nanocomposites-Improved performance of hard coatings", Adv. Eng. Mater.2,247-259 (2000).
    [51]Gahlin R., Larsson M., Hedenqvist, P., "ME-C.H coatings in motor vehicles", Wear 249,302-309(2001).
    [52]Grischke M., Herb R., Massler O., Karner J., Eberle H.,,,High vacuum based deposition of carbon-based films for industrial applications",44th Annual Technical Conference Proceedings,407 (2001).
    [53]Pei Y.T., Galvan D., De Hosson J.Th.M., Cavaleiro A., "Nanostructured TiC/a-C coatings for low friction and wear resistant applications", Surf. Coat. Technol.198,44-50(2005).
    [54]李刘合.真空阴极弧离子镀DLC/TiC/Ti(CN)/TiN/Ti多层膜的结构及其控制,工学博士学位论文,哈尔滨工业大学(1999).
    [55]Baba K, Hatada R. Deposition and characterization of Ti-and W-containing diamond-like carbon films by plasma source ion implantation. Surf. Coat. Technol.,169-170,287-290 (2003).
    [56]Chu P K, Qin S, Chan C, et al. Plasma Immersion Ion Implantation-A Fledgling Technique for Semiconductor Processing. Mat. Sci. Engin. Reports, 17(6-7),207-280(1996).
    [57]Chu P K, Tang B Y, Wang L P, et al. Third-Generation Plasma Immersion Ion Implanter for Biomedical Materials and Research. Rev. Sci. Instrum.,72 (3), 1660-1665 (2001).
    [58]Zhang, S., Wang, B., and Tang, J. Y., Surf. Engin.,Vol.13, No.4, pp.303-309 (1997).
    [59]张启邦,阴极电弧沉积AlTiN/CrN与CrAlSiN薄膜之微结构、机械性质与高温氧化行为研究,明道大学材料科学与工程学系研究所,硕士论文,(2008).
    [60]X. B. Tian, T. X. Leng, T.K. Kwok, L. P. Wang. B.Y. Tang, P.K. Chu, Surface and Coating Technology, Vol.135, pp.178-183 (2001).
    [61]Casiraghi C., Ferrari A.C., Ohr, R., Chu D., Robertson J., "Surface properties of ultra-thin tetrahedral amorphous carbon films for magnetic storage technology", Diamond Relat. Mater.13,1416-1421 (2004).
    [62]Huang Q.F., Yoou S.F., Rusli, Yang H., Gan B., Chew K., Ahn J., "Conduction mechanism in molybdenum-containing diamond-like carbon deposited using electron cyclotron resonance chemical vapour deposition", J. Appl. Phys.88, 4191-4195 (2000).
    [63]Stoney G.G., "The tension of metallic films deposited by electrolysis", Proc. R. Soc. London A 82,172-175(1909).
    [64]Logothetidis S., Charitidis C., Gioti M., Panayiotatos Y., Andrea M., Kautek W., "Comprehensive study on the properties of multilayered amorphous carbon films", Diamond Relat. Mater.9,756-760 (2000).
    [65]Xu M, Cai X, Zhao J, et al. Mechanism of enhanced adhesion between amorphous carbon and tungsten pre-implanted steel substrates. J. Appl. Phys.,101 053520(2007).
    [66]Logothetidis S., Stergioudis G, "Studies of density and surface roughness of ultrathin amorphous carbon films with regards to thickness with x-ray reflectometry and spectroscopic ellipsometry", Appl. Phys. Lett.71,2463-2465 (1997).
    [67]Gozadinos G., PhD Thesis "Collisionless heating and particle dynamics in radio-frequency capacitive plasma sheaths" (Dublin City University, Dublin, 2001).
    [68]J.R. Conrad, J.L. Radtke, R.A. Dodd, F.J. Worzala, N.C. Tran, J. Appl. Phys.62, 4591 (1987).
    [69]H. Klingenberg, J. Arps, R. Wei, J. Demaree, J. Hirvonen, Surf. Coat. Technol. 158-159,164(2002).
    [70]S. Rossi, Y. Massiani, E. Bertassi, F. Torregrosa, L. Fedrizzi, Thin Solid Films, 416,160(2002).
    [71]Veprek S., Veprek-Heijman M.G.J., Karvankova P., Prochazka J., "Different approaches to superhard coatings and nanocomposites", Thin Solid Films 476, 1-29 (2005).
    [72]Roberston J., "Mechanism of sp3 bond formation in the growth of diamond-like carbon", Diamond Relat. Mater.14,942-948 (2005).
    [73]Liao J X, Liu W M, Xu T, et al. Characteristics of carbon films prepared by plasma-based ion implantation. Carbon,42,387-390 (2004).
    [74]Ohana T., Nakamura T., Suzuki M., Tanaka A., Koga Y., "Tribological properties and characterization of DLC films deposited by pulsed bias CVD" Diamond Relat. Mater.13,1500-1504 (2004).
    [75]Chen L.Y., Hong F.C.N., "Diamond-like carbon nanocomposite films", Appl. Phys. Lett.82,3526-3528 (2003).
    [76]张涛,侯军仁MEVYA源金属离子注入和金属等离子体浸没注入.中国表面工程,3,8-12(2000).
    [77]Samano E C, Soto G, Olivas A, et al. DLC thin films characterized by AES, XPS and EELS, Appl. Surf. Sci.,202,1-7(2002).
    [78]Chu P K, Li L H. Characterization of amorphous and nanocrystalline carbon films. Mater. Chem. Phys.,96,253-277 (2006).
    [79]Swart H.C., Jonker A.J., Claassens C.H., Chen R., Venter L.A., Ramoshebe P., Wurth E., Terblans J.J., Roos W.D., "Extracting inter-diffusion parameters of TiC from AES depth profiles", Appl. Surf. Sci.205,231-239 (2003).
    [80]S.P. Lau, Y.H. Cheng, J.R. Shi, P. Cao, B.K. Tay, X. Shi, "Filtered cathodic vacuum arc deposition of thin film copper", Thin Solid Films,398-399, 539-543 (2001).
    [81]Pharr, G. M., Callahan, D. L., and Adams, S. D. M, Appl. Phys. Lett., Vol.6, pp.8779 (1996).
    [82]Y. H. Yoo, D. P. Le, J. G. Kim. S. K. Kim, P. V. Vinh, "Corrosion behavior of TiN, TiAlN, TiAlSiN thin films deposited on tool steel in the 3.5 wt.%NaCl solution", Thin Solid Films,516,3544-3548 (2008).
    [83]钱苗根,姚寿山,张少宗.现代表面技术,机械工业出版社,200-214.
    [84]Jayatissa A H, Sato F, Saito N, et al. Characterization of diamond-like carbon clusters deposited by pulsed ArF laser deposition. Carbon,38,1145-1151 (2000).
    [85]V.V. Uglov, V.V. Astashynski, E.K. Stalmoshenok, Surface and Coatings Technology,180-181,108-112(2004).
    [86]陈伟令,TiAlSiN奈米复合涂层之高温氧化研究,明道大学材料科学与工程学系研究所,硕士论文,(2009).
    [87]Bhushan B., Principles and Applications of Tribology (John Wiley& Sons, New York,1999).
    [88]Jacobsohn L.G.,Freire F.L., "Influence of the plasma pressure on the microstructure and on the optical and mechanical properties of amorphous carbon films deposited by direct current magnetron sputtering", J. Vac. Sci. Technol.A 17,2841-2849(1999).
    [89]Rossnagel S.M., "Thin film deposition with physical vapor deposition and related technologies", J. Vac. Sci. Technol. A 21, S74-S87 (2003).
    [90]Baranov A.M., Sleptsov V.V, Nefedov A.A., Varfolomeev A.E., Calliari L., "Real time investigation of the initial stages of a-C films growth", Diamond Relat. Mater.13,1356-1360(2004).
    [91]Y. Tanaka, N. Ichimiya, Y. Onishi, Y. Yamada, "Structure and properties of Al-Ti-Si-N coatings prepared by the cathodic arc ion plating method for high speed cutting applications", Surface and Coatings Technology, 146-147,215-221 (2001).
    [92]G. Dearnaley. and J.H. Arps, "Biomedical applications of diamond-like carbon (DLC) coatings:A review ",Surface and Coatings Technology,200(7), 2518-2524(2005).
    [93]A. Tibrewala, E. Peiner, R. Bandorf, S. Biehl, H. Luthje, "Transport and optical properties of amorphous carbon and hydrogenated amorphous carbon films", Applied Surface Science,252(15),5387-5390 (2006).
    [94]Miyagawa S., Nakao S., Ikeyama M., Miyagawa Y., "Deposition of diamond-like carbon films using plasma based ion implantation with bipolar pulses", Surf. Coat. Technol.156,322-327 (2002).
    [95]Meng W.J., Gillispie B.A., "Mechanical properties of Ti-containing and W-containing diamond-like carbon coatings", J. Appl. Phys.84,4314-4321 (1998).
    [96]Kim J.-D., Sugimura H., Takai O., "Water-repellency of a-C:H films deposited by rf plasma-enhanced CVD", Vacuum 66,379-383 (2002).
    [97]Gordon Davies, "Properties and Growth of Diamond,"INSPEC, the Institution of Electrical Engineers, London, United Kindom. (1994).
    [98]徐鸣.离陆战队注入对DLC膜基的改性研究:[博士学位论文],上海交通大学,76-89(2007).
    [99]Zhang S., Sun D., Fu Y., Du H., "Toughening of hard nanostructural thin films: a critical review", Surf. Coat. Technol.198,2-8 (2005).
    [100]薄膜生长,吴自勤,第八-第九章
    [101]Yamamoto, K., T. Sato. K. Takahara and K. Hanaguri, Properties of (Ti,Cr,Al)N coatings with high Alcontent deposited by new plasma enhanced arc-cathode.Surface and Coatings Technology,174-175,620-626 (2003).
    [102]Bull, S. J. and A. M. Jones, Multilayer coatings for improved performance. Surface and Coatings Technology,78,173-184 (1996).
    [103]Yang J H, Zhang T H. Characterization of surface mechanical properties and microstructure of H13 steel implanted by pulsed tungsten. Materials Science and Engineering A,362,200-203 (2003).
    [104]Xu M, Li L H, Cai X, et al. Nucleation and Growth of Amorphous Carbon Film on Tungsten-Implanted Stainless Steel Substrates. Diamond Relat. Mater., 15(10),1580-1584(2006).
    [105]Takadoum J, Bennani H H, Allouard M. Friction and Wear Characteristics of TiN, TiCN and Diamond-like Carbon Films. Surf. Coat. Technol.,88,232-238 (1996).
    [106]Uzumaki E. T, Lamber C. S, C. Zavaglia A C. Diamond-like carbon coatings on Ti-13Nb-13Zr alloy produced by plasma immersion for orthopaedic applications. Key Eng. Mater.,254-256,435-439 (2004).
    [107]夏立芳,孙跃,马欣新,等离子体湮没离子注入.金属热处理,2,3-6(1995).
    [108]Tamor M A, Vassell W C. Raman "fingerprinting" of amorphous carbon. J. Appl. Phys.,76,3823-3830 (1994).
    [109]Liu X Y, Chu P K, Ding C X. Surface Modification of Titanium, Titanium Alloys, and elated Materials for Biomedical Applications. Mat. Sci. Engin. Reports,47,49-121 (2004).
    [110]Pei Y.T., Galvan D., De Hosson J.Th.M., Cavaleiro A., "Nanostructured TiC/a-C coatings for low friction and wear resistant applications", Surf. Coat. Technol.198,44-50(2005).
    [111]Silva S.R.P. in:Silva S.R.P. (ed.), Properties of Amorphous Carbon (INSPEC, The Institution of Electrical Engineers, London,2003).
    [112]Rossnagel S.M., Russak M.A., Cuomo J.J., "Pressure and plasma effects on the properties of magnetron sputtered carbon films", J. Vac. Sci. Technol. A 5, 2150-2153 (1987).
    [113]Xu M, Zhao J, Cai X, et al. Structure and Topographies of Diamond-like Carbon Films Produced on Tungsten Pre-Implanted Stainless Steel Substrate by Plasma Immersion Ion Implantation and Deposition. Diam. Relat. Mater., 16,1490-1499(2007).
    [114]Mantzaris N.V., Gogolides E., Boudouvis A.G., Rhallabi A., Turban G., "Surface and plasma simulation of deposition processes:CH4 plasmas for the growth of diamondlike carbon", J. Appl. Phys.79,3718-3729 (1996).
    [115]Riccardi C., Barni R., Sindoni E., Fontanesi M., Tosi P., "Gaseous precursors of diamond-like carbon films:chemical composition of CH4/Ar plasmas", Vacuum 61,211-215 (2001).
    [116]Kwok S. C. H., Wang J., Chu P. K. Surface energy, wettability, and blood compatibility phosphorus doped diamond-like carbon films. Diamond Relat. Mater.,14,78-85(2005).
    [117]Kim H., McIntyre P.C., "Spinodal decomposition in amorphous metal-silicate thin films:Phase diagram analysis and interface effects on kinetics", J. Appl. Phys.92,5094-5102(2002).
    [118]McCulloch D G, Prawer S, Hoffman A. Structural investigation of xenon-ion-beam-irradiated glassy carbon. Phys. Rev. B,50,5909-5962 (1994).
    [119]Poon R W Y, Yeung K W K, Liu X Y, et al. Carbon plasma immersion ion implantation of nickel-titanium shape memory alloy. Biomat.,26,2265-2272 (2005).
    [120]Clay K.J., Speakman S.P., Morrison N.A., Tomozeiu N., Milne W.I., Kapoor A., "Material properties and tribological performance of rf-PECVD deposited DLC coatings", Diamond Relat. Mater.7,1100-1107 (1998).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700