银纳米材料可控合成及其在表面增强光谱中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面等离子体共振是金属纳米材料非常独特的光学特性,以表面等离子体共振为基础的表面增强光谱(Surface Enhanced Spectroscopy, SES)是纳米材料研究领域的重要前沿方向。基于SES研究现状,本文设计合成了特殊形貌与结构的纳米粒子,调控其组装维度,并将其用于增强光谱的研究。主要内容和创新性成果如下:
     1.分阶段以酒石酸钠和柠檬酸钠作为结构导向剂和还原剂,采用光诱导技术制备了产率较高的四面体银纳米晶。四面体银纳米晶由{111}晶面组成,具有Td对称性,光学性质与众不同,是一类极具代表性的模型化金属等离子体材料。通过静电组装技术制备了大面积带尖顶的四面体银纳米晶组装膜,由于尖端电磁场的巨大增强,吸附上的分子的拉曼和荧光信号会被放大。用苯硫酚分子考察了四面体银纳米晶组装膜的SERS增强性能,估算其增强因子高于106。进一步将组装膜的应用扩展到表面增强荧光中。在最优化的间隔距离下,选择荧光分子Atto 610,观察到明显的表面增强荧光现象,验证了荧光增强机理。这说明,四面体银纳米晶是构成基于SERS和SEFS传感器的最重要和最有应用前景的材料之一。
     2.通过原位还原和生长方法制备了银-聚电解质复合多层膜。采用罗丹明6G和4-巯基吡啶考察了这种基底的SERS增强性和重现性。结果证明,通过这种方法制备出的SERS活性基底满足了实际分析应用的几个重要特征:增强效果好,重现性佳,易于批量制备和储存。
Metal nanostructures exhibit remarkable optical properties due to their surface plasmon resonance. Based on the SPR property, surface enhanced spectroscopy (SES) points to the very promising future in the nanomaterial domain, of which surface enhanced Raman spectroscopy (SERS) and surface enhanced fluorescence spectroscopy (SEFS) are widely investigated. With the development of nanotechnology, SERS research developed rapidly. However, theoretical studies of SERS phenomenon, the reproducibility of SERS spectra, the expansion of substrate materials as well as the generality of surface morphology are the pivotal aspects all the SERS researchers devote to. For SEFS, utill recently, experimental and theoretical research has also made a major breakthrough. Metallic nanoparticles have been shown to enhance the fluorescence emission, decrease the molecular excited-state lifetimes of vicinal fluorophores, enhance the quantum yield, and stabilize adjacent fluorophores against photobleaching. These advantages make SEFS detection in biological analysis, and many other areas of the prospects for broader application. At the present time, most of the SEFS researches focus on two aspects: 1) enhancement in the vincity of LSPR tunable nanoshells and nanorods ranging into NIR region in solution. 2) enhancement on the silver-island films formed either by chemical deposition from solution or by evaporation of silver under high vacuum. Few researches utilizing self-assemble anisotropic metallic nanocrystal films were reported. As is well-known, SERS and SEFS are both intensively dependent on the metallic nanostructure. Therefore, the surface enhanced spectroscopy can be controllably researched by optimizing the nanoparticle topology and assembly dimensions, which will greatly promote the development of the SES theory and applications. Based on the SES development, our study is outlined as follows:
     1. The light-driven growth method has been proven to be one of the most successful approaches to produce size- and shape controlled metallic nanoparticles. However, the origin of anisotropic growth in the photoinduced growth process is not related to plasmon excitation but rather to intrinsic aspects of the seeds, such as structural defects or the capping reagent. Successfully utilizing tartrate and citrate as structural-directing reagents at the appropriate stages of reaction, we have prepared, in large scale, regularly tetrahedral silver nanocrystals developed from silver spherical seeds through a light-driven method. The growth process is monitored by ultraviolet-visible spectroscopy and transmission electron microscopy. A preliminary growth mechanism of TSNCs is proposed. For the Td symmetry, TSNCs display a striking beauty and show their intriguing optical properties for the research fields such as surface enhanced spectroscopy, as well as plasmonic materials.
     2. The sharp vertexes of TSNCs can generate strong localized electromagnetic field for SERS studies. The nanocrystals were assembled through electrostatic interaction to develop large-scale particle surfaces with sharp vertexes. Compared to the truncated tetrahedral Ag nanoparticle arrays formed by nanosphere lithography (NSL), researches of single-crystal nanoparticles assembly film will enable us to obtain the most essential information of nanoparticles. Benzenethiol and 4-mercaptopyridine were used as the probes to evaluate their SERS enhancement, and enhancement factors of up to 106 were reached. SERS substrates with high reproducibility were formed through layer-by-layer electrostatic assembly of TSNCs. Finally, the SERS enhancement ability of self-assembled quasispherical nanoparticles, triangular nanoplates and tetrahedral nanocrystals films was studied. When the LSPR bands of these nanoparticles were not exactly matched with the excitation laser line, the SERS activity of quasispherical silver nanoparticles was significantly stronger than the triangle and tetrahedron due to the exposed active crystal faces and“hot spots”between the adjacent nanoparticles. Under the same experimental condition, the SERS activity of TSNCs is higher than the triangular nanoplates.
     3. The application of self-assembled TSNCs films were extended to SEFS. Polyelectrolyte multilayers were used as the effective spacing layers between the TSNCs films and fluorophore. Under the optimized spacing bilayers, using Atto 610 as a probe molecule, we investigated the metal enhanced fluorescence of TSNCs: enhanced fluorescence and fluorescence quenching / fluorescence and enhanced fluorescence. Compared with Atto 610 on a glass slide, the fluorescence intensity was enhanced by about 3-fold by the TSNCs. Tetrahedral silver nanocrystals must then be invaluable as a core material of molecular sensors operating via both SERS and SEFS.
     4. The Ag substrate was found to meet the essential criteria of a truly useful SERS substrate for application relevant to surface chemical analysis: strongly enhancing, reproducible, easy to fabricate and store. We reported a uniform silver surface prepared by silver nucleation in the PEM and silver-enlarged growth in Li Silver. This method has several advantages. First, the uniform size of the Ag nuclei in the PEM optimized the dispersion of Ag aggregates in the following Ag growth step. Secondly, the application of Li Silver has proved to be an effective and simple approach for controlling the surface morphology of the silver-containing film. Rhodamine 6G and 4-mercaptopyridine were used as Raman probes to evaluate the enhancement ability of the new Ag substrate. It is found that the novel silver surface is an effective SERS-active substrate that can not only provide strong enhancement factors and greater reproducibility, but is also facile and relatively inexpensive to fabricate and store.
引文
1. Whitesides, G. M.; Mathias, J. P.; Seto, C. T. Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science 1991, 254 (5036), 1312-1319.
    2. Daniel, M. C.; Astruc, D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2004, 104 (1), 293-346.
    3. Li, W. Z.; Xie, S. S.; Qian, L. X.; Chang, B. H.; Zou, B. S.; Zhou, W. Y.; Zhao, R. A.; Wang, G. Large-Scale Synthesis of Aligned Carbon Nanotubes. Science 1996, 274 (5293), 1701-1703.
    4. Taleb, A.; Diamond, J.; McGarvey, J. J.; Beattie, J. R.; Toland, C.; Hamilton, P. W. Raman microscopy for the chemometric analysis of tumor cells. J. Phys. Chem. B 2006, 110 (39), 19625-19631.
    5. Templeton, A. C.; Wuelfing, W. P.; Murray, R. W. Monolayer-protected cluster molecules. Acc. Chem. Res. 2000, 33 (1), 27-36.
    6. Crooks, R. M.; Zhao, M.; Sun, L.; Chechik, V.; Yeung, L. K. Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. Acc. Chem. Res. 2001, 34 (3), 181-190.
    7. Sun, S.; Murray, C. B.; Weller, D.; Folks, L.; Moser, A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 2000, 287 (5460), 1989-1992.
    8. Bao, P.; Frutos, A. G.; Greef, C.; Lahiri, J.; Muller, U.; Peterson, T. C.; Warden, L.; Xie, X. High-sensitivity detection of DNA hybridization on microarrays using resonance light scattering. Anal. Chem. 2002, 74 (8), 1792-1797.
    9. Haes, A. J.; Van Duyne, R. P. A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J. Am. Chem. Soc. 2002, 124 (35), 10596-10604.
    10. Tian, Z. Q.; Jiang, S. P.; Liang, Y. M.; Shen, P. K. Synthesis and characterization of platinum catalysts on multiwalled carbon nanotubes by intermittent microwave irradiation for fuel cell applications. J. Phys. Chem. B 2006, 110 (11), 5343-5350.
    11. Xu, S. P.; Ji, X. H.; Xu, W. Q.; Li, X. L.; Wang, L. Y.; Bai, Y. B.; Zhao, B.; Ozaki, Y. Immunoassay using probe-labelling immunogold nanoparticles with silver staining enhancement via surface-enhanced Raman scattering. Analyst 2004, 129 (1), 63-68.
    12. Xu, W. Q.; Xu, S. P.; Lu, Z. C.; Chen, L.; Zhao, B.; Ozaki, Y. Ultrasensitive detection of 1,4-bis(4-vinylpyridyl)phenylene in a small volume of low refractive index liquid by surface-enhanced Raman scattering-active light waveguide. Appl. Spectrosc. 2004, 58 (4), 414-419.
    13. Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; Letsinger, R. L.; Mirkin, C. A. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 1997, 277 (5329), 1078-1081.
    14. Mirkin, C. A.; Letsinger, R. L.; Mucic, R. C.; Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 1996, 382 (6592), 607-609.
    15. Coe, S.; Woo, W. K.; Bawendi, M.; Bulovic, V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 2002, 420 (6917), 800-803.
    16. Klimov, V. I.; Mikhailovsky, A. A.; Xu, S.; Malko, A.; Hollingsworth, J. A.; Leatherdale, C. A.; Eisler, H.; Bawendi, M. G. Optical gain and stimulated emission in nanocrystal quantum dots. Science 2000, 290 (5490), 314-317.
    17. Faraday, M. Experimental relations of gold (and other metals) to light. Phil. Trans. R. Soc. 1857, 147, 145-181.
    18. Mie, G. A contribution to the optics of turbid media: Special colloidal metal solutions. Ann. Phys. 1908, 25 (377), 445.
    19. Debye, P. Der Lichtdruck auf Kugeln von beliebigem Material. Ann. Phys 1909, 30, 57-136.
    20. Kerker, M. The Scattering of Light and Other Electromagnetic Radiation; New York, 1969.
    21. Willets, K. A.; Van Duyne, R. P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 2007, 58, 267-297.
    22. Maier, S. A.; Kik, P. G.; Atwater, H. A.; Meltzer, S.; Harel, E.; Koel, B. E.; Requicha, A. A. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat. Mater. 2003, 2 (4), 229-232.
    23. Bohren, C. F.; Huffman, D. R. Absorption and Scattering of Light by SmallParticles; Wiley Interscience: New York, 1983.
    24. Draine, B. T.; Flatau, P. J. Discrete-dipole approximation for periodic targets: theory and tests. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2008, 25 (11), 2693-2703.
    25. Collinge, M. J.; Draine, B. T. Discrete-dipole approximation with polarizabilities that account for both finite wavelength and target geometry. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2004, 21 (10), 2023-2028.
    26. Bian, R. X.; Dunn, R. C.; Xie, X. S.; Leung, P. T. Single molecule emission characteristics in near-field microscopy. Phys. Rev. Lett. 1995, 75 (26), 4772-4775.
    27. Danckwerts, M.; Novotny, L. Optical frequency mixing at coupled gold nanoparticles. Phys. Rev. Lett. 2007, 98 (2), 026104.
    28. Hirsch, L. R.; Stafford, R. J.; Bankson, J. A.; Sershen, S. R.; Rivera, B.; Price, R. E.; Hazle, J. D.; Halas, N. J.; West, J. L. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. U. S. A 2003, 100 (23), 13549-13554.
    29. O'Neal, D. P.; Hirsch, L. R.; Halas, N. J.; Payne, J. D.; West, J. L. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett. 2004, 209 (2), 171-176.
    30. Link, S.; El-Sayed, M. A. Optical properties and ultrafast dynamics of metallic nanocrystals. Annu. Rev. Phys. Chem. 2003, 54, 331-366.
    31. Nehl, C. L.; Liao, H.; Hafner, J. H. Optical properties of star-shaped gold nanoparticles. Nano Lett. 2006, 6 (4), 683-688.
    32. Mock, J. J.; Barbic, M.; Smith, D. R.; Schultz, D. A.; Schultz, S. Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J. Chem. Phys. 2002, 116 (15), 6755-6759.
    33. Ning, X. H.; Xu, S. P.; Dong, F. X.; An, J.; Tang, B.; Zhou, J.; Xu, W. Q. Gold-silver Framework Monolayer Nanostructure Prepared by in-situ Sacrificial Template Reaction and Their Application for SERS. Chem. J. Chinese U. -Chinese 2009, 30 (1), 159-163.
    34. Jana, N. R.; Gearheart, L.; Obare, S. O.; Murphy, C. J. Anisotropic chemical reactivity of gold spheroids and nanorods. Langmuir 2002, 18 (3), 922-927.
    35. Gao, J. X.; Bender, C. M.; Murphy, C. J. Dependence of the gold nanorod aspect ratio on the nature of the directing surfactant in aqueous solution. Langmuir 2003, 19 (21), 9065-9070.
    36. Gole, A.; Murphy, C. J. Seed-mediated synthesis of gold nanorods: Role of the size and nature of the seed. Chem. Mater. 2004, 16 (19), 3633-3640.
    37. Petrova, H.; Perez, J. J.; Pastoriza-Santos, I.; Hartland, G. V.; Liz-Marzan, L. M.; Mulvaney, P. On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating. Phys. Chem. Chem. Phys. 2006, 8 (7), 814-821.
    38. Hao, E.; Kelly, K. L.; Hupp, J. T.; Schatz, G. C. Synthesis of silver nanodisks using polystyrene mesospheres as templates. J. Am. Chem. Soc. 2002, 124 (51), 15182-15183.
    39. Puntes, V. F.; Zanchet, D.; Erdonmez, C. K.; Alivisatos, A. P. Synthesis of hcp-Co Nanodisks. J. Am. Chem. Soc. 2002, 124 (43), 12874-12880.
    40. Jin, R.; Cao, Y.; Mirkin, C. A.; Kelly, K. L.; Schatz, G. C.; Zheng, J. G. Photoinduced conversion of silver nanospheres to nanoprisms. Science 2001, 294 (5548), 1901-1903.
    41. Jin, R.; Cao, Y. C.; Hao, E.; Metraux, G. S.; Schatz, G. C.; Mirkin, C. A. Controlling anisotropic nanoparticle growth through plasmon excitation. Nature 2003, 425 (6957), 487-490.
    42. Nelayah, J.; Gu, L.; Sigle, W.; Koch, C. T.; Pastoriza-Santos, I.; Liz-Marzan, L. M.; van Aken, P. A. Direct imaging of surface plasmon resonances on single triangular silver nanoprisms at optical wavelength using low-loss EFTEM imaging. Opt. Lett. 2009, 34 (7), 1003-1005.
    43. Manna, L.; Milliron, D. J.; Meisel, A.; Scher, E. C.; Alivisatos, A. P. Controlled growth of tetrapod-branched inorganic nanocrystals. Nat. Mater. 2003, 2 (6), 382-385.
    44. Ahmadi, T. S.; Wang, Z. L.; Green, T. C.; Henglein, A.; El-Sayed, M. A. Shape-Controlled Synthesis of Colloidal Platinum Nanoparticles. Science 1996, 272 (5270), 1924-1926.
    45. Sun, Y.; Xia, Y. Shape-controlled synthesis of gold and silver nanoparticles. Science 2002, 298 (5601), 2176-2179.
    46. Brinson, B. E.; Lassiter, J. B.; Levin, C. S.; Bardhan, R.; Mirin, N.; Halas, N. J. Nanoshells Made Easy: Improving Au Layer Growth on Nanoparticle Surfaces. Langmuir 2008.
    47. Bishnoi, S. W.; Rozell, C. J.; Levin, C. S.; Gheith, M. K.; Johnson, B. R.; Johnson, D. H.; Halas, N. J. All-optical nanoscale pH meter. Nano Lett. 2006, 6 (8), 1687-1692.
    48. Hirsch, L. R.; Gobin, A. M.; Lowery, A. R.; Tam, F.; Drezek, R. A.; Halas, N. J.; West, J. L. Metal nanoshells. Ann. Biomed. Eng 2006, 34 (1), 15-22.
    49. Wang, H.; Goodrich, G. P.; Tam, F.; Oubre, C.; Nordlander, P.; Halas, N. J. Controlled texturing modifies the surface topography and plasmonic properties of Au nanoshells. J. Phys. Chem. B 2005, 109 (22), 11083-11087.
    50. Wang, H.; Brandl, D. W.; Nordlander, P.; Halas, N. J. Plasmonic nanostructures: artificial molecules. Acc. Chem. Res. 2007, 40 (1), 53-62.
    51. Murphy, C. J.; Gole, A. M.; Hunyadi, S. E.; Stone, J. W.; Sisco, P. N.; Alkilany, A.; Kinard, B. E.; Hankins, P. Chemical sensing and imaging with metallic nanorods. Chem. Commun. 2008, (5), 544-557.
    52. Tao, A. R. Nanocrystal assembly for bottom-up plasmonic materials and surface-enhanced Raman spectroscopy (SERS) sensing. Pure Appl. Chem. 2009, 81 (1), 61-71.
    53. Murray, W. A.; Barnes, W. L. Plasmonic materials. Adv. Mater. 2007, 19 (22), 3771-3782.
    54. Zhang, X. Y.; Yonzon, C. R.; Van Duyne, R. P. Nanosphere lithography fabricated plasmonic materials and their applications. J. Mater. Res. 2006, 21 (5), 1083-1092.
    55. Haes, A. J.; Haynes, C. L.; McFarland, A. D.; Schatz, G. C.; Van Duyne, R. R.; Zou, S. L. Plasmonic materials for surface-enhanced sensing and spectroscopy. MRS Bull. 2005, 30 (5), 368-375.
    56. Jun, Y. W.; Choi, J. S.; Cheon, J. Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. Angew. Chem. Int. Ed. 2006, 45 (21), 3414-3439.
    57. Pietrobon, B.; McEachran, M.; Kitaev, V. Synthesis of size-controlled faceted pentagonal silver nanorods with tunable plasmonic properties and self-assembly of these nanorods. ACS Nano 2009, 3 (1), 21-26.
    58. Andersson, M.; Pedersen, J. S.; Palmqvist, A. E. Silver nanoparticle formation in microemulsions acting both as template and reducing agent. Langmuir 2005, 21 (24), 11387-11396.
    59. Lu, Y.; Liu, G. L.; Lee, L. P. High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate. Nano Lett. 2005, 5 (1), 5-9.
    60. Jiang, P.; Li, S. Y.; Xie, S. S.; Gao, Y.; Song, L. Machinable long PVP-stabilized silver nanowires. Chemistry 2004, 10 (19), 4817-4821.
    61. Lu, Y.; Lu, X. M.; Mayers, B. T.; Herricks, T.; Xia, Y. N. Synthesis and characterization of magnetic Co nanoparticles: A comparison study of three different capping surfactants. J. Solid State Chem. 2008, 181 (7), 1530-1538.
    62. Sun, Y. G.; Mayers, B.; Herricks, T.; Xia, Y. N. Polyol synthesis of uniform silver nanowires: A plausible growth mechanism and the supporting evidence. Nano Lett. 2003, 3 (7), 955-960.
    63. Greene, L. E.; Yuhas, B. D.; Law, M.; Zitoun, D.; Yang, P. D. Solution-grown zinc oxide nanowires. Inorg. Chem. 2006, 45 (19), 7535-7543.
    64. Coronado, E.; Ribera, A.; Garcia-Martinez, J.; Linares, N.; Liz-Marzan, L. M. Synthesis, characterization and magnetism of monodispersed water soluble palladium nanoparticles. J. Mater. Chem. 2008, 18 (46), 5682-5688.
    65. Chen, J. Y.; Lim, B.; Lee, E. P.; Xia, Y. N. Shape-controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications. Nano Today 2009, 4 (1), 81-95.
    66. Tao, A. R.; Habas, S.; Yang, P. D. Shape control of colloidal metal nanocrystals. Small 2008, 4 (3), 310-325.
    67. Grzelczak, M.; Perez-Juste, J.; Mulvaney, P.; Liz-Marzan, L. M. Shape control in gold nanoparticle synthesis. Chem. Soc. Rev. 2008, 37 (9), 1783-1791.
    68. Wiley, B. J.; Chen, Y. C.; McLellan, J. M.; Xiong, Y. J.; Li, Z. Y.; Ginger, D.; Xia, Y. N. Synthesis and optical properties of silver nanobars and nanorice. Nano Lett. 2007, 7 (4), 1032-1036.
    69. Caswell, K. K.; Bender, C. M.; Murphy, C. J. Seedless, surfactantless wet chemical synthesis of silver nanowires. Nano Letters 2003, 3 (5), 667-669.
    70. Lee, S. M.; Cho, S. N.; Cheon, J. Anisotropic shape control of colloidal inorganic nanocrystals. Adv. Mater. 2003, 15 (5), 441-444.
    71. Peng, Z. A.; Peng, X. G. Mechanisms of the shape evolution of CdSe nanocrystals. J. Am. Chem. Soc. 2001, 123 (7), 1389-1395.
    72. Manna, L.; Scher, E. C.; Alivisatos, A. P. Shape control of colloidal semiconductor nanocrystals. J. Cluster Sci. 2002, 13 (4), 521-532.
    73. Burda, C.; Chen, X. B.; Narayanan, R.; El-Sayed, M. A. Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 2005, 105 (4), 1025-1102.
    74. Yu, Y. T.; Zhang, Q. H.; Xu, B. Q. Shape-controlled syntheses of metal nanoparticles. Prog. Chem. 2004, 16 (4), 520-527.
    75. Wang, Z. L. Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J. Phys. Chem. B. 2000, 104 (6), 1153-1175.
    76. Wiley, B. J.; Xiong, Y. J.; Li, Z. Y.; Yin, Y. D.; Xia, Y. A. Right bipyramids of silver: A new shape derived from single twinned seeds. Nano Lett. 2006, 6 (4), 765-768.
    77. Kim, F.; Connor, S.; Song, H.; Kuykendall, T.; Yang, P. D. Platonic gold nanocrystals. Angew. Chem. Int. Ed. 2004, 43 (28), 3673-3677.
    78. Sanchez-Iglesias, A.; Pastoriza-Santos, I.; Perez-Juste, J.; Rodriguez-Gonzalez, B.; de Abajo, F. J. G.; Liz-Marzan, L. M. Synthesis and optical properties of gold nanodecahedra with size control. Adv. Mater. 2006, 18 (19), 2529-+.
    79. Zhang, J. H.; Liu, H. Y.; Wang, Z. L.; Ming, N. B. Shape-selective synthesis of gold nanoparticles with controlled sizes, shapes, and plasmon Resonances. Adv. Funct. Mater. 2007, 17 (16), 3295-3303.
    80. Nikoobakht, B.; El-Sayed, M. A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 2003, 15 (10), 1957-1962.
    81. Jana, N. R.; Gearheart, L.; Murphy, C. J. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J. Phys. Chem. B. 2001, 105 (19), 4065-4067.
    82. Orendorff, C. J.; Hankins, P. L.; Murphy, C. J. pH-triggered assembly of gold nanorods. Langmuir 2005, 21 (5), 2022-2026.
    83. Chang, S. S.; Shih, C. W.; Chen, C. D.; Lai, W. C.; Wang, C. R. C. The shape transition of gold nanorods. Langmuir 1999, 15 (3), 701-709.
    84. Kim, F.; Song, J. H.; Yang, P. D. Photochemical synthesis of gold nanorods. J. Am. Chem. Soc. 2002, 124 (48), 14316-14317.
    85. Huang, C. C.; Yang, Z. S.; Chang, H. T. Synthesis of dumbbell-shaped Au-Ag core-shell nanorods by seed-mediated growth under alkaline conditions. Langmuir 2004, 20 (15), 6089-6092.
    86. Yu, D. B.; Yam, V. W. W. Controlled synthesis of monodisperse silver nanocubes in water. J. Am. Chem. Soc. 2004, 126 (41), 13200-13201.
    87. Yu, D. B.; Yam, V. W. W. Hydrothermal-induced assembly of colloidal silver spheres into various nanoparticles on the basis of HTAB-modified silver mirror reaction. J. Phys. Chem. B. 2005, 109 (12), 5497-5503.
    88. Ni, C. Y.; Hassan, P. A.; Kaler, E. W. Structural characteristics and growth of pentagonal silver nanorods prepared by a surfactant method. Langmuir 2005, 21 (8), 3334-3337.
    89. Chen, S. H.; Carroll, D. L. Silver nanoplates: Size Control in Two Dimensions and Formation Mechanism. J. Phys. Chem. B 2004, 108 (18), 5500-5506.
    90. Sun, Y. G.; Mayers, B.; Xia, Y. N. Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process. Nano Lett. 2003, 3 (5), 675-679.
    91. Sun, Y. G.; Xia, Y. N. Triangular nanoplated of silver: synthesis, characterization, and use as sacrificial templates for generating triangular nanorings of gold. Adv. Mater. 2003, 15 (9), 695-699.
    92. Tao, A.; Sinsermsuksakul, P.; Yang, P. D. Polyhedral silver nanocrystals with distinct scattering signatures. Angew. Chem. Int. Ed. 2006, 45 (28), 4597-4601.
    93. Seo, D.; Park, J. C.; Song, H. Polyhedral gold nanocrystals with O-h symmetry: From octahedra to cubes. J. Am. Chem. Soc. 2006, 128 (46), 14863-14870.
    94. Jiang, X. C.; Yu, A. B. Silver nanoplates: A highly sensitive material toward inorganic anions. Langmuir 2008, 24 (8), 4300-4309.
    95. An, J.; Tang, B.; Zheng, X. L.; Zhou, J.; Dong, F. X.; Xu, S. P.; Wang, Y.; Zhao, B.; Xu, W. Q. Sculpturing effect of chloride ions in shape transformation from triangular to discal silver nanoplates. J. Phys. Chem. C 2008, 112 (39), 15176-15182.
    96. Zeng, J. B.; Jia, H. Y.; An, J.; Han, X. X.; Xu, W. Q.; Zhao, B.; Ozaki, Y. Preparation and SERS study of triangular silver nanoparticle self-assembled films. J. Raman Spectrosc. 2008, 39 (11), 1673-1678.
    97. Tang, B.; An, J.; Zheng, X. L.; Xu, S. P.; Li, D. M.; Zhou, J.; Zhao, B.; Xu, W.Q. Silver Nanodisks with Tunable Size by Heat Aging. J. Phys. Chem. C 2008, 112 (47), 18361-18367.
    98. Jia, H. Y.; Zeng, J. B.; An, J.; Song, W.; Xu, W. Q.; Zhao, B. Preparation of triangular and hexagonal silver nanoplates on the surface of quartz substrate. Thin Solid Films 2008, 516 (15), 5004-5009.
    99. Zheng, X. L.; Xu, W. Q.; Corredor, C.; Xu, S. P.; An, J.; Zhao, B.; Lombardi, J. R. Laser-induced growth of monodisperse silver nanoparticles with tunable surface plasmon resonance properties and a wavelength self-limiting effect. J. Phys. Chem. C 2007, 111 (41), 14962-14967.
    100. Raman, C. V. K. K. S. A new type of secondary radiation. Nature 1928, 121, 501-502.
    101. Kincaid, J.; Stein, P.; Spiro, T. G. Absence of heme-localized strain in T state hemoglobin: insensitivity of heme-imidazole resonance Raman frequencies to quaternary structure. Proc. Natl. Acad. Sci. U. S. A 1979, 76 (2), 549-552.
    102. Stein, P.; Burke, J. M.; Spiro, T. G. Letter: Structural interpretation of heme protein resonance Raman frequencies. Preliminary normal coordinate analysis results. J. Am. Chem. Soc. 1975, 97 (8), 2304-2305.
    103. Fang, L.; Davis, B. L.; Lu, H.; Lombardi, J. R. Resonance Raman spectroscopy of mass selected Al2 in an argon matrix. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2001, 57 (14), 2809-2812.
    104. Fleischmann, M.; Hendra, P. J.; Mcquillan, A. J. Raman Spectra of Pyridzne Adsorbed at A Silver Electrode. Chem. Phys. Lett. 1974, 26 (2), 163-166.
    105. Jeanmaire, D. L.; Van Duyne, R. P. Surface Raman spectroelectrochemistry, part 1: heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. 1977, 84, 1-20.
    106. Albrecht, M. G.; Creighton, J. A. Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 1977, 99, 105-106.
    107. Tian, Z. Q.; Ren, B.; Wu, D. Y. Surface-enhanced Raman scattering: From noble to transition metals and from rough surfaces to ordered nanostructures. J. Phys. Chem. B 2002, 106 (37), 9463-9483.
    108. Moskovits, M. Surface-enhanced Raman spectroscopy: a brief retrospective. J. Raman Spectrosc. 2005, 36 (6-7), 485-496.
    109. Ding, S. Y.; Wu, D. Y.; Yang, Z. L.; Ren, B.; Xu, X.; Tian, Z. Q. Some Progresses in Mechanistic Studies on Surface-Enhanced Raman Scattering. Chem. J. Chinese U. -Chinese 2008, 29 (12), 2569-2581.
    110. Zhou, Q.; Li, X. W.; Fan, Q.; Zhang, X. X.; Zheng, J. W. Charge transfer between metal nanoparticles interconnected with a functionalized molecule probed by surface-enhanced Raman spectroscopy. Angew. Chem. Int. Ed. 2006, 45 (24), 3970-3973.
    111. Nie, S. M. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Abs. Papers Am. Chem. Soc. 2001, 221, U244.
    112. Constantino, C. J. L.; Lemma, T.; Antunes, P. A.; Aroca, R. Single-molecule detection using surface-enhanced resonance Raman scattering and Langmuir-Blodgett monolayers. Anal. Chem. 2001, 73 (15), 3674-3678.
    113. Otto, A. What is observed in single molecule SERS, and why? J. Raman Spectrosc. 2002, 33 (8), 593-598.
    114. Otto, A. Theory of first layer and single molecule surface enhanced Raman scattering (SERS). Phys. Stat. Sol. (a) 2001, 188 (4), 1455-1470.
    115. Moskovits, M.; Tay, L. L.; Yang, J.; Haslett, T. SERS and the single molecule. Topics Appl. Phys. 2002, 82, 215-226.
    116. Etchegoin, P. G.; Le Ru, E. C. A perspective on single molecule SERS: current status and future challenges. Phys. Chem. Chem. Phys. 2008, 10 (40), 6079-6089.
    117. Braun, G.; Pavel, I.; Morrill, A. R.; Seferos, D. S.; Bazan, G. C.; Reich, N. O.; Moskovits, M. Chemically patterned microspheres for controlled nanoparticle assembly in the construction of SERS hot spots. J. Am. Chem. Soc. 2007, 129 (25), 7760-+.
    118. Ren, B.; Liu, G. K.; Lian, X. B.; Yang, Z. L.; Tian, Z. Q. Raman spectroscopy on transition metals. Anal. Bioanal. Chem. 2007, 388 (1), 29-45.
    119. Tian, Z. Q.; Yang, Z. L.; Ren, B.; Li, J. F.; Zhang, Y.; Lin, X. F.; Hu, J. W.; Wu, D. Y. Surface-enhanced Raman scattering from transition metals with special surface morphology and nanoparticle shape. Faraday Discuss. 2006, 132, 159-170.
    120. Tian, Z. Q.; Ren, B. Adsorption and reaction at electrochemical interfaces as probed by surface-enhanced Raman spectroscopy. Annu. Rev. Phys. Chem. 2004, 55, 197-229.
    121. Quagliano, L. G. Observation of molecules adsorbed on III-V semiconductor quantum dots by surface-enhanced Raman scattering. J. Am. Chem. Soc. 2004, 126 (23), 7393-7398.
    122. Jiang, Y. X.; Li, J. F.; Wu, D. Y.; Yang, Z. L.; Ren, B.; Hu, J. W.; Chow, Y. L.; Tian, Z. Q. Characterization of surface water on Au core Pt-group metal shell nanoparticles coated electrodes by surface-enhanced Raman spectroscopy. Chem. Commun. (Camb. ) 2007, (44), 4608-4610.
    123. Li, J. F.; Yang, Z. L.; Ren, B.; Liu, G. K.; Fang, P. P.; Jiang, Y. X.; Wu, D. Y.; Tian, Z. Q. Surface-enhanced Raman spectroscopy using gold-core platinum-shell nanoparticle film electrodes: toward a versatile vibrational strategy for electrochemical interfaces. Langmuir 2006, 22 (25), 10372-10379.
    124. Gu, W.; Liu, G. K.; Wu, D. Y.; Ren, B.; Gu, R. A.; Tian, Z. Q. [Surface-enhanced Raman spectra and electrochemical studies on the inhibition of nickel corrosion by imidazole]. Spectrosc. Spect. Anal. 2006, 26 (6), 1067-1070.
    125. Cui, L.; Liu, Z.; Duan, S.; Wu, D. Y.; Ren, B.; Tian, Z. Q.; Zou, S. Z. Orientation change of adsorbed pyrazine on roughened rhodium electrodes as probed by surface-enhanced Raman spectroscopy. J. Phys. Chem. B 2005, 109 (37), 17597-17602.
    126. Yang, Z. L.; Wu, D. Y.; Ren, B.; Zhou, H. G.; Tian, Z. Q. [SERS mechanism for rhodium electrode in the ultraviolet region]. Spectrosc. Spect. Anal. 2004, 24 (6), 682-685.
    127. Ren, B.; Lin, X. F.; Jiang, Y. X.; Cao, P. G.; Xie, Y.; Huang, Q. J.; Tian, Z. Q. Optimizing detection sensitivity on surface-enhanced Raman scattering of transition-metal electrodes with confocal Raman microscopy. Appl. Spectrosc. 2003, 57 (4), 419-427.
    128. Ren, B.; Lin, X. F.; Yang, Z. L.; Liu, G. K.; Aroca, R. F.; Mao, B. W.; Tian, Z. Q. Surface-enhanced Raman scattering in the ultraviolet spectral region: UV-SERS on rhodium and ruthenium electrodes. J. Am. Chem. Soc. 2003, 125 (32), 9598-9599.
    129. Zhao, B.; Xu, W. Q.; Ruan, W. D.; Han, X. X. Advances in Surface-enhanced Raman Scattering - Semiconductor Substrates. Chem. J. Chinese U. -Chinese 2008, 29 (12), 2591-2596.
    130. Yang, L. B.; Ruan, W. D.; Jiang, X.; Zhao, B.; Xu, W. Q.; Lombardi, J. R. Contribution of ZnO to Charge-Transfer Induced Surface-Enhanced Raman Scattering in Au/ZnO/PATP Assembly. J. Phys. Chem. C 2009, 113 (1), 117-120.
    131. Sun, Z. H.; Wang, C. X.; Yang, J. X.; Zhao, B.; Lombardi, J. R. Nanoparticle metal - Semiconductor charge transfer in ZnO/PATP/Ag assemblies by surface-enhanced Raman spectroscopy. J. Phys. Chem. C 2008, 112 (15), 6093-6098.
    132. Wang, Y. F.; Zhang, J. H.; Jia, H. Y.; Li, M. J.; Zeng, J. B.; Yang, B.; Zhao, B.; Xu, W. Q.; Lombardi, J. R. Mercaptopyridine surface-functionalized CdTe quantum dots with enhanced Raman scattering properties. J. Phys. Chem. C 2008, 112 (4), 996-1000.
    133. Song, W.; Wang, Y. X.; Zhao, B. Surface-enhanced raman scattering of 4-mercaptopyridine on the surface of TiO2 nanofibers coated with ag nanoparticles. J. Phys. Chem. C 2007, 111 (34), 12786-12791.
    134. Wang, Y. F.; Hu, H. L.; Jing, S. Y.; Wang, Y. X.; Sun, Z. H.; Zhao, B.; Zhao, C.; Lombardi, J. R. Enhanced Raman scattering as a probe for 4-mercaptopyridine surface-modified copper oxide nanocrystals. Anal. Sci. 2007, 23 (7), 787-791.
    135. Wang, Y. F.; Sun, Z. H.; Hu, H. L.; Jing, S. Y.; Zhao, B.; Xu, W. Q.; Zhao, C.; Lombardi, J. R. Raman scattering study of molecules adsorbed on ZnS nanocrystals. J. Raman Spectrosc. 2007, 38 (1), 34-38.
    136. Huh, Y. S.; Lowe, A. J.; Stickland, A. D.; Batt, C. A.; Erickson, D. Surface-Enhanced Raman Scattering Based Ligase Detection Reaction. J. Am. Chem. Soc. 2009, 131 (6), 2208-2213.
    137. Qian, X. M.; Peng, X. H.; Ansari, D. O.; Yin-Goen, Q.; Chen, G. Z.; Shin, D. M.; Yang, L.; Young, A. N.; Wang, M. D.; Nie, S. M. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat. Biotechnol. 2008, 26 (1), 83-90.
    138. Lakowicz, J. R.; Ray, K.; Chowdhury, M.; Szmacinski, H.; Fu, Y.; Zhang, J.; Nowaczyk, K. Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy. Analyst 2008, 133 (10), 1308-1346.
    139. Ray, K.; Chowdhury, M. H.; Szmacinski, H.; Lakowicz, J. R. Metal-enhanced Intrinsic Fluorescence of Proteins on Silver Nanostructured Surfaces towards Label-Free Detection. J. Phys. Chem. C Nanomater. Interfaces. 2008, 112 (46), 17957-17963.
    140. Ray, K.; Chowdhury, M. H.; Zhang, J.; Fu, Y.; Szmacinski, H.; Nowaczyk, K.; Lakowicz, J. R. Plasmon-Controlled Fluorescence Towards High-Sensitivity Optical Sensing. Adv. Biochem. Eng Biotechnol. 2008.
    141. Szmacinski, H.; Ray, K.; Lakowicz, J. R. Metal-enhanced fluorescence of tryptophan residues in proteins: application toward label-free bioassays. Anal. Biochem. 2009, 385 (2), 358-364.
    142. Chowdhury, M. H.; Ray, K.; Aslan, K.; Lakowicz, J. R.; Geddes, C. D. Metal-Enhanced Fluorescence of Phycobiliproteins from Heterogeneous Plasmonic Nanostructures. J. Phys. Chem. C Nanomater. Interfaces. 2007, 111 (51), 18856-18863.
    143. Aslan, K.; Wu, M.; Lakowicz, J. R.; Geddes, C. D. Fluorescent core-shell Ag@SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms. J. Am. Chem. Soc. 2007, 129 (6), 1524-1525.
    144. Aslan, K.; Wu, M.; Lakowicz, J. R.; Geddes, C. D. Metal enhanced fluorescence solution-based sensing platform 2: fluorescent core-shell Ag@SiO2 nanoballs. J. Fluoresc. 2007, 17 (2), 127-131.
    145. Zhang, J.; Matveeva, E.; Gryczynski, I.; Leonenko, Z.; Lakowicz, J. R. Metal-enhanced fluoroimmunoassay on a silver film by vapor deposition. J. Phys. Chem. B 2005, 109 (16), 7969-7975.
    146. Aslan, K.; Lakowicz, J. R.; Geddes, C. D. Rapid deposition of triangular silver nanoplates on planar surfaces: application to metal-enhanced fluorescence. J. Phys. Chem. B 2005, 109 (13), 6247-6251.
    147. Aslan, K.; Leonenko, Z.; Lakowicz, J. R.; Geddes, C. D. Fast and slowdeposition of silver nanorods on planar surfaces: application to metal-enhanced fluorescence. J. Phys. Chem. B 2005, 109 (8), 3157-3162.
    148. Lakowicz, J. R.; Malicka, J.; Matveeva, E.; Gryczynski, I.; Gryczynski, Z. Plasmonic technology: novel approach to ultrasensitive immunoassays. Clin. Chem. 2005, 51 (10), 1914-1922.
    149. Aslan, K.; Lakowicz, J. R.; Geddes, C. D. Metal-enhanced fluorescence using anisotropic silver nanostructures: critical progress to date. Anal. Bioanal. Chem. 2005, 382 (4), 926-933.
    150. Aslan, K.; Gryczynski, I.; Malicka, J.; Matveeva, E.; Lakowicz, J. R.; Geddes, C. D. Metal-enhanced fluorescence: an emerging tool in biotechnology. Curr. Opin. Biotechnol. 2005, 16 (1), 55-62.
    151. Lakowicz, J. R.; Geddes, C. D.; Gryczynski, I.; Malicka, J.; Gryczynski, Z.; Aslan, K.; Lukomska, J.; Matveeva, E.; Zhang, J.; Badugu, R.; Huang, J. Advances in surface-enhanced fluorescence. J. Fluoresc. 2004, 14 (4), 425-441.
    152. Zhang, J.; Fu, Y.; Chowdhury, M. H.; Lakowicz, J. R. Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: coupling effect between metal particles. Nano Lett. 2007, 7 (7), 2101-2107.
    153. Szmacinski, H.; Lakowicz, J. R. Depolarization of surface-enhanced fluorescence: an approach to fluorescence polarization assays. Anal. Chem. 2008, 80 (16), 6260-6266.
    154. Ray, K.; Chowdhury, M. H.; Lakowicz, J. R. Single-molecule spectroscopic study of enhanced intrinsic phycoerythrin fluorescence on silver nanostructured surfaces. Anal. Chem. 2008, 80 (18), 6942-6948.
    155. Fu, Y.; Zhang, J.; Lakowicz, J. R. Plasmonic enhancement of single-molecule fluorescence near a silver nanoparticle. J. Fluoresc. 2007, 17 (6), 811-816.
    156. Gryczynski, I.; Malicka, J.; Gryczynski, Z.; Lakowicz, J. R. Radiative decay engineering 4. Experimental studies of surface plasmon-coupled directional emission. Anal. Biochem. 2004, 324 (2), 170-182.
    157. Lakowicz, J. R. Radiative decay engineering 3. Surface plasmon-coupled directional emission. Anal. Biochem. 2004, 324 (2), 153-169.
    158. Lakowicz, J. R.; Shen, Y.; D'Auria, S.; Malicka, J.; Fang, J.; Gryczynski, Z.; Gryczynski, I. Radiative decay engineering. 2. Effects of Silver Island films on fluorescence intensity, lifetimes, and resonance energy transfer. Anal. Biochem. 2002, 301 (2), 261-277.
    159. Lakowicz, J. R. Radiative decay engineering: biophysical and biomedical applications. Anal. Biochem. 2001, 298 (1), 1-24.
    160. Bardhan, R.; Grady, N. K.; Cole, J. R.; Joshi, A.; Halas, N. J. Fluorescence enhancement by Au nanostructures: nanoshells and nanorods. ACS Nano 2009,3 (3), 744-752.
    161. Bardhan, R.; Grady, N. K.; Halas, N. J. Nanoscale control of near-infrared fluorescence enhancement using Au nanoshells. Small 2008, 4 (10), 1716-1722.
    162. Slocik, J. M.; Tam, F.; Halas, N. J.; Naik, R. R. Peptide-assembled optically responsive nanoparticle complexes. Nano Lett. 2007, 7 (4), 1054-1058.
    163. Tam, F.; Goodrich, G. P.; Johnson, B. R.; Halas, N. J. Plasmonic enhancement of molecular fluorescence. Nano Lett. 2007, 7 (2), 496-501.
    164. Zhang, J.; Fu, Y.; Liang, D.; Zhao, R. Y.; Lakowicz, J. R. Enhanced fluorescence images for labeled cells on silver island films. Langmuir 2008, 24 (21), 12452-12457.
    165. Ray, K.; Chowdhury, M. H.; Szmacinski, H.; Lakowicz, J. R. Metal-enhanced Intrinsic Fluorescence of Proteins on Silver Nanostructured Surfaces towards Label-Free Detection. J. Phys. Chem. C Nanomater. Interfaces. 2008, 112 (46), 17957-17963.
    166. Szmacinski, H.; Ray, K.; Lakowicz, J. R. Metal-enhanced fluorescence of tryptophan residues in proteins: application toward label-free bioassays. Anal. Biochem. 2009, 385 (2), 358-364.
    167. Fu, Y.; Zhang, J.; Lakowicz, J. R. Metal-enhanced fluorescence of single green fluorescent protein (GFP). Biochem. Biophys. Res. Commun. 2008, 376 (4), 712-717.
    168. Zhang, J.; Fu, Y.; Liang, D.; Nowaczyk, K.; Zhao, R. Y.; Lakowicz, J. R. Single-cell fluorescence imaging using metal plasmon-coupled probe 2: single-molecule counting on lifetime image. Nano Lett. 2008, 8 (4), 1179-1186.
    169. Zhang, J.; Fu, Y.; Lakowicz, J. R. Single cell fluorescence imaging using metal plasmon-coupled probe. Bioconjug. Chem. 2007, 18 (3), 800-805.
    170. Zhang, J.; Fu, Y.; Lakowicz, J. R. Fluorescence images of DNA-bound YOYO between coupled silver particles. Langmuir 2007, 23 (23), 11734-11739.
    171. Sabanayagam, C. R.; Lakowicz, J. R. Increasing the sensitivity of DNA microarrays by metal-enhanced fluorescence using surface-bound silver nanoparticles. Nucleic Acids Res. 2007, 35 (2), e13.
    172. Fu, Y.; Lakowicz, J. R. Enhanced fluorescence of Cy5-labeled DNA tethered to silver island films: fluorescence images and time-resolved studies using single-molecule spectroscopy. Anal. Chem. 2006, 78 (17), 6238-6245.
    173. Zhang, J.; Lakowicz, J. R. A model for DNA detection by metal-enhanced fluorescence from immobilized silver nanoparticles on solid substrate. J. Phys. Chem. B 2006, 110 (5), 2387-2392.
    174. Lukomska, J.; Gryczynski, I.; Malicka, J.; Makowiec, S.; Lakowicz, J. R.; Gryczynski, Z. Two-photon induced fluorescence of Cy5-DNA in buffer solution and on silver island films. Biochem. Biophys. Res. Commun. 2005, 328 (1), 78-84.
    175. Gryczynski, I.; Malicka, J.; Shen, Y. B.; Gryczynski, Z.; Lakowicz, J. R. Multiphoton excitation of fluorescence near metallic particles: Enhanced and localized excitation. J. Phys. Chem. B 2002, 106 (9), 2191-2195.
    176. Aslan, K.; Leonenko, Z.; Lakowicz, J. R.; Geddes, C. D. Annealed silver-island films for applications in metal-enhanced fluorescence: interpretation in terms of radiating plasmons. J. Fluoresc. 2005, 15 (5), 643-654.
    177. Asian, K.; Lakowicz, J. R.; Szmacinski, H.; Geddes, C. D. Metal-enhanced fluorescence solution-based sensing platform. J. Fluoresc. 2004, 14 (6), 677-679.
    178. Lukomska, J.; Malicka, J.; Gryczynski, I.; Lakowicz, J. R. Fluorescence enhancements on silver colloid coated surfaces. J. Fluoresc. 2004, 14 (4),417-423.
    179. Aslan, K.; Wu, M.; Lakowicz, J. R.; Geddes, C. D. Fluorescent core-shell Ag@SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms. J. Am. Chem. Soc. 2007, 129 (6), 1524-+.
    180. Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.; Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 2007, 316 (5825), 732-735.
    181. Huang, W. L.; Chen, C. H.; Huang, M. H. Investigation of the growth process of gold nanoplates formed by thermal aqueous solution approach and the synthesis of ultra-small gold nanoplates. J. Phys. Chem. C 2007, 111 (6), 2533-2538.
    182. Sun, X. P.; Dong, S. J.; Wang, E. Large-scale synthesis of micrometer-scale single-crystalline Au plates of nanometer thickness by a wet-chemical route. Angew. Chem. Int. Ed. 2004, 43 (46), 6360-6363.
    183. Shankar, S. S.; Rai, A.; Ankamwar, B.; Singh, A.; Ahmad, A.; Sastry, M. Biological synthesis of triangular gold nanoprisms. Nat. Mater. 2004, 3 (7), 482-488.
    184. Li, C. C.; Cai, W. P.; Cao, B. Q.; Sun, F. Q.; Li, Y.; Kan, C. X.; Zhang, L. D. Mass synthesis of large, single-crystal Au nanosheets based on a polyol process. Adv. Funct. Mater. 2006, 16 (1), 83-90.
    185. Guo, S. J.; Dong, S. J.; Wang, E. K. Rectangular Silver Nanorods: Controlled Preparation, Liquid-Liquid Interface Assembly, and Application in Surface-Enhanced Raman Scattering. Cryst. Growth Des. 2009, 9 (1), 372-377.
    186. Sun, J. L.; Xu, J.; Zhu, J. L. Fabrication and Photoelectrical Behavior of Macroscopic-Long Silver Nanowire Ribbon/Bulk Metal Contact. J. Nanosci. Nanotechno. 2009, 9 (2), 1337-1340.
    187. Pileni, M. P. Self-assembly of inorganic nanocrystals: fabrication and collective intrinsic properties. Acc. Chem. Res. 2007, 40 (8), 685-693.
    188. Zhang, X.; Whitney, A. V.; Zhao, J.; Hicks, E. M.; Van Duyne, R. P. Advances in contemporary nanosphere lithographic techniques. J. Nanosci. Nanotechno. 2006, 6 (7), 1920-1934.
    189. Zhang, X.; Hicks, E. M.; Zhao, J.; Schatz, G. C.; Van Duyne, R. P. Electrochemical tuning of silver nanoparticles fabricated by nanosphere lithography. Nano Lett. 2005, 5 (7), 1503-1507.
    190. Rocha, T. C.; Zanchet, D. Growth aspects of photochemically synthesized silver triangular nanoplates. J. Nanosci. Nanotechno. 2007, 7 (2), 618-625.
    191. Rocha, T. C. R.; Zanchet, D. Structural defects and their role in the growth of Ag triangular nanoplates. J. Phys. Chem. C 2007, 111 (19), 6989-6993.
    192. Rocha, T. C. R.; Winnischofer, H.; Westphal, E.; Zanchet, D. Formation kinetics of silver triangular nanoplates. J. Phys. Chem. C 2007, 111 (7), 2885-2891.
    193. Ha, H. Y.; Xu, W. Q.; An, J.; Li, D. M.; Zhao, B. A simple method to synthesize triangular silver nanoparticles by light irradiation. Spectrochim. Acta A 2006, 64 (4), 956-960.
    194. An, J.; Tang, B.; Ning, X. H.; Zhou, J.; Xu, S. P.; Zhao, B.; Xu, W. Q.; Corredor, C.; Lombardi, J. R. Photoinduced shape evolution: From triangular to hexagonal silver nanoplates. J. Phys. Chem. C 2007, 111 (49), 18055-18059.
    195. Aikens, C. M.; Li, S. Z.; Schatz, G. C. From discrete electronic states to plasmons: TDDFT optical absorption properties of Ag-n (n = 10, 20, 35, 56, 84, 120) tetrahedral clusters. J. Phys. Chem. C 2008, 112 (30), 11272-11279.
    196. Sosa, I. O.; Noguez, C.; Barrera, R. G. Optical properties of metal nanoparticles with arbitrary shapes. J. Phys. Chem. B 2003, 107 (26), 6269-6275.
    197. Kumar, S.; Nann, T. Shape control of II-VI semiconductor nanomaterials. Small 2006, 2 (3), 316-329.
    198. Munro, C. H.; Smith, W. E.; Garner, M.; Clarkson, J.; White, P. C. Characterization of the Surface of a Citrate-Reduced Colloid Optimized for Use as a Substrate for Surface-Enhanced Resonance Raman Scattering. Langmuir 1995, 11 (10), 3712-3720.
    199. Ahern, A. M.; Garrell, R. L. In situ photoreduced silver nitrate as a substrate for surface-enhanced Raman spectroscopy. Anal. Chem. 1987, 59 (23),2813-2816.
    200. Gu, X.; Nie, C. G.; Lai, Y. K.; Lin, C. J. Synthesis of silver nanorods and nanowires by tartrate-reduced route in aqueous solutions. Mater. Chem. Phys. 2006, 96 (2-3), 217-222.
    201. Maillard, M.; Huang, P.; Brus, L. Silver Nanodisk Growth by Surface Plasmon Enhanced Photoreduction of Adsorbed [Ag+]. Nano Lett. 2003, 3 (11), 1611-1615.
    202. Haes, A. J.; Zhao, J.; Zou, S.; Own, C. S.; Marks, L. D.; Schatz, G. C.; Van Duyne, R. P. Solution-phase, triangular ag nanotriangles fabricated by nanosphere lithography. J. Phys. Chem. B 2005, 109 (22), 11158-11162.
    203. McFarland, A. D.; Young, M. A.; Dieringer, J. A.; Van Duyne, R. P. Wavelength-scanned surface-enhanced Raman excitation spectroscopy. J. Phys. Chem. B 2005, 109 (22), 11279-11285.
    204. Ng, C. H. B.; Fan, W. Y. Facile synthesis of single-crystalline gamma-CuI nanotetrahedrons and their induced transformation to tetrahedral CuO nanocages. J. Phys. Chem. C 2007, 111 (26), 9166-9171.
    205. Ko, W. Y.; Chen, W. H.; Tzeng, S. D.; Gwo, S.; Lin, K. J. Synthesis of pyramidal copper nanoparticles on gold substrate. Chem. Mater. 2006, 18 (26), 6097-6099.
    206. Li, C. C.; Shuford, K. L.; Park, Q. H.; Cai, W. P.; Li, Y.; Lee, E. J.; Cho, S. O. High-yield synthesis of single-crystalline gold nano-octahedra. Angew. Chem. Int. Ed. 2007, 46 (18), 3264-3268.
    207. Zhang, J. G.; Gao, Y.; varez-Puebla, R. A.; Buriak, J. M.; Fenniri, H. Synthesis and SERS properties of nanocrystalline gold octahedra generated from thermal decomposition of HAuCl4 in block copolymers. Adv. Mater. 2006, 18 (24), 3233-+.
    208. Kwon, K.; Lee, K. Y.; Kim, M.; Lee, Y. W.; Heo, J.; Ahn, S. J.; Han, S. W. High-yield synthesis of monodisperse polyhedral gold nanoparticles with controllable size and their surface-enhanced - Raman scattering activity. Chem. Phys. Lett. 2006, 432 (1-3), 209-212.
    209. Kwon, K.; Lee, K. Y.; Lee, Y. W.; Kim, M.; Heo, J.; Ahn, S. J.; Han, S. W. Controlled synthesis of icosahedral gold nanoparticles and their surface-enhanced Raman scattering property. J. Phys. Chem. C 2007, 111 (3), 1161-1165.
    210. Orendorff, C. J.; Gole, A.; Sau, T. K.; Murphy, C. J. Surface-enhanced Raman spectroscopy of self-assembled monolayers: Sandwich architecture and nanoparticle shape dependence. Anal. Chem. 2005, 77 (10), 3261-3266.
    211. Zhang, J. T.; Li, X. L.; Sun, X. M.; Li, Y. D. Surface enhanced Raman scattering effects of silver colloids with different shapes. J. Phys. Chem. B 2005, 109 (25), 12544-12548.
    212. Li, X. L.; Zhang, J. H.; Xu, W. Q.; Jia, H. Y.; Wang, X.; Yang, B.; Zhao, B.; Li, B. F.; Ozaki, Y. Mercaptoacetic acid-capped silver nanoparticles colloid: Formation, morphology, and SERS activity. Langmuir 2003, 19 (10), 4285-4290.
    213. Mock, J. J.; Smith, D. R.; Schultz, S. Local refractive index dependence of plasmon resonance spectra from individual nanoparticles. Nano Lett. 2003, 3 (4), 485-491.
    214. Han, S. W.; Lee, S. J.; Kim, K. Self-assembled monolayers of aromatic thiol and selenol on silver: Comparative study of adsorptivity and stability. Langmuir 2001, 17 (22), 6981-6987.
    215. Cintra, S.; Abdelsalam, M. E.; Bartlett, P. N.; Baumberg, J. J.; Kelf, T. A.; Sugawara, Y.; Russell, A. E. Sculpted substrates for SERS. Faraday Discuss. 2006, 132, 191-199.
    216. Sun, C. H.; Linn, N. C.; Jiang, P. Templated fabrication of periodic metallic nanopyramid arrays. Chem. Mater. 2007, 19 (18), 4551-4556.
    217. Michaels, A. M.; Nirmal, M.; Brus, L. E. Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals. J. Am. Chem. Soc. 1999, 121 (43), 9932-9939.
    218. Wang, Y.; Bu, F. Q.; Gu, Y. J.; Xu, P.; Ning, X. H.; Xu, S. P.; Zhao, B.; Xu, W. Q. Preparation of localized surface plasmon resonance sensing film with gold colloid by electrostatic assembly. Chem. J. Chinese U. -Chinese 2008, 29 (8), 1539-1543.
    219. Li, X. L.; Xu, W. Q.; Zhang, J. H.; Jia, H. Y.; Yang, B.; Zhao, B.; Li, B. F.; Ozaki, Y. Self-assembled metal colloid films: Two approaches for preparing new SERS active substrates. Langmuir 2004, 20 (4), 1298-1304.
    220. Banholzer, M. J.; Millstone, J. E.; Qin, L.; Mirkin, C. A. Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 2008, 37 (5), 885-897.
    221. Bantz, K. C.; Haynes, C. L. Surface-enhanced Raman scattering substrates fabricated using electroless plating on polymer-templated nanostructures. Langmuir 2008, 24 (11), 5862-5867.
    222. Bhuvana, T.; Kulkarni, G. U. A SERS-activated nanocrystalline Pd substrate and its nanopatterning leading to biochip fabrication. Small 2008, 4 (5), 670-676.
    223. Kaminska, A.; Inya-Agha, O.; Forster, R. J.; Keyes, T. E. Chemically bound gold nanoparticle arrays on silicon: assembly, properties and SERS study of protein interactions. Phys. Chem. Chem. Phys. 2008, 10 (28), 4172-4180.
    224. Gordon, R.; Sinton, D.; Kavanagh, K. L.; Brolo, A. G. A new generation of sensors based on extraordinary optical transmission. Acc. Chem. Res. 2008, 41 (8), 1049-1057.
    225. Su, K. H.; Wei, Q. H.; Zhang, X.; Mock, J. J.; Smith, D. R.; Schultz, S. Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett. 2003, 3 (8), 1087-1090.
    226. Baker, G. A.; Moore, D. S. Progress in plasmonic engineering of surface-enhanced Raman-scattering substrates toward ultra-trace analysis. Anal. Bioanal. Chem. 2005, 382 (8), 1751-1770.
    227. Decher, G. Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites. Science 1997, 277 (5330), 1232-1237.
    228. Dai, J. H.; Bruening, M. L. Catalytic nanoparticles formed by reduction of metal ions in multilayered polyelectrolyte films. Nano Lett. 2002, 2 (5), 497-501.
    229. Joly, S.; Kane, R.; Radzilowski, L.; Wang, T.; Wu, A.; Cohen, R. E.; Thomas, E. L.; Rubner, M. F. Multilayer nanoreactors for metallic and semiconducting particles. Langmuir 2000, 16 (3), 1354-1359.
    230. Wang, T. C.; Rubner, M. F.; Cohen, R. E. Polyelectrolyte multilayer nanoreactors for preparing silver nanoparticle composites: Controlling metal concentration and nanoparticle size. Langmuir 2002, 18 (8), 3370-3375.
    231. Gupta, R.; Weimer, W. A. High enhancement factor gold films for surface enhanced Raman spectroscopy. Chem. Phys. Lett. 2003, 374 (3-4), 302-306.
    232. Natan, M. J. Concluding remarks - Surface enhanced Raman scattering. Faraday Discuss. 2006, 132, 321-328.
    233. Hankus, M. E.; Li, H. G.; Gibson, G. J.; Cullum, B. M. Surface-enhanced Raman scattering-based nanoprobe for high-resolution, non-scanning chemical imaging. Anal. Chem. 2006, 78 (21), 7535-7546.
    234. Leverette, C. L.; Shubert, V. A.; Wade, T. L.; Varazo, K.; Dluhy, R. A. Development of a novel dual-layer thick Ag substrate for surface-enhanced Raman scattering (SERS) of self-assembled monolayers. J. Phys. Chem. B 2002, 106 (34), 8747-8755.
    235. Freeman, R. G.; Grabar, K. C.; Allison, K. J.; Bright, R. M.; Davis, J. A.; Guthrie, A. P.; Hommer, M. B.; Jackson, M. A.; Smith, P. C.; Walter, D. G.; Natan, M. J. Self-Assembled Metal Colloid Monolayers: An Approach to SERS Substrates. Science 1995, 267 (5204), 1629-1632.
    236. Smith, D. R. How to build a superlens. Science 2005, 308 (5721), 502-503.
    237. Fang, N.; Lee, H.; Sun, C.; Zhang, X. Sub-diffraction-limited optical imaging with a silver superlens. Science 2005, 308 (5721), 534-537.
    238. Hibbins, A. P.; Evans, B. R.; Sambles, J. R. Experimental verification of designer surface plasmons. Science 2005, 308 (5722), 670-672.
    239. McFarland, A. D.; Van Duyne, R. P. Single silver nanoparticles as real-timeoptical sensors with zeptomole sensitivity. Nano Lett. 2003, 3 (8), 1057-1062.
    240. Rosendahl, S. A.; Danger, B. R.; Vivek, J. P.; Burgess, I. J. Surface Enhanced Infrared Absorption Spectroscopy Studies of DMAP Adsorption on Gold Surfaces. Langmuir 2009, 25 (4), 2241-2247.
    241. Kundu, J.; Le, F.; Nordlander, P.; Halas, N. J. Surface enhanced infrared absorption (SEIRA) spectroscopy on nanoshell aggregate substrates. Chem. Phys. Lett. 2008, 452 (1-3), 115-119.
    242. Leverette, C. L.; Jacobs, S. A.; Shanmukh, S.; Chaney, S. B.; Dluhy, R. A.; Zhao, Y. P. Aligned silver nanorod arrays as substrates for surface-enhanced infrared absorption spectroscopy. Appl. Spectrosc. 2006, 60 (8), 906-913.
    243. Aroca, R. F.; Ross, D. J.; Domingo, C. Surface-enhanced infrared spectroscopy. Appl. Spectrosc. 2004, 58 (11), 324A-338A.
    244. Hibbins, A. P.; Lockyear, M. J.; Hooper, I. R.; Sambles, J. R. Waveguide arrays as plasmonic metamaterials: Transmission below cutoff. Phys. Rev. Lett. 2006, 96 (7).
    245. Seidel, J.; Grafstrom, S.; Eng, L. Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution. Phys. Rev. Lett. 2005, 94 (17).
    246. Winter, G.; Barnes, W. L. Emission of light through thin silver films via near-field coupling to surface plasmon polaritons. Appl. Phys. Lett. 2006, 88 (5).
    247. Yeh, D. M.; Huang, C. F.; Chen, C. Y.; Lu, Y. C.; Yang, C. C. Localized surface plasmon-induced emission enhancement of a green light-emitting diode. Nanotechnology 2008, 19 (34).
    248. Kim, S. S.; Na, S. I.; Jo, J.; Kim, D. Y.; Nah, Y. C. Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles. Appl. Phys. Lett. 2008, 93 (7).
    249. Ozel, T.; Soganci, I. M.; Nizamoglu, S.; Huyal, I. O.; Mutlugun, E.; Sapra, S.; Gaponik, N.; Eychmuller, A.; Demir, H. V. Selective enhancement of surface-state emission and simultaneous quenching of interband transition in white-luminophor CdS nanocrystals using localized plasmon coupling. New J. Phys. 2008, 10.
    250. Fu, Y.; Zhang, J.; Lakowicz, J. R. Silver-enhanced fluorescence emission of single quantum dot nanocomposites. Chem. Commun. 2009, (3), 313-315.
    251. Pal, S.; Tak, Y. K.; Song, J. M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 2007, 73 (6), 1712-1720.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700