Ti/TiN多层膜离子束辅助沉积工艺、结构及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代加工业的飞速发展,对工具、模具涂层的性能提出越来越高的要求,传统的TiN、TiC等单层膜不能应用于苛刻的工作条件,薄膜的多层化是改善其性能的有效途径之一。
     本文首先利用离子束辅助中频溅射制备了TiN单层膜,通过正交实验及极差分析研究了离子束辅助中频溅射工艺对TiN膜成膜速率、表面形貌、硬度和膜/基结合力的影响,确定了TiN单层膜的优化沉积工艺;探讨了反应气体的持续供给和脉冲供给对膜层表面形貌及性能的影响,研究了在脉冲供给氮气时氮气流量对Ti/TiN多层膜成膜速率和性能的影响;研究了不同调制周期和调制比的Ti/TiN多层膜性能。结果表明:
     在沉积TiN薄膜时,提高靶功率和降低氮气流量有利于抑制靶中毒现象,从而改善TiN薄膜的表面形貌。当靶功率和氮气流量较高且离子流较低时,制备的TiN膜硬度较高。当靶功率较低而氮气流量较高时,不容易获得膜/基结合力较好的膜层。当靶功率为9KW、氮气流量为35sccm、离子流为4A、温度为150℃时,制备的TiN薄膜的表面形貌、硬度、膜/基结合力较好,膜层硬度达到HV2319,膜/基结合力为7.5N。
     与氮气的持续供给相比,在脉冲供给氮气时制备的Ti/TiN多层膜表面形貌好,膜/基结合强度高,但显微硬度低于持续送气时获得的TiN膜。通过适当提高脉冲送气时的氮气流量可以在保持高的膜/基结合力情况下使膜层硬度显著提高。采用脉冲方式送气,氮气流量为90sccm时,膜层硬度可达HV1767,膜/基结合力达到18N。
     Ti/TiN多层膜的硬度及膜/基结合力随着调制周期的增大呈现出逐渐降低的趋势。Ti/TiN多层膜的性能随着调制比(在一个沉积周期内TiN与Ti的沉积时间比)的增大逐渐提高。在调制周期为9.45nm、调制比为5︰1时硬度为HV1813,而其膜/基结合力(22N)为TiN单层膜的两倍以上。
With the development of modern manufacturing industry, the requirements of the coatings properties on cutting tools, moulds and dies become higher. The traditional single layer films, such as TiN, TiC, etc, cannot be applied in harsh service conditions, and multi-layered films can obviously improve the properties of the films.
     In this work, TiN films were prepared by ion beam enhanced medium frequency sputtering (IBED); the influence of different deposition parameters on the deposition rate, surface morphology, hardness and adhesion of TiN films was studied through orthogonal experimentation and range analysis, and the optimum process of TiN by IBED was determined. The differences between continuous gas supply and pulsed gas supply were studied, and their influences on the deposition rates and the properties of Ti/TiN multi-layered films were investigated. The properties of Ti/TiN multi-layered films with different modulation periods or different modulation ratios were studied. The results are as following:
     The target poisoning during deposition can be effectively restrained by increasing the target power and decreasing the supply rate of nitrogen. The hardness of the TiN films increased gradually with the increase of the targer power and the supply rate of nitrogen, and it decreased with the increase of ion flux. The adhesion between TiN films and substrates decreased with lower target power and the higher supply rate of nitrogen. The surface morphology, hardness and adhesion of TiN films were optimized as the target power 9KW, supply rate of nitrogen 50sccm, ion flux 4A and temperature 150℃, and the TiN films optimum hardness was HV2677, and the adhesion between TiN films and substrates was 7.5N.
     The Ti/TiN multi-layered films with better surface morphology were obtained. A higher supply rate of nitrogen is needed in order to obtain higher hardness of films. The hardness and adhesion of Ti/TiN films to substrates were HV1767 and 18N respectively, when the supply rate of nitrogen was 90sccm by pulsed gas supply.
     The hardness and adhesion of Ti/TiN multi-layered films decreased gradually with the increase of the modulation periods, but it increased with the increase of themodulation ratios (the deposition time ratio of TiN to Ti during a modulation period). The hardness of Ti/TiN multi-layered films was HV1813 as the modulation period was 9.45nm and the modulation ratio was 5︰1 , and the adhesion between Ti/TiN multi-layered films and substrates was above two times of that of TiN films.
引文
[1] M. Ben Daia, P. Aubert, S. Labdi, et al. nanoindentation investigation of Ti/ TiN multilayered films[J]. Appl. Phys. , 2000 , 87(11) :7753-7757.
    [2] Kikuchi N, Kitagawa M, Sato A, et al. Elastic and plastic energies in sputtered multilayered Ti/ TiN films estimated by nanoindentation[J] , Surf. Coat. Technol., 2000 ,126(2-3) :131 - 135.
    [3] 李戈扬, 虞晓江, 吴桢干等. TaN∕NbN 纳米多层膜的力学性能与耐磨性. 真空科学与技术[J]. 2002,22(1):1 - 4
    [4] 安健, 张庆瑜. TiN∕TaN 多层膜的结构和摩擦学性能[J]. 摩擦学学报. 2005,25(1):7 - 11
    [5] S.H. Yaoa , Y.L. Sub, W.H. Kaoc et al. Tribology and oxidation behavior of TiN/AlN nano-multilayer films[J]. Tribology International. 2006, 39: 332-341
    [6] P. M. Anderson, Foecke T , Hazzledine P.M. . Dislocation-Based Deformation Mechanisms in Metallic Nanolaminates [J ] . MRS Bull , 1999 ,24(2) :27-33.
    [7] P. M. Anderson. Hall-Petch relations for multilayerd materials[J]. Nanostruct . Mater, 1995 , 5(3) :349 - 362.
    [8] Xu Junhua. Gu Mingyuan. Li Geyang et al., Microstructures and properties of Si3N4∕TiN ceramic nano-multilayer films[J]. Trans.Nonferrous.Met.Soc.china, 1999,9(4) :764–767.
    [9] T.S. Li, H. Li, F. Panl. Microstructure and nanoindentation hardness of Ti/TiN multilayered films[J], Surf . Coat . Technol. , 2001 , 137(2-3): 225 - 229.
    [10] 李戈扬. 许俊华. 顾明元, 纳米多层膜的微结构与超硬效应[J], 上海交通大学学报, 2001,35(3):457–461.
    [11] Yang W M C , Tsakalakos T , et al. Enhanced elastic modulus in composition-modulated goldnickel and copper-palladium foils[J] . Appl. Phys. , 1977 ,48 :876 - 879.
    [12] Chu X , Barnett S A , Wong M S , et al. Reactive unbalanced magnetron sputter deposition of polycrystalline TiN/NbN superlattice coatings [J]. Surf. Coat. Technol ,1993 ,57(1) :13-18.
    [13] H.Holleck, M.Lahres, P.Woll, Multilayer coatings—influence of fabrication parameters on constitution and properties[J], Surf. Coat. Technol. , 1990 , 41(2): 179-190
    [14] H. Holleck, Metastable coatings — Prediction of composition and structure[J] , Surf. Coat.Technol. , 1988, 36(1-2) : 151-159.
    [15] X. chu, S. A.Barnett , Model of superlattice yield stress and hardness enhancement[J]. Appl. Phys. 1995 ,77(8) :4403.
    [16] A. Thobor and C. Rousselot. Ion bombardment: a means to improve the properties of TiN/ AlN multilayered coatings[J] , Surf . Coat . Technol. , 2003 , 174 - 175 :1264 - 1270.
    [17] Wiklund U, Hedenqvist P, Hogmark S. Multilayer Cracking Resistance in Bending[J]. Surf. Coat. Technol., 1997, 97: 773–778.
    [18] 李振明. 纳米铜-镍多层膜的耐磨性研究[J]. 材料开发与应用, 1999,14(5):17-19
    [19] Andersen K N, Bienk E J, Schweitz K O et.al. Deposition,Microsturcture,and mechanical and Tribological Properties of Magnetron Sputtered TiN∕TiAlN Multilayers[J]. Surf. Coat. Technol., 2000,123(2-3):219-226.
    [20] Zhou Y M, Asaki R, Soe W H et.al. Hardness Anomaly, Plastic Deformation Work and Fretting Wear Properties of Polycrystalline TiN ∕ CrN Multilayers[J]. Wear, 1999,236:159-164.
    [21] 张伟, 薛群基, 张绪寿. 离子束轰击对多层膜摩擦学性能的影响[J]. 金属学报, 1997,33: 1165-1170.
    [22] 阎鹏勋, 杨思泽. 离子束混合形成氮化钛膜的摩擦和光学性能[J]. 核技术, 1994, 17(2): 74-77.
    [23] Holmberg K, Mathews A, Ronkainen H. Coatings tribology-contact mechanisms and suface design[J]. Tribology International, 1998, 31(1):107-120.
    [24] 赵彦辉, 林国强, 李晓娜等. 脉冲偏压对电弧离子镀 Ti/TiN 纳米多层薄膜显微硬度的影响[J]. 金属学报, 2005, 41(10):1106-1110.
    [25] 于翔, 王成彪, 刘阳等. 中频对靶磁控溅射合成 TiN/Ti 多层膜[J]. 金属学报, 2006,42(6): 662-666.
    [26] 石玉龙, 彭红瑞, 李世直. PCVD 制备工业硬膜研究[J]. 微细加工技术, 1995, 4:30-37.
    [27] Do-Geun Kim, Tae-Yeon Seong and Young-Joon Baik. Effects of annealing on the microstructures and mechanical properties of TiN/ AlN nano - multilayer films prepared by ion - beam assisted deposition[J] , Surf . Coat . Technol. , 2002 , 153 (1):79 - 83.
    [28] Harish C. Barshilia, Anjana Jainb and K. S. Rajama. Structure ,hardness and thermal stability of nanolayered TiN/ CrN multiplayer coating[J] , Vacuum , 2004 , 72(3) :241-248.
    [29] W. Olbrich,J. Fessmann,G. Kampschulte and J. Ebberink. Improved control of TiN coating properties using cathodic arc evaporation with a pulsed bias. Surface and coatings technology,1991,49:258-262.
    [30] J. Fessmann,W. Olbrich,G. Kampschulte and J. Ebberink. Cathodic arc deposition of TiN and Zr(CN)at low substrate temperatures using a pulsed bias voltage. Mater. Sci. Eng,1991,A140:830-837
    [31] Perry A J , Tian A F , Treglio J R ,et al . Thin TiN and TiB2 coatings with low residual stress deposited at different temperatures by cathodic arc ion plating[J] . Surf Coat Technol , 1994 , 68-69 : 528-535.
    [32] Perry A J , Treglio J R , Tian A F. Low2temperature deposition of titanium nitride[J] . Surf Coat Technol , 1995 , 76-77 : 815-820.
    [33] Li Z Y, Zhu WB , Zhang Y,et al . Effects of superimposed pulse bias on TiN coating in cathodic arc deposition[J] . Surf Coat Technol , 2000 , 131 : 158-161.
    [34] Lin GQ , Ding Z F , Qi D. Fundamental problems in pulsed2bias arc deposition[J] . Acta Metallurgica Sinica (English Letters) , 2002 , 15 (1) : 91-103.
    [35] Lin GQ , Zhao Y H , Guo HM,et al . Experiments and theoretical explanation of droplet elimination phenomenon in pulsed2bias arc deposition[J] . J Vac Sci Technol , A 2004 , 22 (4) : 1218~1222.
    [36] 赵化侨. 等离子体化学与工艺[M]. 合肥:中国科学技术大学出版社. 1993, 189-207.
    [37] 徐滨士, 朱绍华. 表面工程的理论与技术[M]. 北京:国防工业出版社. 1999,344-350.
    [38] 薛增泉, 吴全德, 李洁. 薄膜物理[M]. 北京:电子工业出版社. 1991.
    [39] 范毓殿, 陈国平, 彭传才等. 磁控溅射新技术[M]. 北京:中国真空学会薄膜专业委员会. 2001.
    [40] G Este, W. D. Westwood. A quasi-direct-current sputtering technique for the deposition of dielectrics at enhanced rates[J]. J.Vac.Sci.technol.A, 1988,6(3):1845-1848.
    [41] S.beiβwenger, G.brauer, W.dicken, et.al.Large-scale antireflective coatings on glass produced by reactive magnetron sputtering. Surface and Coatings Technol. 1993,60(1-3):624-628.
    [42] J. K. Hirvonen. Ion beam assisted thin film deposition [J]. Materials Science Reports,19 91,6 :215-274.
    [43] 唐宾. 离子束增强沉积 CrN 镀层膜基结合强度的测定[J]. 中国机械工程,2000,4:369-372.
    [44] 唐宾. 离子束增强沉积制备 CrNx 薄膜[J]. 中国有色金属学报, 1999,01: 69-72.
    [45] J. S. Colligen. Application of Ion-beam-assisted deposition [J]. Materials Science and Engineering.1991,A139:199-206.
    [46] G. K. Hubler. Fundamentals of ion-beam-assisted deposition: technique and film properties [J]. Materials Science and Engineering, 1989, A115:181-192.
    [47] G. K. Wolf. Modification of mechanical chemical properties of thin films by ion bombardment[J ].S urfacea ndC oatingsT echnology,1990,43-44:920-930.
    [48] J. M. E. Harper, J.J.Cuomo, R.J.Gambino et al.. Ion Bombardment Modification of Surfaces[M ].Amsterdam:Elsevier,1984.189-206.
    [49] M. Nastasi, J. W. Mayer. Ion beam mixing in metallic and semiconductor materials[J]. Materials Science and Engineering,1994,R12:1- 5.
    [50] J. F. Liegler, J. B. Biersack and U. Litmark. The stopping and Range of Ions in Solids[M]. New York:Pergamon,1985:1100-1125.
    [51] Qiu Yuanxun. Interface adhesion enhanced by MeV ions[J]. Nuch. Instr. Meth., 1991, 1356/1357: 634-639.
    [52] 李恒德, 肖纪美. 材料表面与界面. 清华大学出版社, 1990: 122.
    [53] 秦聪祥, 曾鹏, 胡社军等. 离子束辅助沉积对 TiAl-SiN 薄膜性能的影响. 钛工业进展. 2006, 23(2): 25-28.
    [54] 薛增泉, 吴全德, 李浩. 薄膜物理. 电子工业出版社, 1991: 310.
    [55] 白彬, 严东旭, 梁红伟等. 高能离子束辅助沉积制备钛纳米膜. 机械工程材料. 2005,29(11): 67-70.
    [56] 王兵, 赖祖武, 江崇滨等. 轰击能量对离子束增强沉积 Cr-N 薄膜微观结构及硬度的影响. 真空科学与技术. 1996,16(1): 5-9.
    [57] 刘长洪, 李文治, 李恒德. CH4 离子束增强沉积对 TiC 薄膜显微硬度的影响机制. 金属学报. 1994,30(7): 318-321.
    [58] 高志山, 陈进榜. 表面微观形貌的显微干涉检测原理及干涉显微镜发展现状. 1999, 21(6): 36~41.
    [59] Alfonso D C, Elisabeth R P, Belarmino S G, et,al. Study of TiN and Ti/TiN coatings produced by pulsed-arc discharge[J]. Surf. Coat. Technol, 2005,190(1):83-89.
    [60] 李河清, 蔡王旬, 马峰等. 影响薄膜(涂层)硬度测试的因素[J]. 2001, 21(9): 45-47.
    [61] B. Jonsson and S. Hogmark. Hardness measurements of thin films.thin solid films, 1984, 114(3): 257-269.
    [62] 贾嘉, 陈新禹. 离子束溅射工艺中的基片温度及其控制方法[J]. 光学仪器. 2004, 4(2): 187-190.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700