用户名: 密码: 验证码:
原位XAFS新方法及其功能材料动力学的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
21世纪物质科学基础研究的重心已由过去的表征稳态时物质的微观结构逐渐发展到深入研究它们在制备过程中是如何形成的,以及最终充分认识在使用状态下是如何工作的动态过程。这一重大转化的目标就是为了实现可控合成并操纵拥有特定剪裁性能的新功能材料,以满足人类发展的各种物质需求,同时也为我国的能源、健康、环境等重大战略需求提供强大的物质支撑。在科学研究经历从稳态到动态的快速变革中,如何在原子和电子水平上表征和控制材料的形成进程及其处于非平衡态下的物理和化学反应过程,则成为未来科学研究所面临的巨大挑战。为了有效地操纵材料在纳米甚至原子尺度上的合成路径和控制其反应动力学过程,需要建立和发展相应的先进实验新方法,使我们的研究条件从过去平均的、稳态的转换到现在局域的、非平衡态的水平。
     同步辐射具有许多优异特性,包括高亮度、相干性、时间结构、宽能量波段和偏振性等,是多学科交叉的基础研究和应用研究的先进平台。在过去的20年中,利用同步辐射亮度高和波长连续可调的优点已经在解析稳态材料的结构和功能方面取得了很多重要的研究成果,例如同步辐射x射线测定细胞膜离子通道和核糖体的结构和功能的研究就曾获2003和2009年诺贝尔化学奖。如果将常规同步辐射结合以原位测量甚至具有时间分辨能力的表征技术,对物质在非平衡态下的动态过程进行原位、实时的表征,有望在原来认识的基础上更加深入的理解功能材料的制备和工作等物理和化学反应过程。同步辐射XAFS技术具有对材料的局域原子和电子结构的敏感的特点,还可以广泛的研究固态、液相等常见凝聚态物质,非常适合开展原位和时间分辨测量。目前,利用原位和时间分辨XAFS技术已分别可获得高压高温下材料相变的结构和性能信息,以及催化反应中活性金属的动态变化。因此,发展原位乃至时间分辨同步辐射谱学XAFS新方法,获得材料在真实反应过程中的局域原子和电子结构的演变信息,将在解决纳米科技、能源催化和生命科学领域中重要的动力学过程的关键科学问题上实现突破。
     本论文基于中国科技大学国家同步辐射实验室X射线实验站(U7B和U7C)建立和发展了多种原位(温度依赖和液相反应)的同步辐射XAFS谱学新方法,并针对一些重要的、有代表性的模型材料的动力学问题,如:智能材料温度相变的响应机制、纳米物质液相合成的初期生长过程等,进行了深入的同步辐射与材料科学的交叉科学研究。揭示了若干重要功能材料的制备及工作过程的动力学机理,以及微观结构与功能之间的内在关系;同时也为国内高水平用户建立了原位同步辐射XAFS实验新方法的公共研究平台。本论文取得的具体研究成果如下:
     1.原位同步辐射XAFS谱学新方法的发展
     固相材料的温致相变和纳米材料的液相生长分别是凝聚态物质和纳米科学领域的重要问题,为了揭示这些重要过程的动力学机理,本论文在第二章和第三章实验部分分别设计和发展了固相变温原位XAFS测量装置和化学液相生长的原位时间分辨XAFS方法。其中变温原位装置可用于变温XAFS以及XRD测量(可变温度范围是10-1200 K),并且该装置可在真空和不同的气氛下工作,为亚稳态材料的温致相变研究提供了良好环境室。化学液相生长的原位时间分辨XAFS装置利用了连续循环流动的思想,即通过蠕动泵抽取反应处液体进行原位XAFS谱测量;该装置同时结合快速XAFS技术,将XAFS谱采集时间缩短到s量级,提高了时间分辨的水平,实现了原位实时探测纳米材料液相生长动力学过程。相应代表性的结果分别发表在物理和化学顶级期刊Phys. Rev. Lett.和J. Am. Chem. Soc.上。
     2.变温原位XAFS技术研究二氧化钒金属-绝缘体相变机理
     二氧化钒(V02)基于其在金属-绝缘体相变过程中所表现的独特的电、光学特性而成为重要的智能节能材料。然而对其相变机理的研究一直成为凝聚态物理的争论热点。为了解决这个问题,论文的第二章工作主要利用变温原位XAFS实验装置,在外部温场驱动下原位观察VO2相变过程中的原子和电子结构变化的关联行为。建立了清晰的相变温度点(341 K)附近的原子结构和电子结构变化规律图像;从实验上发现V-V配位的键长和结构扭曲对电子结构的演变起着关键的作用,且VO2的金属化过程产生于具有单斜相特征的中间态;从原子水平上提出晶体结构扭曲和电子关联性协同作用促使VO2产生金属-绝缘体相变的微观机理,澄清了长期以来对V02相变机理的争论。此项研究成果将为理解强关联电子体系中晶格和电子相互作用以及为设计新型智能窗材料提供理论和实验基础。本章的工作发表在《物理评论快报》[Phys. Rev. Lett.105,226405 (2010)]上。
     3.原位时间分辨XAFS技术研究金纳米颗粒初期成核机理
     长期以来,纳米材料研究领域的一个重要问题就是认识纳米物质的成核和生长进程,可控合成出具有特定性能的各种新型纳米材料。虽然人们在纳米材料后期生长方面做了大量的研究工作,但目前对纳米材料的初期成核过程的信息仍然知之甚少。因此,论文的第三章工作设计并发展了适合研究纳米材料液相生长动力学的原位时间分辨XAFS实验装置,详细地研究了纳米金颗粒在化学液相合成过程中的反应动力学,发现在弱还原剂的温和反应条件下,初始成核阶段经历还原生成'Cl3-Au-AuCl3-'二聚体,而后形成更复杂的'AunCln+x'团簇的新成核机理;并提出了纳米金的初期成核、缓慢生长和最终聚集的三步生长机理。这些结果将有助于调控金属纳米颗粒的初期成核和生长路径,相关研究成果发表在《美国化学会志》[J.Am. Chem. Soc.132,7696 (2010)]上
     4. XAFS技术研究稀磁半导体纳米材料的结构和性能之间的基本关系
     兼有磁性及半导体特性的稀磁半导体纳米线因具有良好的单晶结构和各向同性之优点可以实现高效率的自旋极化载流子注入,极有希望应用于纳米自旋电子器件。论文的第四章工作主要利用XAFS技术并结合第一性原理计算方法系统的研究了不同形貌的Co掺杂ZnO基稀磁半导体纳米线、棒的局域结构和磁性的关系。发现化学液相法制备的ZnCoO纳米线样品中Co离子的均匀替代和尺寸效应共同作用导致其高饱和磁化强度;同时,在Ag-ZnCoO纳米杂化结构中发现部分Ag离子进入ZnCoO间隙位形成施主的杂质带能级,极大的提高了ZnCoO纳米棒的室温铁磁性。这些研究成果从实验和理论两方面明确了ZnCoO稀磁半导体纳米结构铁磁性的微观起源,相关研究成果均发表在物理化学杂志C《J. Phys. Chem. C113,3581 (2009); 113,14114 (2009)》上
In the 21st century, the materials research center will shift from the study of equilibrium state to the study of dynamic process of how they are formed and, ultimately, how they work. The goal is to achieve the controllable synthesis and to manipulate the novel functional materials with tailored properties, so as to to meet the material requirements in the modern civilization, and to provide a strong material support for energy, safety and environment of our country. With the fast transformation from the research on equilibrium to on inequilibrium state, how to characterize and control the formation of materials and the physical and chemical reaction kinetics in the inequilibrium state at the atomic and electronic level still remains a great challenge in the future scientific research. To effectively control the synthesized paths and the reaction kinetics of materials, it is particularly important to build and develop new experimental methods to improve research condition from the average, equilibrium to local, inequilibrium.
     Synchrotron Radiation (SR) has many excellent features, such as high brightness, time structure, coherence, wide wavelength and polarization, and is an advanced setup for the multi-disciplinary basic and applied research. In the past 20 years, many significant research advances in the resolution of structure and function of materials in equilibrium state have been achieved by using the merit of high brightness and continue adjuatable of wavelength of SR. For example, the SR X-ray determination of the structure and function of the ion channel of the cell membrane, and the ribosome have received Nobel Prize in Chemistry (2003 and 2009). It is most likely to deep insight into the synthesized and reactional process based on the previous observation, if we combine the conventional SR with the in situ measurement and time-resolved technique to investigate in real time the dynamic process in the inequilibrium state. SR-XAFS has become a powful method for the in situ characterization because it is sensitive to the local atomic and electronic structure, and it can be applied to study on most condensed matters such as solid and solution. Now, the structural kinetics of the phase transition under the high pressure-temperature, and the active atoms in the catalyzed reaction can be obtained bu using in situ and time-resolved XAFS method. Therefore, developing the in situ and time-resolved XAFS method is helpful to obtain the information on the evolutions of atomic and electronic structures in the real conditions, and will realize the break through in solving the key scientific problem of nantechnology, energy and life science.
     This dissertation develops several in situ (including temperature-dependence and chemical reaction) XAFS spectroscopy methods based on the X-ray stations in National Synchrotron Radiation Laboratory, USTC, and performs the interdisciplinary research on kinetic process of some important and typical functional materials, such as metal-insulator transition (MIT) in strongly correlated systems and initial nucleation of nanomaterials. Also, the developed in situ XAFS method provides a well public research platform for the domestic SR users. This dissertation has made the following research advances:
     1. The development of the in situ SR XAFS method
     The phase transition and nanocrystal formation are the most important topic in tht field of condensed matter and nanoscience, respectively. To reveal these kinetic mechanisms, the experimental sections of ChapterⅡand III have described the setup of temperature-dependent in situ XAFS and XRD measurement, and an appropriate in situ time—resolved XAFS method for the study on the chemical solution. For the temperature-dependent in situ XAFS and XRD instrument, the temperature variation is in the range of 10-1200 K. This setup can be worked in the vacuum or under the different gas atmosphere, which provide a well environment for the study of temperature induced phase transition for the metastable materials. For the in situ time-resolved XAFS method, a recirculation system where the reactional solution is continuously circulated along the microtubes by peristaltic pump is used in this equipment. Further, combined with quick XAFS method which reduces the data-collection time to s level, improving the time resolution, the in situ probe on the nanocrystal formation in the chemical solution can be achieved.
     2. Clarification of metal-insulator transition of VO2 by temperature-dependent in situ XAFS technology
     Vanadium dioxide (VO2) has become an important smart energy-saving material material owing to its special electronic and optical properties behaved during its MIT. The MIT mechanism of VO2, however, is a hot topic in condensed state physics. In order to address this issue, the work of ChapterⅡmainly presents the temperature-dependent in situ XAFS inverstigation on the coorelation of atomic and electronic structures during the VO2 MIT triggerd by temperature. A clear figure of atomic and electronic structural evolutions near the VO2 transition temperature at 341 K is established. The author found that the V-V bond distance and structural distortion play an important role on the evolution of electronic structures, and the metallization process in VO2 is developed from the intermediate state with monoclinic feature. From the atomic level, the author proposed a correlative mechanism of structurally driven transition (Peierls) and the electron correlation (Mott) for the MIT of VO2, clarifying the longstanding controversy for the MIT mechanism of VO2. This research will provide solid theoretic and experimental foundation for both the understanding of the interplay of lattice and electron in strong-coorelated system and the application of novel smart window materials. These results have been published on Physical Review Letters 105,226405 (2010).
     3. In situ time-resolved XAFS study on the initial kinetic nucleation of gold nanocrystals
     To achieve the controlled synthesis of various new-type nanomaterials with desired properties, an important issue in nano-material field is the understanding of the nucleation and growth process of nanomaterials for a long time. Although a large number of research works have been launched, the information of the initial nucleation process still remains remains obscure. Therefore, the work of ChapterⅢmainly presents the design of the in situ time-resolved XAFS setup, and its studies on the formation kinetics of Au nancrystals in the chemical solution. The author proposed a novel nucleation mechanism that the initial nucleation undergo the formation of intermediate'Cl3-Au-AuCl3-'dimer and the subsequent higher complexes'AunCln+x'. Also, a kinetic three-step mechanism involving the initial nucleation, slow growth, and eventual coalescence for the Au nancrystals formation is presented. This research will be helpful for mediating the nucleation and growth process in the synthesis of nanocrystals. These results have been published on Journal of the American Chemical Society 132,7696 (2010).
     4. The local structure and magnetic study on the DMS nano-materials
     DMS nanowires are the promising candidate in the spintronic devices due to their advantage of well single-crystal structure and isotropy, as well as the high effective in the spin-polarized carrier injection. The work of ChapterⅣmainly present the XAFS combined with the first principle calculations studies on the atomic, electronic structures and magnetism for the Co-doped ZnO based nano-wires, and-rods with diverse morphology. The author found that the coeffect of the homogeneity of Co dopants and the size effect are the main reasons for the enhanced ferromagnetism in the Zn0.98Co0.02O nanowire. Also, in Ag-ZnCoO hybrid nanostructure, interstitial Ag atoms which forms donor impurity band, plays an important role in mediating the high-temperature ferromagnetism. These researches clarify the basic relation of the atomic distribution, electronic structure and the magnetic property in ZnCoO DMS nanomaterials. These results have been published on The Journal of Physical Chemistry C113,3581 (2009); and 113,14114(2009).
引文
[1]《Directing Matter and Energy:Five Challenges for Science and the Imagination》, U.S. Department of Energy, (2007).
    [2]《国家中长期科技发展规划纲要》,(2006).
    [3]X-Ray absorption: Principles, Application, Techniques of EXAFS, SEXAFS and XANES, Edited by D. C. Koningsberger and R. Prins, Wiley, New York (1988).
    [4]J. J. Rehr, R. C. Albers, Rev. Mod. Phys.72,621 (2000).
    [5]B. Li, J. Zhao, K. Onda, K. D. Jordan, J. L. Yang, H. Petek, Science 311,1436 (2006).
    [6]M. Haumann, P. Liebisch, C. Muller, M. Barra, M. Grabolle, H. Dau, Science 310,1019 (2005).
    [7]S. B. Choel, Y. Acremann, A. Scholl, A. Bauer, A. Doran, J. Stohr, H. A. Padmore, Science 304,420 (2004).
    [8]A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, T. Uruga, Naure Mater.3, 703 (2004).
    [9]Mathon, F. Baudelet, J. P. Itie, A. Polian, M. d'Astuto, J. C. Chervin, S. Pascarelli, Phys. Rev. Lett.93,255503 (2004).
    [10]M. A. Newton, C. Belver-Coldeira, A. Martinez-Arias, M. Fernandez-Garcia, Nature Mater. 6,528 (2007).
    [11]K. E. Goodson, Science 315,342 (2007).
    [12]J. I. Sohn, H. J. Joo, D. Ahn, H. H. Lee, A. E. Porter, K. Kim, D. J. Kang, M. E. Welland, Nano Lett.9,3392 (2009).
    [13]C. Jones, S. Berweger, J. Wei, D. Cobden, and M. B. Raschke, Nano Lett.10,1574 (2010).
    [14]H. T. Kim, Y. W. Lee, B. J. Kim, B. G. Chae, S. J. Yun, K. Y. Kang, K. J. Han, K. J. Yee, Y. S. Lim, Phys. Rev. Lett.97,266401 (2006).
    [15]M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, D. N. Basov, Science 318,1750 (2007).
    [16]R. M. Wentzcovitch, W. W. Schulz, P. B.Allen, Phys. Rev. Lett.72,3389 (1994).
    [17]A. Tselev, I. A. Luk'yanchuk, I. N. Ivanov, J. D. Budai, J. Z. Tischler, E. Strelcov, A. Kolmakov, S. V. Kalinin, Nano Lett.10,4409 (2010).
    [18]Cavalleri, T. Dekorsy, H. H. W. Chong, J. C. Kieffer, R. W. Schoenlein, Phys. Rev. B 70, 161102(2004).
    [19]Cavalleri, C. Toth, C. W. Siders, J. A. Squier, F. Raksi, P. Forget, J. C. Kieffer, Phys. Rev. Lett. 87,237401 (2001).
    [20]S. Biermann, A. Poteryaev, A. I. Lichtenstein, A. Georges, Phys. Rev. Lett.94,026404 (2005).
    [21]M. W. Haverkort, Z. Hu, A. Tanaka, W. Reichelt, S. V. Streltsov, M. A. Korotin, V. I. Anisimov, H. H. Hsieh, H. J. Lin, C. T. Chen, D. I. Khomskii, L. H. Tjeng, Phys. Rev. Lett.95,196404 (2005).
    [22]Cavalleri, M. Rini, H. H. W. Chong, S. Fourmaux, T. E. Glover, P. A. Heimann, J. C. Kieffer, R. W. Schoenlein, Phys. Rev. Lett.95,067405 (2005).
    [23]D. V. Talapin, J. S. Lee, M. V. Kovalenko and E. V. Shevchenko, Chem. Rev.110,389 (2010).
    [24]F. Tao and M. Salmeron, Science 331,171 (2011).
    [25]J. Polte, T. T. Ahner, F. Delissen, S. Sokolov, F. Emmerling, A. F. Thunemann, R. Kraehnert, J. Am. Chem. Soc.132,1296 (2010).
    [26]S. Cheong, J. Watt, B. Ingham, M. F. Toney, R. D. Tilley, J. Am. Chem. Soc.131,14590 (2009).
    [27]H. M. Zheng, R. K. Smith, Y. W. Jun, C. Kisielowski, U. Dahmen, A. P. Alivisatos, Science 324,1309(2009).
    [28]C. B. Murray, Science 324,1276 (2009).
    [29]J. Y. Rempel, M. G. Bawendi, K. F. Jensen, J. Am. Chem. Soc.131,4479 (2009).
    [30]G. Mpourmpakis, D. G. Vlachos, Phys. Rev. Lett.102,155505 (2009).
    [31]A. C. Hillier, M. D. Ward, Science 263,1261 (1994).
    [32]H. W. Roesky, S. Singh, K. K. M. Yusuff, J. A. Maguire, N. S. Hosmane, Chem. Rev.106, 3813(2006).
    [33]C. E. Anson, A. Eichhofer, I. Issac, D. Fenske, O. Fuhr, P. Sevillano, C. Persau, D. Stalke, J. Zhang, Angew. Chem. Int. Ed.47,1326 (2008).
    [34]Y. Xiong, I. Washio, J. Chen, M. Sadilek, Y. Xia, Angew. Chem. Int. Ed.46,4917 (2007).
    [35]T. Yao (姚涛), X. D. Zhang (张晓东), Z. H. Sun (孙治湖), S. J. Liu (柳守杰), Y. Y. Huang(黄兀兀), Y. Xie (谢毅),C. Z. Wu (吴长征),X. Yuan (袁勋), W. Q Zhang (张文清), Z. Y. Wu(吴自玉),G. Q. Pan (潘国强),F. C. Hu (胡凤春), L. H. Wu (吴利徽),Q. H. Liu(刘庆华),S. Q. Wei (韦世强), Phys. Rev. Lett.105,226405 (2010)
    [36]T. Yao, Z. H. Sun, Y. Y. Li, Z. Y. Pan, H. Wei, Y. Xie, M. Nomura, Y. Niwa, W. S. Yan, Z. Y. Wu, Y. Jiang, Q. H. Liu, S. Q. Wei, J. Am. Chem. Soc.132,7696 (2010).
    [1]M. Imada, A. Fujimori, Y. Tokura, Rev. Mod. Phys.70,1039 (1998).
    [2]E. Dagotto, Science 309,257 (2005).
    [3]Y. Tokura, N. Nagaosa, Science 288,462 (2000).
    [4]N. Mott, Metal-Insulator Transitions, Taylor & Francis Ltd (1974).
    [5]N. F. Mott, Rev. Mod. Phys.40,677 (1968).
    [6]M. Fowler, Electrons in One Dimension:the Peierls Transition, (2007).
    [7]F. J. Morin, Phys. Rev. Lett.3,34 (1959).
    [8]E. Arcangeletti, L. Baldassarre, D. D. Castro, S. Lupi, L. Malavasi, C. Marini, A. Perucchi, P. Postorino, Phys. Rev. Lett.98,196406 (2007).
    [9]S. A. Corr, D. P. Shoemaker, B. C. Melot, and R. Seshadri, Phys. Rev. Lett.105 (2010).
    [10]T. L. Wu, L. Whittaker, S. Banerjee, G. Sambandamurthy, Phys. Rev. B 83,073101 (2011).
    [11]R. Lopez, L. C. Feldman, R. F. Haglund, Phys. Rev. Lett.93,177403 (2004).
    [12]B. Lazarovits, K. Kim, K. Haule, G. Kotliar, Phys. Rev. B 81 (2010).
    [13]W. T. Liu, J. Cao, W. Fan, Z. Hao, M. C. Martin, Y. R. Shen, J. Wu, F. Wang, Nano Lett.11, 466(2011).
    [14]K. Appavoo, R. F. Haglund, Nano Lett.11,1025 (2011).
    [15]T. H. Yang, C. M. Jin, H. H. Zhou, R. J. Narayan, J. Narayan, Appl. Phys. Lett.97 (2010).
    [16]A. Sharoni, J. G. Ramirez, I. K. Schuller, Phys. Rev. Lett.101 (2008).
    [17]T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, D. N. Basov, Science 325,1518 (2009).
    [18]L. Whittaker, C. Jaye, Z. G. Fu, D. A. Fischer, S. Banerjee, J. Am. Chem. Soc.131,8884 (2009).
    [19]J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossmanan, and J. Wu, Nature Nanotech.4,732 (2009).
    [20]Q. Gu, A. Falk, J. Q. Wu, O. Y. Lian, H. Park, Nano Lett.7,363 (2007).
    [21]J. M. Booth, P. S. Casey, Phys. Rev. Lett.103,086402 (2009).
    [22]J. I. Sohn, H. J. Joo, D. Ahn, H. H. Lee, A. E. Porter, K. Kim, D. J. Kang, M. E. Welland, Nano Lett.9,3392(2009).
    [23]C. Jones, S. Berweger, J. Wei, D. Cobden, and M. B. Raschke, Nano Lett.10,1574 (2010).
    [24]H. T. Kim, Y. W. Lee, B. J. Kim, B. G. Chae, S. J. Yun, K. Y. Kang, K. J. Han, K. J. Yee, Y. S. Lim, Phys. Rev. Lett.97,266401 (2006).
    [25]M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, D. N. Basov, Science 318,1750 (2007).
    [26]R. M. Wentzcovitch, W. W. Schulz, and P. B.Allen, Phys. Rev. Lett.72,3389 (1994).
    [27]A. Tselev, I. A. Luk'yanchuk, I. N. Ivanov, J. D. Budai, J. Z. Tischler, E. Strelcov, A. Kolmakov, S. V. Kalinin, Nano Lett.10,4409 (2010).
    [28]Cavalleri, T. Dekorsy, H. H. W. Chong, J. C. Kieffer, R. W. Schoenlein, Phys. Rev. B 70, 161102(2004).
    [29]Cavalleri, C. Toth, C. W. Siders, J. A. Squier, F. Raksi, P. Forget, J. C. Kieffer, Phys. Rev. Lett. 87,237401 (2001).
    [30]S. Biermann, A. Poteryaev, A. I. Lichtenstein, A. Georges, Phys. Rev. Lett.94,026404 (2005).
    [31]M. W. Haverkort, Z. Hu, A. Tanaka, W. Reichelt, S. V. Streltsov, M. A. Korotin, V. I. Anisimov, H. H. Hsieh, H. J. Lin, C. T. Chen, D. I. Khomskii, L. H. Tjeng, Phys. Rev. Lett.95, 196404 (2005).
    [32]P. Baum, D. S. Yang, and A. H. Zewail, Science 318,788 (2007).
    [33]Cavalleri, Science 318,755 (2007).
    [34]钟文杰,韦世强,中国科学技术大学学报31,228(2001).
    [35]E. A. Stern, M. Newville, B. Ravel, Y. Yacoby, and D. Haskel, Physica B-Condensed Matter 209,117(1995).
    [36]V. A. Lobastov, J. Weissenrieder, J. Tang, A. H. Zewail, Nano Lett.7,2552 (2007).
    [37]G. Kresse, D. Joubert, Phys. Rev. B 59,1758 (1999).
    [38]S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, A. P. Sutton, Phys. Rev. B 57, 1505(1998).
    [39]T. C. Koethe, Z. Hu, M. W. Haverkort, C. S. Langeheine, F. Venturini, N. B. Brookes, O. Tjernberg, W. Reichelt, H. H. Hsieh, H. J. Lin, C. T. Chen, L. H. Tjeng, Phys. Rev. Lett.97, 116402(2006).
    [40]B. J. Kim, Y. W. Lee, S. Choi, J.-W. Lim, S. J. Yun, H. T. Kim, T. J. Shin, H. S. Yun, Phys. Rev.B77,235401(2008).
    [41]J. B. Goodenough, J. Solid State Chem.3,490 (1971).
    [42]C. Tang, P. Georgopoulos, M. E. Fine, J. B. Cohen, M. Nygren, G. S. Knapp, and A. Aldred, Phys. Rev. B 31,1000 (1985).
    [43]L. Whittaker, T. L. Wu, C. J. Patridge, G. Sambandamurthy, S. Banerjee, J. Mater. Chem.21, 5580(2011).
    [1]J. Lee, S. Mahendra, and P. J. J. Alvarez, ACS Nano 4,3580 (2010).
    [2]<<国家中长期科技发展规划纲要>>(2006).
    [3]G. M. Whitesides, Small 1,172 (2005).
    [4]C. J. Liu, U. Burghaus, F. Besenbacher, and Z. L. Wang, ACS Nano 4,5517 (2010).
    [5]Y. Xia, Y. J. Xiong, B. Lim, and S. E. Skrabalak, Angew. Chem. Int. Ed.48,60 (2009).
    [6]张立德,牟季美,科学出版社,纳米材料和纳米结构(2001).
    [7]J. Hu, T. W. Odom, and C. M. Lieber, Acc. Chem. Res.32,435 (1999).
    [8]M. A. El-Sayed, Acc. Chem. Res.34,257 (2001).
    [9]C. Burda, X. B. Chen, R. Narayanan, and M. A. El-Sayed, Chem. Rev.105,1025 (2005).
    [10]H. Goesmann, and C. Feldmann, Angew. Chem. Int. Ed.49,1362 (2010).
    [11]J. Park, J. Joo, S. G. Kwon, Y. Jang, and T. Hyeon, Angew. Chem. Int. Ed.46,4630 (2007).
    [12]C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. Gao, L. Gou, S. E. Hunyadi, T. Li, J. Phys. Chem. B 109,13857 (2005).
    [13]L. M. Falicov, G. A. Somorjai, Proc. Natl. Acad. Sci. USA 82,2207 (1985).
    [14]G. Schmid, Nanoparticles:From Theory to Application, Wiley-VCH (2004).
    [15]Y. D. Yin, C. Erdonmez, S. Aloni, A. P. Alivisatos, J. Am. Chem. Soc.128,12671 (2006).
    [16]B. J. Wiley, Y. C. Chen, J. M. McLellan, Y. J. Xiong, Z. Y. Li, D. Ginger, and Y. N. Xia, Nano Lett.7,1032 (2007).
    [17]X. M. Lu, M. S. Yavuz, H. Y. Tuan, B. A. Korgel, Y. N. Xia, J. Am. Chem. Soc.130,8900 (2008).
    [18]Y. G. Sun, and Y. N. Xia, Science 298,2176 (2002).
    [19]X. Q. Huang, S. H. Tang, X. L. Mu, Y. Dai, G. X. Chen, Z. Y. Zhou, F. X. Ruan, Z. L. Yang, N. F. Zheng, Nat. Nanotech.6,28 (2011).
    [20]B. Lim, M. J. Jiang, P. H. C. Camargo, E. C. Cho, J. Tao, X. M. Lu, Y. M. Zhu, and Y. A. Xia, Science 324,1302(2009).
    [21]D. W. Oxtoby, Nature 406,464 (2000).
    [22]E. E. Finney, R. G. Finke, J. Colloid Interface Sci.317,351 (2008).
    [23]S. Auer, and D. Frenkel, Nature 409,1020 (2001).
    [24]J. Polte, T. T. Ahner, F. Delissen, S. Sokolov, F. Emmerling, A. F. Thunemann, R. Kraehnert, J. Am. Chem. Soc.132,1296 (2010).
    [25]S. Cheong, J. Watt, B. Ingham, M. F. Toney, R. D. Tilley, J. Am. Chem. Soc.131,14590 (2009).
    [26]H. M. Zheng, R. K. Smith, Y. W. Jun, C. Kisielowski, U. Dahmen, and A. P. Alivisatos, Science 324,1309(2009).
    [27]C. B. Murray, Science 324,1276 (2009).
    [28]J. Y. Rempel, M. G. Bawendi, K. F. Jensen, J. Am. Chem. Soc.131,4479 (2009).
    [29]G. Mpourmpakis, D. G. Vlachos, Phys. Rev. Lett.102,155505 (2009).
    [30]A. C. Hillier, M. D. Ward, Science 263,1261 (1994).
    [31]H. W. Roesky, S. Singh, K. K. M. Yusuff, J. A. Maguire, N. S. Hosmane, Chem. Rev.106, 3813(2006).
    [32]C. E. Anson, A. Eichhofer, I. Issac, D. Fenske, O. Fuhr, P. Sevillano, C. Persau, D. Stalke, J. Zhang, Angew. Chem. Int. Ed.47,1326 (2008).
    [33]Y. Xiong, I. Washio, J. Chen, M. Sadilek, Y. Xia, Angew. Chem. Int. Ed.46,4917 (2007).
    [34]V. K. LaMer, R. H. Dinegar, J. Am. Chem. Soc.72,4847 (1950).
    [35]T. Yao, Z. H. Sun, Y. Y. Li, Z. Y. Pan, H. Wei, Y. Xie, M. Nomura, Y. Niwa, W. S. Yan, Z. Y. Wu, Y. Jiang, Q. H. Liu, S. Q. Wei, J. Am. Chem. Soc.132,7696 (2010).
    [36]L. C. Ciacchi, W. Pompe, A. De Vita, J. Am. Chem. Soc.123,7371 (2001).
    [37]L. C. Ciacchi, W. Pompe, A. De Vita, J. Phys. Chem. B 107,1755 (2003).
    [38]J. G. Mesu, A. M. J. van der Eerden, F. M. F. de Groot, and B. M. Weckhuysen, J. Phys. Chem. B 109,4042 (2005).
    [39]J. G. Mesu, A. M. Beale, F. M. F. de Groot, B. M. Weckhuysen, J. Phys. Chem. B 110,17671 (2006).
    [40]P. Zhang, T. K. Sham, Phys. Rev. Lett.90,245502 (2003).
    [41]M. Harada, H. Einaga, Langmuir 23,6536 (2007).
    [42]A. Fernandez, A. Caballero, A. R. Gonzalezelipe, J. M. Herrmann, H. Dexpert, F. Villain, J. Phys. Chem.99,3303 (1995).
    [43]E. Bus, R. Prins, J. A. van Bokhoven, Phys. Chem. Chem. Phys.9,3312 (2007).
    [44]J. L. Wang, G. H. Wang, J. J. Zhao, Phys. Rev. B 66,035418 (2002).
    [45]A. L. Ankudinov, C. E. Bouldin, J. J. Rehr, J. Sims, H. Hung, Phys. Rev. B 65,104107 (2002).
    [46]M. Hargittai, A. Schulz, B. Reffy, and M. Kolonits, J. Am. Chem. Soc.123,1449 (2001).
    [47]D. G. Duff, P. P. Edwards, and B. F. G. Johnson, The Journal of Physical Chemistry 99,15934 (1995).
    [48]Henglein, M. Giersig, J. Phys. Chem. B 104,6767 (2000).
    [49]Y. W. Tsai, Y. L. Tseng, L. S. Sarma, D. G. Liu, J. F. Lee, and B. J. Hwang, J. Phys. Chem. B 108,8148(2004).
    [50]L. Ferrighi, B. Hammer, and G. K. H. Madsen, J. Am. Chem. Soc.131,10605 (2009).
    [51]H. Hakkinen, Chem. Soc. Rev.37,1847 (2008).
    [52]T. K. Sau, and C. J. Murphy, J. Am. Chem. Soc.126,8648 (2004).
    [53]N. Tian, Z. Y. Zhou, S. G. Sun, Y. Ding, Z. L. Wang, Science 316,732 (2007).
    [54]Lee, R. Morales, M. A. Albiter, F. Zaera, Proc. Natl. Acad. Sci.105,15241 (2008)
    [55]T. Herricks, J. Y. Chen, Y. N. Xia, Nano Lett.4,2367 (2004).
    [56]N. Zheng, J. Fan, G. D. Stucky, J. Am. Chem. Soc.128,6550 (2006).
    [57]J. M. Ramallo-Lopez, L. J. Giovanetti, F. G. Requejo, S. R. Isaacs, Y. S. Shon, M. Salmeron, Phys. Rev. B 74,073410 (2006).
    [58]A. Cossaro, R. Mazzarello, R. Rousseau, L. Casalis, A. Verdini, A. Kohlmeyer, L. Floreano, S. Scandolo, A. Morgante, M. L. Klein, G. Scoles, Science 321,943 (2008).
    [59]W. J. Huang, R. Sun, J. Tao, L. D. Menard, R. G. Nuzzo, J. M. Zuo, Nat. Mater.7,308 (2008).
    [1]S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, D. M. Treger, Science 294,1488 (2001).
    [2]H. Ohno, Nature Mater.9,952 (2010).
    [3]H. Ohno, Science 281,951 (1998).
    [4]T. Dietl, Nature Mater.9,965 (2010).
    [5]T. Dietl, Nature Mater.2,646 (2003).
    [6]D. D. Awschalom, and M. E. Flatte, Nature Phys.3,153 (2007).
    [7]T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287,1019 (2000).
    [8]J. M. D. Coey, M. Venkatesan, C. B. Fitzgerald, Nature Mater.4,173 (2005).
    [9]R. Larde, E. Talbot, P. Pareige, H. Bieber, G. Schmerber, S. Colis, V. P. Bohnes, A. Dinia, J. Am. Chem. Soc.133,1451 (2011).
    [10]K. Ueda, H. Tabata, T. Kawai, Appl. Phys. Lett.79,988 (2001).
    [11]H. J. Lee, S. Y. Jeong, C. R. Cho, C. H. Park, Appl. Phys. Lett.81,4020 (2002).
    [12]P. Sati, R. Hayn, R. Kuzian, S. Regnier, S. Schafer, A. Stepanov, C. Morhain, C. Deparis, M. Laugt, M. Goiran, Z. Golacki, Phys. Rev. Lett.96,017203 (2006).
    [13]J. H. Park, M. G. Kim, H. M. Jang, S. Ryu, and Y. M. Kim, Appl. Phys. Lett.84,1338 (2004).
    [14]A. J. Behan, A. Mokhtari, H. J. Blythe, D. Score, X. H. Xu, J. R. Neal, A. M. Fox, G. A. Gehring, Phys. Rev. Lett.100,047206 (2008).
    [15]P. Sati, C. Deparis, C. Morhain, S. Schafer, and A. Stepanov, Phys. Rev. Lett.98,137204 (2007).
    [16]A. Ney, K. Ollefs, S. Ye, T. Kammermeier, V. Ney, T. C. Kaspar, S. A. Chambers, F. Wilhelm, A. Rogalev, Phys. Rev. Lett.100,157201 (2008).
    [17]R. Beaulac, L. Schneider, P. I. Archer, G. Bacher, D. R. Gamelin, Science 325,973 (2009).
    [18]J. Cui, and U. Gibson, Phys. Rev. B 74,045416 (2006).
    [19]B. D. Yuhas, D. O. Zitoun, P. J. Pauzauskie, R. R. He, P. D. Yang, Angew. Chem. Int. Ed.45, 420 (2006).
    [20]B. D. Yuhas, S. Fakra, M. A. Marcus, P. D. Yang, Nano Lett.7,905 (2007).
    [21]W. J. Liang, B. D. Yuhas, P. D. Yang, Nano Lett.9,892 (2009).
    [22]Z. H. Zhang, X. F. Wang, J. B. Xu, S. Muller, C. Ronning, Q. Li, Nature Nanotech.4,523 (2009).
    [23]Z. H. Sun, W. S. Yan, G. B. Zhang, H. Oyanagi, Z. Y. Wu, Q. H. Liu, W. Q. Wu, T. F. Shi, Z. Y. Pan, P. S. Xu, and S. Q. Wei, Phys. Rev. B 77,245208 (2008).
    [24]J. G. Chen, Surf. Sci. Rep.30,1 (1997).
    [25]J. W. Chiou, H. M. Tsai, C. W. Pao, K. P. K. Kumar, S. C. Ray, F. Z. Chien, W. F. Pong, M. H. Tsai, C. H. Chen, H. J. Lin, J. J. Wu, M. H. Yang, S. C. Liu, H. H. Chiang, C. W. Chen, Appl. Phys. Lett.89,043121 (2006).
    [26]W. S. Yan, Z. H. Sun, Q. H. Liu, Z. R. Li, Z. Y. Pan, J. Wang, S. Q. Wei, D. Wang, Y. X. Zhou, X. Y. Zhang, Appl. Phys. Lett.91,062113 (2007).
    [27]S. Kuroda, N. Nishizawa, K. Takita, M. Mitome, Y. Bando, K. Osuch, and T. Dietl, Nature Mater.6,440 (2007).
    [28]T. Dietl, Physica E-Low-Dimensional Systems & Nanostructures 35,293 (2006).
    [29]M. A. White, S. T. Ochsenbein, D. R. Gamelin, Chem. Mater.20,7107 (2008).
    [30]D. J. Norris, A. L. Efros, S. C. Erwin, Science 319,1776 (2008).
    [31]H. L. Meyerheim, C. Tusche, A. Ernst, S. Ostanin, I. V. Maznichenko, K. Mohseni, N. Jedrecy, J. Zegenhagen, J. Roy, I. Mertig, J. Kirschner, Phys. Rev. Lett.102,156102 (2009).
    [32]J. J. Li, W. C. Hao, H. Z. Xu, and T. M. Wang, J. Appl. Phys.105,053907 (2009).
    [33]Y. B. Zhang, M. H. N. Assadi, and S. Li, J. Phys.-Condensed Matter 21,175802 (2009).
    [34]K. R. Kittilstved, D. A. Schwartz, A. C. Tuan, S. M. Heald, S. A. Chambers, D. R. Gamelin, Phys. Rev. Lett.97,037203 (2006).
    [35]D. R. Khanal, J. W. L. Yim, W. Walukiewicz, J. Wu, Nano Lett.7,1186 (2007).
    [36]S. Yin, M. X. Xu, L. Yang, J. F. Liu, H. Rosner, H. Hahn, H. Gleiter, D. Schild, S. Doyle, T. Liu, T. D. Hu, E. T. Muromachi, J. Z. Jiang, Phys. Rev. B 73,224408 (2006).
    [37]H. W. Peng, H. J. Xiang, S. H. Wei, S. S. Li, J. B. Xia, J. B. Li, Phys. Rev. Lett.102,017201 (2009).
    [38]S. Risbud, N. A. Spaldin, Z. Q. Chen, S. Stemmer, R. Seshadri, Phys. Rev. B 68,205202 (2003).
    [39]J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy,83 (1992).
    [40]K. A. Griffin, A. B. Pakhomov, C. M. Wang, S. M. Heald, K. M. Krishnan, Phys. Rev. Lett. 94,157204(2005).
    [41]H. Hirai, Y. Nakao, and N. Toshima, J. Macromol. Sci., Pure Appl. Chem.13,727 (1979).
    [42]X. L. Zhang, R. Qiao, R. Qiu, Y. Li, Y. S. Kang, J. Phys. Chem. A 111,4195 (2007).
    [43]D. W. Chu, Y. P. Zeng, D. L. Jiang, J. Phys. Chem. C 111,5893 (2007).
    [44]D. Jayakumar, I. K. Gopalakrishnan, S. K. Kulshreshtha,Adv. Mater.18,1857 (2006).
    [45]G. Faraci, A. R. Pennisi, A. Balerna, H. Pattyn, G. E. J. Koops, G. L. Zhang, Phys. Rev. Lett. 86,3566(2001).
    [46]S. B. Orlinskii, J. Schmidt, P. G. Baranov, D. M. Hofmann; C. M. Donega, A. Meijerink, Phys. Rev. Lett.92,047603 (2004).
    [47]Wood, M. Giersig, P. Mulvaney, J. Phys. Chem. B 105,8810 (2001).
    [48]G. Y. Shan, L. H. Xu, G. R. Wang, Y. C. Liu, J. Phys. Chem. C 111,3290 (2007).
    [49]F. Pan, C. Song, X. J. Liu, Y. C. Yang, F. Zeng, Mater. Sci. Eng., R 62,1 (2008).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700