硅纳米洞/线的制备及应用于SERS基底的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一维硅纳米材料由于其进入纳米尺度后具有了纳米材料的独特效应,并且表现出好的热、光、电学等优异特性,它所具有的独特的半导体性质使其成为微纳电子器件潜在材料之一,受到学术界越来越多的关注。
     本论文采用金属辅助化学刻蚀法制备硅纳米孔洞硅纳米线,并以硅纳米线为衬底制备了金属以及金属复合结构/硅纳米线阵列,并探究了其对R6G的SERS效应。本论文的主要研究结果如下:
     一、硅纳米孔洞的制备及工艺参数的影响。探究了镀银时间和硝酸银浓度,以及真空退火对银纳米颗粒的影响;银颗粒的形貌和与刻蚀后的硅纳米孔洞的关系;重力、离心力都对刻蚀方向没有影响;H202浓度的增大和离心力都可分别加速刻蚀反应速度;在小体积状态下,刻蚀速率会随着刻蚀液体积的增加而增加,并且当刻蚀液的体积达到10m1后,刻蚀结构由纳米孔洞变成了“孔+线”纳米结构。
     二、硅纳米线的制备及工艺参数的影响。通过改变硅片的电阻率,刻蚀时间以及氢氟酸浓度得出了最优化的制备参数:镀银溶液为4.6Mol/L的HF和0.01Mol/L的AgNO3混合液;镀银时间为1.2min,刻蚀溶液为10%.15%HF和1%H2O2混合溶液,温度70℃,刻蚀时间为40min;发现硅片的电阻率、刻蚀时间、HF浓度分别与硅纳米线的长度成正相关。
     三、硅纳米线阵列结构和金属以及金属复合结构的复合材料的SERS效应。研究了金属以及金属复合结构/硅纳米线阵列(Ag/SiNWs、Au/SiNWs、 Ag-Au/SiNWs)作为活性基底对R6G的SERS效应,发现SiNWs对R6G没有SERS效应或者效应很弱;而SiNWs上附着的银或金纳米颗粒或者Ag-Au核壳结构能显著地提高拉曼信号,在他们各自的最佳状态下Ag-Au/SiNWs的SERS信号最强,Ag/SiNWs的SERS信号次之,Au/SiNWs的SERS信号最差。
One-dimensional silicon nanometre materials have received intensive interests because of the unique effect of nanometer materials after its entering nanoscale and exhibiting excellent properties, such as thermal, optical and electrical properties, their unique properties of semiconductor that make them one of the potential materials for micro-nano electronic devices.
     This thesis mainly prepared silicon nanoholes and silicon nanowires by metal assisted chemical etching method, and metal or metal composite structure/silicon nanowire arrays by using silicon nanowires as substrate, and we also explored their SERS effect for R6G. The main research results are as follows:
     First, the preparation of silicon nanoholes and the influence of process parameters. The effects of the silver plating time, the concentration of silver nitrate and vacuum annealing on morphologies of the silver nanoparticles, and the relationship with the morphology of silver nanoparticles and the etched silicon nanoholes are discussed. There is no effect on etching direction by gravity and centrifugal force; the etching reaction can be accelerated by the increase of H2O2concentration and centrifugal force respectively. In the condition of small volume, etching rate will be increased with the increase of etching fluid volume, and after the volume of the etching solution reaching10ml, the pores turn into the nanostructure composed of nanowires and nanopores.
     Second, the preparation of silicon nanowires and the influence of process parameters. The optimal parameters of preparing silicon nanowires was obtained by changing the resistivity of silicon wafer, etching time and concentration of hydrofluoric acid:silver plating solution is the mixture solution of4.6Mol/L HF and0.01Mol/L AgNO3; the time of silver plating is1-2min, the etching solution is the mixed solution of10%-15%HF and1%H2O2, the etching temperature is70℃, the etching time is40min. The positive relationship between the resistivity of silicon, etching time, HF concentration and the length of the nanowires is also found respectively.
     Third, the SERS effect of the composite material between silicon nanowire array structure and the structure of the metal or metal composite material. Their (Ag/SiNWs, Au/SiNWs, Ag-Au/SiNWs) SERS effects for R6G were studied, the SERS effect of the SiNWs may be very weak and is not found; the SERS signal can be significantly enhanced by the Ag, Au or Ag-Au core-shell structure adhering to the SiNWs in their own best condition. The SERS signal of Ag-Au/SiNWs is the strongest, the SERS signal of Ag/SiNWs takes second place, the SERS signal of Au/SiNWs is the worst.
引文
[1]赵于文.超细粉的性能,制备及应用[J].现代化工,1991,5:52-58
    [2]Y. Wang, W. Mahle. Degenerate four-wave mixing of CdS/polymer composite [J]. OPt. Commun,1987,61:233-236
    [3]L.E. Brus. Electron-electron and electron-hole interactions in small semiconductor crystallites:The size dependence of the lowest excited electronic state [J]. J Phys Chem, 1984,80 (9):4403-4409
    [4]X.F. Duna, Y. Hunag, Y. Cui, et al. Indimu phosphide nnaowires as building blocks for nanoscale electronic and optoelectronic devices [J]. Nuatre,2001,409:66-69
    [5]汪素兰.硅纳米线/洞的制备及其银修饰后的SERS效应的研究[D].[硕士学位论文].郑州:郑州大学,2012
    [6]蔡永梅.方形硅纳米孔洞的制备及应用研究[D].[硕士学位论文].郑州:郑州大学,2011
    [7]要峰.硅纳米线-氧化锌异质结阵列的制备及湿敏特性研究[D].[硕士学位论文].郑州:郑州大学,2011
    [8]王宪芬.纳米硅的合成、表征以及光学性能研究[D].[硕士学位论文].济南:山东大学,2009
    [9]L.T. Canham. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers [J]. Appl Phys Lett,1990,57 (10):1046-1048
    [10]彭英才,王英龙,马蕾.Si基纳米结构的电子性质[J].微纳电子技术,2004,2:1-8
    [11]X.X. Li, T. Ono, Y.L. Wang, et al. Ultrathin Single-crystalline-silicon cantilever resonoatrs: Fabrication technology and significant specimen size effect on Young's Modulus[J]. Appl Phys lett,2003,83 (15):3081-3083
    [12]余军.一维硅纳米材料的制备和表征[D].[硕士学位论文].杭州:浙江大学,2006
    [13]刘志洪.硅及硅化物纳米结构的制备与性能研究[D].[博士学位论文].杭州:浙江大学,2009
    [14]A.M. Morales, C.M. Lieber. A laser ablation method of the synthesis of Crystalline semieonductor naowires[J]. Seience,1998,279 (5348):208-211
    [15]刘俊.硅和氧化锌纳米线的制备及光致发光特性[D].[硕士学位论文].大连:辽宁师范大学,2007
    [16]N. Wang, Y.H. Tang, Y.E. Zhang, et al. Transmission electron microscopy evidence of thedefect structure in Si nanowires synthesized by laser ablation [J]. Chem Phys Lett,1998, 283:368-372
    [17]Y.H. Yang, S.J. Wu, H.S. Chui, et al. Catalytic Growth of Silicon Nanowires Assisted by Laser Ablation [J]. J Phys Chem B,2004,108 (3):846-852
    [18]Y.Q. Chen, K. Zhang, B. Miao, et al. Temperature dependence of morphology and diameter of silicon nanowires synthesized by laser ablation [J]. Chem Phys Lett,2002,358 (5): 396-400
    [19]H.D. Park, T.P. Hogan. Growth of Si wires on a Si(111)substrate under Ultrahigh vacuum condition [J]. J Vac Sci Technol B,2004,22 (1):237-239
    [20]N. Fukata, T. Oshima, T. Tsurui, et al. Synthesis of silicon nanowires using laser ablation method and their manipulation by electron beam [J]. Sci Technol Adv Mat,6 (6):628-632
    [21]N. Wang, Y.H. Tang, Y.F. Zhang, et al. Nucleation and growth of Si nanowires from silicon oxide[J]. Phys Rev B,1998,58 (24):16024-16026
    [22]H.I. Liu, D.K. Biegelsen, N.M. Johnson et al. Self-limiting oxidation of Si nanowires [J]. J Vac Sci Technol B,1993,11 (6):2532-2537
    [23]H.I. Liu, D.K. Biegelsen, F.A. Ponce, et al. Self-limiting oxidation for fabricating sub-5 nm silicon nanowires [J]. Appl Phys Lett,1994,64 (11):1383-1385
    [24]H. Namatsu, Y. Takahashi, M. Nagase et al. Fabrication of thickness-controlled silicon nanowires and their characteristics [J]. J Vac Sci Technol B,1995,13 (6):2166-2169
    [25]H. Namatsu, M. Nagase, K. Kurihara, et al. Fabrication of one-dimensional silicon nanowire structures with a self-aligned point contact [J]. Jap J Appl Phys,1996,35 (9B):L1148-L1150
    [26]Y. Yin, B. Gates, Y. Xia, et al. A soft lithography approach to the fabrication of nanostructures of single crystalline silicon with well-defined dimensions and shapes [J]. Adv Mater,2000,12 (19):1426-1430
    [27]Y.K. Choi, J. Zhu, J. Grunes, et al. Fabrication of sub-10-nm silicon nanowire arrays by size reduction lithography [J]. J Phys Chem B,2003,107 (15):3340-3343
    [28]F. Watt, A.A. Bettiol, J.A. Van Kan, et al. Ion beam lithography and nanofabrication:A review [J]. Int J Nanosci,2005,4 (03):269-286
    [29]A. Uhlir Jr. Electrolytic shaping of germanium and silicon [J]. Bell Syst Tech J,1956,35: 333-347
    [30]房振乾,胡明,窦雁巍.双槽电化学腐蚀法制备多孔硅的孔隙率研究[J].压电与声光,2007,29(2):230-233
    [31]V. Lehmann, S. Ronnebeck. The physics of macropore formation in low-doped p-type silicon [J]. J Electrochem Soc,1999,146 (8):2968-2975
    [32]P. Kleimann, J. Linnros, S. Petersson. Formation of wide and deep pores in silicon by electrochemical etching [J]. Mater Sci Eng B,2000,69:29-33
    [33]K. Kordas, J. Remes, S. Beke, et al. Manufacturing of porous silicon; porosity and thickness dependence on electrolyte composition [J]. Appl Surf Sci,2001,178 (1):190-193
    [34]X. Badel, R.T. Rajendra Kumar,P. Kleimann, et al. Formation of ordered pore arrays at the nanoscale by electrochemical etching of n-type silicon [J]. Superlattice Microst,2004,36 (1): 245-253
    [35]F.A. Harraz, K. Kamada, K. Kobayashi, et al. Random macropore formation in p-type silicon in HF-containing organic solutions-Host matrix for metal deposition [J]. J Electrochem Soc, 2005,152 (4):C213-C220
    [36]J.Y. Lee, W.K. Han, J.H. Lee. Effect of ultrasonic frequency on electrochemical Si etching in porous Si layer transfer process for thin film solar cell fabrication [J]. Sol Energ Mat and Sol C,2011,95(1):77-80
    [37]杨娟玉,卢世刚,阚素荣等.电化学法制备硅纳米线[J].无机化学学报,2009,25(4):756-760
    [38]T. Nakagawa, H. Koyama, N. Koshida. Control of strueture and optical anisotropy in porous Si by magnetic-field assisted anodization [J]. Appl Phy Lett,1996,69 (21):3206-3208
    [39]Z.Q. Liu, S.S. Xie, W.Y. Zhou, et al. Catalytic synthesis of straight silicon nanowires over Fe containing silica gel substrates by chemical vapor deposition [J]. J Cryst Growth,2001,224 (3):230-234
    [40]N.L. Wang, Y.J. Zhang, J. Zhu. Growth of silicon nanowires via Nickel/SiCl4 vapor-liquid-solid reaction [J]. J Mater Sci Lett,2001,20 (1):89-91
    [41]T.I. Kamins, D.A.A. Ohlberg, R. Stanley Williams. Deposition and structure of chemically vapor deposited nanoscale Ti-Si islands on Si [J]. J Appl Phys,2004,96 (9):5195-5201
    [42]S. Sharma, M.K. Sunkara. Direct synthesis of single-crystalline silicon nanowires using molten gallium and silicon plasma [J]. Nanotechnology,2003,15 (1):130-134
    [43]X. Li, P.W. Bohn. Metal-assisted chemical etching in HF/H2O2 produces porous silicon [J]. Appl Phys Lett,2000,77 (16):2572-2574
    [44]K.Q. Peng, Y.J. Yan, S.P. Gao, et al. Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectrochemistry [J]. Adv Mater,2002,14 (16):1164-1167
    [45]K.Q. Peng, J. Zhu. Simultaneous gold deposition and formation of silicon nanowire arrays [J]. J Electroanal Chem,2003,558:35-39
    [46]K.Q. Peng, Y. Wu, H. Fang et al. Uniform axial-orientation alignment of one-dimensional single-crystal silicon nanostructure arrays [J]. Angew Chem Int Edit,2005,44 (18): 2737-2742
    [47]M.L. Zhang, K.Q. Peng, X. Fan, et al. Preparation of large-area uniform silicon nanowires arrays through metal-assisted chemical etching [J]. J Phys Chem C,2008,112 (12): 4444.445O
    [48]K.Q. Peng, X. Wang, X.L. Wu, et al. Fabrication and photovoltaic property of ordered macroporous silicon [J]. Appl Phys Lett,2009,95 (14):143119-143119-3
    [49]Z.P. Huang, H. Fang, J. Zhu. Fabrication of Silicon Nanowire Arrays with Controlled Diameter, Length, and Density[J]. Adv Mater,2007,19(5):744-748
    [50]N. Megouda, T. Hadjersi, G. Piret, et al. Au-assisted electroless etching of silicon in aqueous HF/H2O2 solution [J]. Appl Surf Sci,2009,255 (12):6210-6216
    [51]S. Bauer, J.G. Brunner, H. Jha, et al. Ordered nanopore boring in silicon:Metal-assisted etching using a self-aligned block copolymer Au nanoparticle template and gravity accelerated etching [J]. Electrochem Commun,2010,12 (4):565-569
    [52]K. Tsujino, M. Matsumura. Helical nanoholes bored in silicon by wet chemical etching using platinum nanoparticles as catalyst [J]. Electrochem Solid-State Lett,2005,8 (12):C193-C195
    [53]F.C.K. Au, K.W. Wong, Y.H. Tang, et al. Electron field emission from silicon nanowires [J]. Appl Phys Lett,1999,75 (12):1700-1702
    [54]Y.H. Tang, X.H. Sun, FC.K. Au, et al. Microstructure and field-emission characteristics of boron-doped Si nanparticle chains [J]. Appl Phys Lett,2001,79 (11):1673-1675.
    [55]D.Y. Li, Y.Y. Wu, L. Shi, et al. Thermal conductivity of individual silicon nanowires [J]. Appl Phys Lett,2003,83 (14):2934-2936
    [56]Y. Cui, X.F. Duan, J.T. Hu, et al. Doping and electrical transport in silicon nanowires [J]. J Phys Chem B,2000,104 (22):5213-5216
    [57]S.F. Hu, W.Z. Wong, S.S. Liu, et al. Room temperature two-terminal characteristics in silicon nanowires [J]. Solid State Commun,2003,125:351-354
    [58]Y.F. Zhang, Y.H. Tang, H.P. Peng, et al. Diameter modification of silicon nanowires by ambient gas [J]. Appl Phys Lett,1999,75 (13):1842-1844
    [59]J.D. Holmes, K.P. Johnston, R.C. Doty, et al. Control of thickness and orientation of solution-grown silicon nanowires [J]. Science,2000,287 (5):1471-1473
    [60]S. Nihonyanagi, Y. Kanemitsu. Efficient indirect-exciton luminescence in silicon nanowires [J]. Phys E,2003,17:183-184
    [61]Y. Cui, C.M. Lieber. Functional nanoscale electronic devices assembled using silicon nanowire building blocks [J]. Science,2001,291 (5505):851-853
    [62]Y. Huang, X. Duan, Y. Cui, et al. Logic gates and computation from assembled nanowire building blocks [J]. Science,2001,294:1313-1317
    [63]Y. Cui, Z. Zhong, D. Wang, et al. High Performance Silicon nanowire field effect transistors [J]. Nano Lett,2003,3 (2):149-152.
    [64]L.J. Lauhon, M.S. Gudiksen, C.L. Wang, et al. Epitaxial core-shell and core multishell nanowire heterostructures [J]. Nature,2002,420 (6911):57-61
    [65]H. Zhou, G.J. Fang, L.Y. Yuan, et al. Deep ultraviolet and near infrared photodiode based on n-ZnO/p-silicon nanowire heterojunction fabricated at low temperature [J]. Appl Phys Lett, 2009,94,013503
    [66]D.M. Lyons, K.M. Ryan, M.A. Morris, et al. Tailoring the optical properties of silicon nanowire arrays through strain [J]. Nano Lett,2002,2 (8):811-816
    [67]H.T. Yu, S. Chen, X. Quan, et al. Silicon nanowire/TiO2 heterojunction arrays for effective photoelectrocatalysis under simulated solar light irradiation [J]. Appl Catal B,2009,90, 242-248
    [68]G. Kopitkovas, I. Mikulskas, K. Grigoras, et al. Solar cells with porous silicon:modification of surface-recombination velocity [J]. Appl Phys A,2001,73 (4):495-501
    [69]V. Sivakov, G. Andra, A.Gawlik, et al. Silicon Nanowire —ased Solar Cells on Glass: Synthesis, Optical Properties, and Cell Parameters [J]. Nano Lett,2009,9 (4):1549-1554
    [70]L. Remache, E. Fourmond, A. Mahdjoub et al. Design of porous silicon/PECVD SiOx antireflection coatings for silicon solar cells [J]. Mater Sci Eng B,2011,176 (1):45-48
    [71]H. Fang, X.D. Li, S. Song et al. Fabrication of slantingly-aligned silicon nanowire arrays for solar cell applications [J]. Nanotech,2008,19 (25):255703
    [72]J. Hahm, C.M. Lieber. Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors [J]. Nano Lett,2004,4(1):51-54
    [73]姜涛.多孔硅的湿度传感器特性研究[D].[硕士学位论文].上海:华东师范大学,2007
    [74]K.Q. Peng, X. Wang, S.T. Lee. Gas sensing properties of single crystalline porous silicon nanowires [J]. Appl Phys Lett,2009,95 (24):243112-243112-3
    [75]Z.P. Huang, N. Geyer, P. Werner, et al. Metal-assisted chemical etching of silicon:A review [J]. Adv Mater,2011,23 (2):285-308
    [76]冯飞.银/硅纳米孔柱阵列的表面增强拉曼散射效应研究[D].[硕士学位论文].郑州:郑州大学,2009
    [77]S. Efrima, H. Metiu. Classical theory of light scattering by a molecule [J]. Chem Phys Lett, 1978,60(1):59-64
    [78]G Chumanov, K. Sokolov, B.W. Gregory, et al. Colloidal metal films as a substrate for surface-enhanced spectroscopy [J]. J Phys Chem,1995,99 (23):9466-9471
    [79]Q. Cao, P. Lalanne. Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits [J]. Phys Rev Lett,2002,88 (5):57403
    [80]A. Campion, P. Kambhampati. Surface-enhanced raman scattering [J]. Chem Soc Rev,1998, 27 (4):241-250.
    [81]L. Gunnarsson, E.J. Bjerneld, H. Xu, et al. Interparticle coupling effects in nanofabricated substrates for surface-enhanced raman scattering [J]. Appl Phys Lett,2001,78 (6):802-804
    [82]M.L. Zhang, X. Fan, H.W. Zhou, et al. A high-efficiency surface-enhanced raman scattering substrate based on silicon nanowires array decorated with silver nanoparticles [J]. J Phys Chem C,2010,114 (5):1969-1975
    [83]N. Megouda, T. Hadjersi, G. Piret et al. Au-assisted electroless etching of silicon in aqueous HF/H2O2 solution [J]. Appl Surf Sci,2009,255 (12):6210-6216
    [84]Y.F. Zhang, Y.H. Tang, H.P. Peng, et al. Diameter modification of silicon nanowires by ambient gas [J]. Appl Phys Lett,1999,75 (13):1842-1844
    [85]张正荣,汪辉.半导体化学溶液的浓度控制[J].电子与封装,2008,8(1):33-36
    [86]M. Fleischmann, P.J. Hendra, A.J. McQuillan. Raman spectra of pyridine adsorbed at a silver electrode [J]. Chem Phys Lett,1974,26 (2):163-166
    [87]S.E. Hunyadi, C.J. Murphy. Bimetallic silver-gold nanowires:Fabrication and use in surface-enhanced raman scattering [J]. J Mater Chem,2006,16 (40):3929-3935
    [88]Y.L. Wang, H.J. Chen, S.J. Dong, et al. Surface enhanced raman scattering of p-aminothiophenol self-assembled monolayers in sandwich structure fabricated on glass [J]. J Chem Phys,2006,124:074709
    [89]L.H. Lu, A. Eychmuller. Ordered macroporous bimetallic nanostrucrures:Design, characterization, and applications [J]. Acc Chem Res,2008,41(2):244-253
    [90]GV.P. Kumar, S. Shruthi, B. Vibha, et al. Hot spots in Ag core-Au shell nanoparticles potent for surface-enhanced raman scattering studies of biomolecules [J]. J Phys Chem C,2007,111 (11):4388-4392
    [91]L. Rivas, S. Sanchez-Cortes, J.V. Garcia-Ramos, et al. Mixed silver/gold colloids:A study of their formation, morphology, and surface-enhanced raman activity [J]. Langmuir,2000,16 (25):9722-9728

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700