压缩载荷下纳米尺度薄膜材料破坏机理的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微尺度力学和MEMS系统中的低维材料性能研究是当今国际多学科交叉研究的热门课题。涉及力学问题有薄膜材料在残余应力和外载荷作用下的变形、应力、断裂和屈曲等。薄膜材料的力学性能,尤其在纳米尺度上的力学性能的研究具有重大的学术价值和广阔的应用前景。
    在本文中,我们选择信息工程中使用的具有代表性的薄膜/基底组合形式:一类是钛/聚碳酸脂,另一类是钛/有机玻璃; 利用真空对靶磁控溅射镀膜技术制作了50-150纳米间不同厚度的薄膜。需精确设置仪器参数,如:初始压力(真空度)、工作压力和沉积速度等,这样才能精确控制薄膜的沉积厚度。
    本文定性分析了皱折屈曲传播的机理,进行了屈曲分层的数学分析:薄膜中屈曲分层的稳定增长条件,可以用一个简单的方法计算得来,前提条件是增长的前端部分不做要求。这种方法的准确程度,依赖于对沿着屈曲传播前端分布的载荷相角的估计精度
    设计了新的差动式机械---对中受压加力装置,对薄膜施加均匀的轴向载荷。基底的加工精度、薄膜的镀膜技术、加力装置的加工精度等都会影响实验的结果。
    在外加单向压缩应力和残余应力的联合作用下,研究了薄膜和基底之间由脱粘到屈曲,屈曲又驱动脱粘,进而散裂的全过程。用OLYMPUS显微镜对屈曲形成的过程进行了详细的观察,观察了皱折屈曲成长、传播的全过程,并且对不同应力下的屈曲尺寸作了标定。
    利用有限元软件Ansys模拟屈曲的形成过程; 特别是讨论不同屈曲结构共存的状态。
The study about tiny scale mechanics and material performance in MEMS system today is a hot topic in the intercross investigation among many international subject . The mechanics behavior of membrane material under residual stress and compressive stress has been studied .Deformation,stress,fracture and buckle are involved.The mechanics behavior especially among nano scale is important and has widely application forground.
    In this paper we select the representative film and substrate combination.One is the combination of titanium and polysaccharide another is titanium and organic.We have samples with different thickness from 50 nanometer to 150 nanometer All the samples were deposited.During the deposition process we need to control many parameters which involve initial vacuum and work pressure and the speed of deposition.so that we can gain the exact thichness of film.
    In this paper we analyzed the mechanism of straight-sided bulking and the propagation of bulking driven delamintaion. Conditions for steady-state growth of buckling-driven delamination in thin film systems can be calculated by a simplified method where details around the growing front are not required. The simplified method relies upon estimates of the phase angle of loading along the propagation front of delamination.
    In this paper we have designed new compressive device.The film needs axial compressive stress .The acuuracy of experimental results relies on the machining of the substrate and the method of deposition.The machining accuracy of the compressive device can also affect the results.
     Under the condition of combination effect of axial compressive stress and residual stess we study the whole process from delamination to bulking .All the results can be gained by the use of OLYMPUS.We also observed the whole growing process of straighted-sided bulking .In this paper ,we measured the height of bulking under different stess and discussed the coexist of different bulking .In the end by the use of the ANSYS software we simulated the process of bulking .
引文
[1]Audoly, B., 1999. Stability of straight delamination blisters. Phys. Rev. Lett. 83 (20), 4124–4127.
    [2]Audoly, B., 2000. Mode-dependent toughness and the delamination of compressed thin films. J. Mech. Phys.Solids 48 (11), 2315–2332.
    [3]Chai, H., 1998. The post-buckling response of a bi-lateral constrained column. J. Mech. Phys. Solids 46 (7),1155–1181.
    [4]Cho, S.-J., Lee, K.-R., Eun, K.Y., Hahn, J.H., Ko, D.-H., 1999. Determination of elastic modulus and poisson’s ratio of diamond-like carbon films. Thin Solid Films 341, 207–210.
    [5]Colin, J., Cleymand, F., Coupeau, C., Grilhe, J., 2000. Worm-like delamination patterns of thin stainless steel films on polycarbonate substrates. Philos. Mag. A 80 (11), 2559–2565.
    [6]Evans, A.G., Hutchinson, J.W., 1984. On the mechanics of delamination and spalling in compressed films.Int. J. Solids Struct. 20 (5), 455–466.
    [7]Evans, A.G., Ruhle, M., Dalgleish, B.J., Charalambides, P.G., 1990. The fracture energy of biomaterial interfaces. Mater. Sci. Eng. A 126, 53–64.
    [8]Evans, A.G., He, M.Y., Hutchinson, J.W., 1997. E; ect of interface undulations on the thermal fatigue of thin films and scales on metal substrates. Acta Mater. 45 (9), 3543–3554.
    [9]Gille, G., Rau, B., 1984. Buckling instability and adhesion of carbon layers. Thin Solids Films 120, 109–121.
    [10]He, M.Y., Hutchinson, J.W., 1989a. Kinking of a crack out of an interface. J. Appl. Mech. 56, 270–278.
    [11]He, M.Y., Hutchinson, J.W., 1989b. Crack deGection at an interface between dissimilar elastic materials. Int.J. Solids Struct. 25 (9), 1053–1067.
    [12]He, M.-Y., Bartlett, A., Evans, A.G., Hutchinson, J.W., 1991. Kinking of a crack out of an interface: role of in-plane stress J. Amer. Ceramic Soc. 74 (4), 767–771.
    [13]Hutchinson, J.W., 2001. Delamination of compressed films on curved substrates. J. Mech. Phys. Solids 49 (9), 1847–1864.
    [14]Hutchinson, J.W., Suo, Z., 1992. Mixed mode cracking in layered materials. Adv. Appl. Mech. 29, 63–191.
    [15]Hutchinson, J.W., Thouless, M.D., Liniger, E.G., 1992. Growth and congurational stability of circular,buckling-driven delaminations. Acta Metall. Mater. 40 (2), 295–308.
    [16]Hutchinson, J.W., He, M.Y., Evans, A.G., 2000. The inGuence of imperfections on the nucleation and propagation of buckling driven delaminations. J. Mech. Phys. Solids 48 (4), 709–734.
    [17]Jensen, H.M., 1993. Energy release rates and stability of straight-sided, thin film delaminations. Acta Mater. 41, 601–607.
    [18]Jensen, H.M., Sheinman, I., 2001. Straight-sided, buckling-driven delamination of thin films at high stress levels Int. J. Fract., 110, 371–385.
    [19]Jensen, H.M., Sheinman, I., 2002. Numerical analysis of buckling driven delamination. Int. J. Solids Struct.,in press.
    [20]Jensen, H.M., Thouless, M.D., 1995. Buckling instability of straight edge cracks. J. Appl. Mech. 62, 620–625.
    [21] ADINA, 1994. ADINA Users Manual. ADINA R&D, Watertown, MA USA. Cao, H.C., Evans, A.G., 1989. An experimental study of the fracture resistance of bimaterial interfaces. Mechanics of Materials 7, 295–304.
    [22] Choi, S.R., Hutchinson, J.W., Evans, A.G., 1999. Delamination of multilayer thermal barrier coatings. Mechanics of Materials 31,431–447.
    [23] Dundurs, J., 1969. Edge-bonded dissimilar orthogonal elastic wedges. Journal of Applied Mechanics 36, 650–652.
    [24] Evans, A.G., Hutchinson, J.W., 1984. On the mechanics of delamination and spalling in compressed films.International Journal of Solids and Structures 20, 455–466.
    [25] Gille, G., Rau, B., 1984. Buckling instability and adhesion of carbon layers. Thin Solid Films 120, 109–121.
    [26] Gioia, G., Ortiz, M., 1996. Delamination of compressed thin films. Advances in Applied Mechanics 33, 119–192.
    [27] He, M.Y., Evans, A.G., Hutchinson, J.W., 1997. Convergent debonding of films and fibers. Acta Materialia 45, 3481–3489. Hutchinson, J.W., 2000. Delamination of compressed films on curved substrates. Harvard University Report, Mech 366.
    [28] Hutchinson, J.W., Suo, Z., 1992. Mixed mode cracking in layered materials. Advances in Applied Mechanics 29, 63–191.
    [29] Hutchinson, J.W., He, M.Y., Evans, A.G., 2000. The influence of imperfections on the nucleation and propagation of buckling driven delaminations. Journal of the Mechanics and Physics of Solids 48, 709–734.
    [30] Iyer, S.B., Harshavardhan, K.S., Kumar, V., 1995. Buckling patterns in diamond-like carbon films. Thin Solid Films 256, 94–100.
    [31] Jensen, H.M., 1993. Energy release rates and stability of straight-sided, thin-film delaminations. Acta Materialia 41, 601–607.
    [32] Jensen, H.M., Sheinman, I., 2001. Straight-sided, buckling-driven delamination at high stress levels. International Journal of Fracture 110, 371–385.
    [33] Jensen, H.M., Hutchinson, J.W., Kim, K.-S., 1990. Decohesion of a cut prestressed film on a substrate. International Journal of Solids and Structures 26, 1099–1114.
    [33]Matuda, N., Baba, S., Kinbara, A., 1981. Internal stress, Young’s modulus and adhesion energy of carbon films on glass substrates. Thin Solid Films 81, 301–305.
    [34] Ogawa, K., Ohkoshi, T., Takeuchi, T., Mizoguchi, T., Masumoto, T., 1986. Nucleation and growth of stress relief patterns in sputtered molybdenum films. Japanese Journal of Applied Physics 25, 695–700.
    [35] Ortiz, M., Gioia, G., 1994. The morphology and folding patterns of buckling-driven thin-film blisters. Journal of the Mechanics and Physics of Solids 42, 531–559.
    [36] Rice, J.R., 1988. Elastic fracture mechanics concepts for interfacial cracks. Journal of Applied Mechanics 55, 98–103.
    [37] Sergo, V., Clarke, D.R., 1998. Observation of subcritical spall propagation of a thermal barrier coating. Journal of the American Ceramic Society 81, 3237–3242.
    [38] Stringfellow, R.G., Freund, L.B., 1993. The effect of interfacial friction on the buckle-driven spontaneous delamination of a compressed thin film. International Journal of Solids and Structures 30, 1379–1395.
    [38] H.M. Jensen, I. Sheinman / International Journal of Solids and Structures 39 (2002) 3373–3386 3385
    [39] Suo, Z., Hutchinson, J.W., 1990. Interface crack between two elastic layers. International Journal of Fracture 43, 1–18.
    [40] Thouless, M.D., 1993. Combined buckling and cracking of films. Journal of the American Ceramic Society 76, 2936–2938.
    [41] Thouless, M.D., Hutchinson, J.W., Liniger, E.G., 1992. Plane-strain, buckling-driven delamination of thin films: model experiments and mode II fracture. Acta Materialia 40, 2639–2649.
    [42] Wang, J.-S., Evans, A.G., 1998. Measurement and analysis of buckling and buckle propagation in compressed oxide layers on superalloy substrates. Acta Materialia 46, 4993–5005.
    [43]Lee, K.-R., Baik, Y.-J., Eun, K.-Y., 1993. Stress relief behavior of diamond-like carbon (lms on glass Diamond Relat. Mater., 2.)
    [44]Matuda, N., Baba, S., Kinbara, A., 1981. Internal stress, Young’s modulus and adhesion energy of carbon(lms on glass substrates). Thin Solid Films 81, 301–305.
    [45]Moon, M.W., Chung, J.-W., Lee, K.-R., Oh, K.H., Wang, R., Evans, A.G., 2002. An experimental study of the inGuence of imperfections on the buckling of compressed thin (lms. Acta Mater). 50, 1219–1227.
    [46]Suo, Z., Hutchinson, J.W., 1990. Interface crack between two elastic layers. Int. J. Fract. 43, 1–18.
    [47]Thouless, M.D., Hutchinson, J.W., Liniger, E.G., 1992. Plane-strain, buckling-driven delamination of thin (lms: model experiments and mode-II fracture) Acta Metall. Mater. 40 (6), 2639–2649.
    [48]Weiderhorn, S.M., 1967. InGuence of water vapor on crack propagation in soda-lime glass. J. Amer. Ceramic Soc. 50 (8), 407–414.
    [49] Tuan A, Yoon M, Medvedev V, Ono Y, Ma Y, Rogers Jr. JW. Thin Solid Films 2000; 377-378:766.
    [50] Moon M-W, Jenson HM, Hutchinson JW, Oh KH, Evans AG, to be published.
    [51] Weiderhorn SM. J Am Ceram Soc 1967; 50:407.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700