用于太阳能制氢的染料敏化光电系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用染料敏化光电池(简称DSC,Dye-sensitized photocell)分解水制取氢气,将太阳能转化成电能和化学能,能有效地解决能源和环境污染问题,可以形成一种良性循环的能源体系,有可持续发展的前景。本文研究了可将太阳能转换成电能的染料敏化光电池的制备和优化。实验中以纳米TiO_2薄膜作为DSC的光阳极,通过优化使DSC获得了较高的光电压和光电流密度,并且利用染料敏化光电池得到的电能,作为分解水电极的电能来源。
     本文用溶胶-凝胶法和溶胶凝胶+粉末法两种方法制备染料敏化光电池的光阳极,通过比较两种方法制备的DSC的光电性能,最终选择了溶胶凝胶+粉末法制作的DSC作为分解水的光电单元。以电镀法在FTO导电玻璃上沉积铂制得铂对电极。另外,试验了多种染料作为染料敏化光电池的敏化剂,最终选择了曙红Y作为分解水制氢的光电单元的敏化剂。
     本文对影响TiO_2薄膜电极性能的聚乙二醇的分子量、膜厚、退火温度等因素进行了研究。结果表明,上述三个因素对TiO_2薄膜的微观结构均有影响。同时不同阳离子的掺杂以及掺杂量的不同也对TiO_2薄膜的光催化活性存在影响。综合了最佳的制备工艺,得到优化的太阳能电池(面积5mm×5mm)的光电压为0.628V,短路光电流密度为1.15mA/cm~2,填充因子为0.425,最大功率为0.307mW/cm~2,最后的光电转化效率为0.42%。
     利用染料敏化光电池耦合分解水电极来制取氢气,比传统的光电解池电解水制氢能耗要小得多,而且因为整个太阳能电池系统是处在空气中,也同时解决了光电解池中电解水电极腐蚀严重的问题。实验中研究了三个染料敏化光电池串联作为光电单元的工作情况,整个光电系统的开路电压为1.547V,说明利用多染料敏化光电池串联分解水制取氢气的可行性。
Awareness of the disastrous consequences of environmental pollution and climate change is growing rapidly. Solar energy driven water splitting is the most promising alternative for the fuel of the future. One of the most promising methods of obtaining hydrogen is by using solar energy from photovoltaic-based electrolysis. A research focused on harvesting solar energy to produce hydrogen by using dye-sensitized solar cell was studied in the paper. We prepared the nano-TiO_2 thin film photo-electrodes by the methods of sol-gel and sol-gel plus powder, comparing the photoelectric performances of DSC made from two methods. We choosed the DSC made from sol-gel plus powder as photoelectric unit of water spiltting. The Pt counter-electrode was prepared by the method of electroplating, decomposing the Pt on the base of FTO glass. And we test many pigments as sensitized dye, the Bromeosin Y was selected as sensitizers finally.
     The main influencing factors of TiO_2 electrode such as the molecular weight of PEG(Polyethylene glycol), coating times and annealing temperature were detailed studied. The microstructure of titania films could be modulated by the molecular weight of PEG、coating times and treating temperature. Based on such preparation technics, we obtained the optimized solar cell(area:5mm×5mm)with photo-voltage 0.628V、photo-current density 1.15mA/cm~2, fill factor 0.425, peak power 0.307mW/cm~2 and photoelectric conversion efficiency 0.42%.
     It needs much less energy to electrolyze water by dye sensitized photocell than the traditional photo-electrolysis cells, and solves the corrosion problem of electrode in electrolytic cell because the whole solar power system is in the air. We used three serial dye sensitized solar cells as energy sources, making the open circuit voltage of 1.547V, which showed the feasibility of hydrogen generation from water by dye-sensitized solar cell.
引文
[1] Chapin D M, Fuller C S, Pearson G L. A new silicon p-n junction photocell for converting solar radiation into electrical powerc[J]. J Appl Phys, 1954, 25:676-677·
    [2]梁宗存,沈辉,李戬洪.太阳能电池研究进展[J].能源工程,2000,4,8~11
    [3] Olea A, Ponce G, Sebastian P J. Electrontransfer via organic dyes for solar conversion [J].Sol Energy Mater Sol Cells, 1999, 59:137-143.
    [4] Regan O', Grabzel M. A low co-stand high efficiency solar cell based on dye-sensitized colloidal TiO2 films [J]. Nature, 1991, 353: 737-740.
    [5] Nazeetuddin M K, Grabzel M. Conversion of light to electricity by cis2X2Bis ruthenium charge-transfer sensitizes (X=Cl-,Br-,I-,CN-and SCN-)on nano-crystalline TiO2 electrodes [J]. J. Am. Chem. Soc, 1993, 115: 6382- 6390.
    [6] Cherepy N J, Smesad G P, Gr?tzel M. Calculation of the photocurrent potential characteristic for regenerative, sensitized semiconductor electrodes [J]. Phys. Chem. (B),1997, 101:342- 351.
    [7]鲁厚芳,阎康平,涂铭旌.影响染料敏化二氧化钛纳米晶太阳能电池的因素[J].现代化工,2004,24(1):16~19.
    [8] A.Fujishima, K.Honda, Electrochemical photolysis of water at a semiconductor electrode[J].Nature, 1972, 238, 37-38.
    [9]周菊枚.纳米TiO2薄膜光电化学电池制备及性能研究[D].四川大学硕士论文.2006(5):5
    [10]冯文辉,宋延林,土德军,等.紫外光照处理对TiO2膜光伏性能的影响[J].高等学校化学学报,2004, 25(6):1142~1144.
    [11]吴季怀,郝三存,林建明,等.染料敏化TiO2纳晶太阳能电池研究进展[J].华侨大学学报(自然科学版),2003,24(4):335~342.
    [12]李传峰,钟顺和.溶胶凝胶法合成聚酞亚胺二氧化钛杂化膜[J].高分了学报,2002,3:326~330.
    [13]高濂,郑珊,张青红.纳米氧化钛光催化材料及其应用[M].北京:化学工业出版社2002:88.
    [14]戴松元,邹钦祟,王孔嘉,等.TiO2 (锐钛矿)纳米晶体薄膜的制备[J].科学通报,1996,41,(17):1560~1562.
    [15] Tesfamichael Tuquabo, Will Geoffrey, Bell John et al. Characterization of a commercial dye-sensitised Titania solar cell electrode[J]. Solar Energy Materials&Solar Cells, 2003, 76:25~35.
    [16] Shingo Kambe, Kei Murakoshi, Shozo Yanagida et al. Mesoporous electrodes having tight agglomeration of single-phase anatase TiO2 nanocrystallites: Application to dye-sensitized solar cells[J]. Solar Energy Materials&Solar Cells,2000, 61:427-441.
    [17]杨蓉,王维波,敬炳文,等.苯基磷酸联吡啶钌络合物敏化纳晶多孔TiO2薄膜电极光电性能研究[J].感光科学与光化学,1997,15(4):293~296.
    [18]肖美群,沈嘉年,等.Fe3+离了对二氧化钛光电化学催化性能的影响[J].电化学,2004,04.56~60.
    [19] R.Asahi et al. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides[J]. Science, 2001, 293:269-271.
    [20] Shahed U. M. Khan, et al. Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2 [J]. Science, 2002, 297, 2243-2245.
    [21]刘志强,李先国,冯丽娟.二氧化钛薄膜的改性技术研究进展[J].表面技术,2006,35(1):9~11.
    [22] Bandara J, WeerasingheH C. Literature Survey Photovoltaics literature survey[J]. Solar Energy Materials and Solar Cells, 2005, 88(4): 341-350
    [23] Sommeling P M, O’Regan B C, Haswell R Retal. Nanocrystalline titanium oxide electr- odes for photovoltaic applications[J]. Journal of Physical Chemistry B, 2006, 110(39): 19191-19197
    [24] Zeng L Y, Dai S Y, Wan K Jetal. Mechanism of Enhanced Performance of Dye-Sensitized Solar Cell Based TiO2 Films Treated by Titanium Tetrachloride[J]. Chinese Physics Letters,2004, 21(9): 1835-1837.
    [25] Gregg B A, Chen S G, Ferrere S. Enhanced Dye-Sensitized Photoconversion Efficiency via Reversible Production of UV-Induced Surface States in Nanoporous TiO2[J]. Journal of Physical Chemistry B, 2003, 107(13): 3019-3029.
    [26] Xia J B, Masaki N, Jiang K Jetal. Importance of Blocking Layers at Conducting Glass/ TiO2 Interfaces in Dye-sensitized Ionic-liquid Solar Cells[J]. Chemistry Letters, 2006, 35(3): 252-253.
    [27] Kumara G R A, Okuva M,Murakami K et al. Dve-sensitized solid-state solar cells made from magnesiumoxide-coated nanocrystalline titanium dioxide films: enhancement of the efficiency[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2004,164: 183-185.
    [28]杨术明,李富友,黄春辉.染料敏化稀土离了修饰二氧化钛纳米晶电极的光电化学性质[J].中国科学(B辑),2003,33(1):59~65.
    [29]郝三存,吴季怀,林建明,等.铂修饰光阴极及其在纳晶太阳能电池中的应用[J].感光科学与光化学,2004,22(3):175~182.
    [20] Key Andreas, Gr?tzel Michael. Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder[J]. Solar Energy Materials&Solar Cells 1996, 44:99-117.
    [31]范乐庆,吴季怀,黄昀昉,等.阴极修饰对染料敏化TiO2太阳能电池性能的改进[J].电子元件与材料,2003,22(5):1~3.
    [32]黄春辉,李富友,黄岩谊.光电功能超薄膜[M].北京:北京大学出版社2001:404.
    [33] Pivovarov A P, KaplunovM G, Yakushchenko I K. Nano-structure ZnO electrodes fordye-sensitized solar cell applications[J]. Russian Chemical Bulletin, International Edition,2002, 51:67-71.
    [39] Wang P, Zakeeruddin S M, Moser J E, et al. A Ruthenium Complex with Superhigh Light-Harvesting Capacity for Dye-Sensitized Solar Cells[J]. Adv Mater, 2004, 16: 1806- 1811.
    [34] Nazeeruddin M K , Zakeeruddin S M, Baker R H, et al. Highly Selective and Reversible Optical, Colorimetric, and Electrochemical Detection of Mercury(Ⅱ) by Amphiphilic Ruthenium Complexes Anchored onto Mesoporous Oxide Films[J]. Inorg Chem, 1999, 38:6298-6305.
    [35] Wang P, Klein C, Baker R H, et al. A Ruthenium Complex with Superhigh Light-Harves- ting Capacity for Dye-Sensitized Solar Cells[J]. Nat Mater, 2003, 2:402-403.
    [36] Wang Z S, Cui Y, Hara K,et al. Review of Recent Progress in Dye-Sensitized Solar Cells.16th International Conference of Photochemical Conversion and Solar Storage. 2006[C] Uppsala ,Sweden. W4-P-95.
    [37] Li S L, Jiang KJ, Shao K F, et al.Novel organic dyes for efficient dye-sensitized solar cells[J]. Chem Commun, 2006, 14(26):2792-2794.
    [38] Horiuchi T, Miura H, Sumioka K, et al. High efficiency of dye-sensitized solar cells based on metal-free indoline dyes[J]. J Am Chem Soc,2004,126:12218-12219.
    [39] Ito S, Zakeeruddin S M, Humphry-Baker R, et al .High-efficiency organic-dye-sensitized solar cells controlled by nanocrystalline-TiO2 electrode thickness[J] Adv Mater, 2006,18 (9):1202-1205
    [40] Gr?tzel M. Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells[J]Photochem Photobio, 2004 , 164 :3-14
    [41] Zaban A, Micic O I, Gregg B A, et al. Photosensitization of nanoporous TiO2 electrodes with InP quantum dots[J].Langmuir, 1998, 14(12) :3153-3156.
    [42] Wang P, Zakeeruddin S M, Exnar I, et al. High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte[J].Chem Commun, 2002, 24:2972-2793.
    [43] KuhoW, Kitamura T, Hanabusa K, et al. Quasi-solid-state dye-sensitized solar cells using room temperature molten salts and a low molecular weight gelator[J]. Chem Commun, 2002,4:374-375.
    [44] Wang P, Zakeeruddin S M, Comte P, et al. Gelation of ionic liquid-based electrolytes with silica nanoparticles for Quasi-Solid-State dye-sensitized solar cells[J]. J Am Chem Soc. 2003, 125:1166-1167.
    [45]史成武,戴松元,王孔嘉,等.染料敏化纳米薄膜太阳电池中电解质的研究进展[J].化学通报,2005,68:w001.
    [46]潘旭,戴松元,王孔嘉,等.染料敏化纳米薄膜太阳电池中离子液体基电解质的研究进展[J].物理化学学报,2005,21:697~702.
    [47] Huynh W U, Dittmer J J, Alivisatos A P. Hybrid Nanorod-Polymer Solar Cells[J]. Science, 2002,295: 2425-2427
    [48] Wang P, Zakeeruddin S M, Mosey J E, et al. A Solvent-Free, SeCN-/(SeCN)3- Based Ionic Liquid Electrolyte for High-Efficiency Dye-Sensitized Nanocrystalline Solar Cells[J]. J Am Chem Soc, 2004, 126 (23): 7164-7165.
    [49] Bach U, Luppo D, Comte P, et al. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies[J]. Nature, 1998, 395: 583-585.
    [50] Spiekermann S, Smestad G, Kowalik J, et al. Poly(4-undecyl-2,2 '-bithiophene) as a hole conductor in solid state dye sensitized titanium dioxide solar cells[J].Synthetic Metals, 2001,121:1603-1604.
    [51] Saito Y, Kitamura T, Wada Y, et al. Poly(3,4-ethylene dioxythiophene) as a hole conductor in solid state dye sensitized solar cells[J].Synthetic Metals,2002. 131:185-187.
    [52]吕笑梅,方靖淮,陆祖宏,等.敏化TiO2纳米晶太阳能电池[J].功能材料,1998,29(6):574~578.
    [53] W. P. Tai, K.Inoue, Ruthenium dye-sensitized SnO2/TiO2 coupled solar cells[J], Solar Energy Materials and Solar Cells, 2002, 71(1-4): 553-557
    [54] M.Gr?tzel. Dye-sensitized solar cells[J], Journal of Photochemistry and Photobiology C, Photochemistry Reviews, 2003, 4(2):145-153.
    [55] G. P. Smestada, S. Spiekermann, J. Kowalik, A technique to compare polythiophene solid-state dye sensitized TiO2 solar cells to liquid junction devices[J]. Solar Energy Materials and Solar Cells, 2003, 76(1-4): 85-105
    [56] R.N.Pandey, K.S.Chandra Babu, O.N. Srivastava.High conversion efficiency photoelectr -ochemical solar cells[J]. Progress in surface science, 1996, 52 (03):125-192
    [57]高镰,郑珊,张青红.纳米氧化钛光催化材料及其应用[M].北京:化学工业出版社,2002:65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700