聚酰亚胺表面功能化复合材料的制备及结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚酰亚胺(PI)是一种具有优异的机械性能、电性能、耐辐射性能和耐热性能的高性能聚合物材料,广泛应用于航空航天、微电子和通讯等高技术领域。科学技术的发展对材料提出了更高更新的要求,材料的研究在不断地朝着高性能化、多功能化和低成本化方向发展。用无机纳米粒子尤其是金属或金属氧化物纳米粒子与聚酰亚胺材料进行复合,是目前实现聚酰亚胺材料功能化的一个重要方向,这种复合材料不仅结合了PI各方面的优异性能,同时引入了金属或金属氧化纳米粒子所特有的光、电、磁以及催化等功能特性,在航空航天和微电子等许多领域都具有潜在的应用价值,成为近年来聚酰亚胺材料研究的热点之一。本文采用成品PI材料为基体,利用聚酰亚胺材料不耐水解的特性,通过基于表面改性的一系列方法制备了各种聚酰亚胺/金属或金属氧化物功能复合材料,对复合材料的表面微观形貌,热性能、机械性能以及光电磁等特性进行了表征,考察了各种制备因素对复合材料微观结构与性能的影响,并探讨了相关的机理。
     以均苯四酸酐/4,4'-二氨基二苯醚(PMDA/ODA)基的PI薄膜为基体,以Co(NO3)2为钴源,采用表面改性、离子交换和在空气中热处理的方法制备了具有半导体性质和磁性的PI/四氧化三钴(Co3O4)复合薄膜。通过控制表面改性和离子交换的条件,可以在PI薄膜表面生成一层完全连续的Co3O4层,Co3O4粒子的大小为15-40nm,PI/Co3O4复合薄膜的室温表面电阻可降至107Ω。考察了钴离子的载入量对最终复合薄膜的微观结构与性能的影响,讨论了连续的Co3O4层形成的机理。PI/Co3O4复合薄膜保持了PI基体优异的力学性能和热性能,表面Co3O4复合层和聚酰亚胺基体之间具有良好的粘结性。
     以PMDA/ODA基的PI薄膜为基体,以Zn(NO3)2为ZnO的前驱体,通过表面改性、离子交换和在空气中热处理的方法制备了PI/ZnO复合薄膜。跟踪了热处理过程中ZnO纳米粒子的形成、生长过程和复合薄膜的光致发光性能,实验结果发现,相比较其它的金属氧化物纳米粒子,氧化锌的形成和生长过程较为缓慢,只有在350℃热处理7h以上,才能在复合薄膜的光致发光光谱上出现ZnO的紫外发射峰。同时研究了碱液处理和锌离子交换条件对锌离子掺杂量、最终复合薄膜的微观结构、光致发光和热性能的影响。所有在350℃热处理7h得到的PI/ZnO复合薄膜的光致发光光谱均呈现一个比较弱的紫外发射峰和一个宽而强的可见光发射峰。PI/ZnO复合薄膜保持了母体PI优异的热稳定性。
     通过表面刻蚀离子交换法制备了PI/NiO复合薄膜,由于在热处理过程中有可能发生了聚酰胺酸镍盐的分解和生成的NiO纳米粒子对周围PI的催化降解作用,薄膜表面出现大量微米级的树枝状裂缝缺陷。当在离子交换和热处理过程中引入尿素沉淀处理过程时,可制得表面无明显缺陷的PI/NiO复合薄膜。研究了碱液处理、尿素沉淀处理和热处理条件对复合薄膜微观形貌以及热性能的影响。薄膜的XPS表征证明经尿素处理后在薄膜表面生成了Ni(OH)2,热处理后生成了立方晶型的氧化镍粒子,NiO纳米粒子的大小约为10nM。PI/NiO复合薄膜在室温下呈现顺磁性。聚酰亚胺/NiO复合薄膜保持了母体PI薄膜优异的热稳定性。采用稀氨水溶液在室温下对含有镍离子的PI薄膜进行沉淀处理,热处理后同样可以制得表层NiO粒子均匀分散的PI复合薄膜。
     以PMDA-ODA基的PI薄膜为基体,以AgNO3为银源,通过碱液处理、离子交换和在抗坏血酸溶液中室温还原的方法制备了表面银化的PI复合薄膜。考察了薄膜两面的微观形貌、导电性和反射性随碱液处理条件和还原时间的变化。PI/Ag复合薄膜的表面电阻几乎都在1Ω/口以下,薄膜两面的反射率最高可达到92.97%和83.55%。以自制的PMDA-ODA纤维为基体,分别以硝酸银和银氨溶液为银源,用相同的方法制备了表面银化的PI导电纤维。研究了表面处理条件和银盐种类对纤维表面形成连续银层的影响。研究发现,控制合适的碱液处理和离子交换条件可在PI纤维表面形成完全连续的银层,纤维的表面电阻可降到102Ω/cm左右。以银氨溶液为银源时,PI薄膜的银化效率较高,在很低的银盐浓度(0.04M)和很短的离子交换时间(5min)下即可实现纤维的有效金属化。表面银化的复合薄膜和纤维基本上分别保持了母体PI薄膜和纤维优异的机械性能,且表面银层和PI基体之间具有良好的粘结力。
Polyimide (PI) is an important high-performance polymer widely used in aerospace, microelectronics, communication fields and so on for their marked thermal-stability, excellent mechanical, electrical and radiation-resistance properties. With the development of science and technology, new requirements for the material such as high performance, multi-functional and low cost are raised. Combining inorganic nanoparticles especially metal or metal oxide nanoparticles with polyimide is an important approach to realize the functionalization of the polyimide materials. The prepared polyimide composite materials not only have the excellent performances of polyimide but also possess the unique optical, electrical, magnetic or catalytic functional properties of metal or metal oxide nanoparticles, and they have great potential applications in microelectronic, aerospace and other fields. In this thesis, based on the hydrolysis characteristics of polyimide matrix in alkali, various polyimide/metal or metal oxide functional composites were prepared via different surface modification methods utilizing polyimide films or fibers as matrix and inorganic metal salts as metal source. Factors influencing the surface morphology, thermal, mechanical and functional properties such as electric, magnetic and optical properties of the composites were studied and the related mechanisms were also investigated.
     Semiconductive PI/cobalt oxide (Co3O4) magnetic composite films were prepared by surface modification, ion exchange and thermal treatment in air atmosphere using commercial pyromellitic dianhydride/4,4'-oxydianiline (PMDA/ODA)-based polyimide films as the substrate and cobalt nitrate as the cobalt source. Continuous cobalt oxide layers could be obtained on the PI surface layer by controlling appropriate preparation conditions and the room temperature surface resistance of the composite film was in the range of 107Ω The particle size of cobalt oxide was in the range of 15-40 nm. The effect of cobalt ion loading on the morphology and properties of the composite films were investigated and the possible formation mechanism of continuous cobalt oxide layer was also proposed. The PI/Co3O4 composite films maintained the excellent thermal and mechanical properties of the bare polyimide film. The adhesion between surface cobalt oxide composite layer and the PI matrix was acceptable.
     PI/ZnO nanocomposite films were prepared by the surface modification and ion exchange technique using PMDA/ODA-based PI films as the substrates and zinc nitrate as the precursor of ZnO. The formation and growth process of ZnO nanoparticles and the photoluminescence (PL) properties of the composite films during thermal treatment were tracked. The results revealed that the formation and growth of ZnO nanoparticles were a slower process compared with other metal oxides and the ultraviolet emission band of ZnO would not appear on the PL spectrum of the composite film unless the thermal treatment time at 350℃is extended to 7 h. In addition, the effect of alkali treatment and ion exchange conditions were investigated in relating to the amount of zinc ion loading, surface morphology, photoluminescence and thermal property of the PI/ZnO composite films. The PL spectra of all the PI/ZnO nanocomposite films obtained at 350℃/7 h possessed a weak ultraviolet emission peak and a broad and strong visible emission band. The composite film kept the excellent thermal properties of the host PI film.
     PI/NiO composite films were prepared by the surface modification and ion exchange method. The formation and aggregation of NiO nanoparticles during thermal treatment may be accompanied by the decomposition of nickel polyamate and oxidative degradation of surrounding PI matrix catalyzed by newly generated NiO nanoparticles. Therefore, many large micron-wide cracks with dentritic shape occurred on the PI film surface. When the urea deposition process was introduced between ion exchange and thermal treatment, PI/NiO composite films without evident defects can be obtained. The effects of alkali treatment, urea treatment and thermal treatment conditions on the morphology and thermal properties of the composite films were investigated. XPS characterization demonstrated that nickel hydroxide particles were formed on the PI film surface after urea deposition process and converted to cubic nickel oxide nanoparticles with an average size of about 10-15 nm after thermal treatment in air atmosphere. The PI/NiO composite film presents ferromagnetic properties at room temperature. The composite films kept the excellent thermal stability of host polyimide film. When the deposition process of nickel ion-doped polyimide film was performed in dilute ammonia solution at room temperature, polyimide composite films with nickel NiO nanoparticles homogenously dispersed on both surface layers can also be obtained.
     Surface silvered PI films were prepared at room temperature by surface modification, ion exchange and reduction in ascorbic acid solution utilizing 1 PMDA/ODA-based PI films as the substrate and silver nitrate as the silver precursor. The morphology, conductivity and reflectivity of the both surfaces of the PI/Ag composite film were investigated in relating to alkali treatment time and reduction time. Film with maximum surface resistance of less than 1Ω/□and maximum reflectivity of 92.97% and 83.55% could be achieved. Surface silvered polyimide fibers were fabricated by the same method using polyimide fibers prepared in our laboratory as substrate and silver nitrate and silver ammonia complex cation as the silver source respectively. The effect of alkali treatment conditions and ion exchange conditions on fiber surface morphology, conductivity and mechanical properties were studied. Continuous silver layer can be formed on polyimide fiber surface and the surface resistances of the composite fibers could be reached to 102 Q/cm. Compared with silver nitrate, silver ammonia complex cation has higher efficiency for polyimide silver metallization which can be achieved by employing very dilute silver ion solution (0.04 M) and very short ion exchange time (5 min). The surface silvered polyimide films and fibers essentially maintained the mechanical properties of host polyimide films and fibers and the surface silver layers were well adhered to the polyimide substrates.
引文
[1]丁孟贤.聚酰亚胺—化学、结构与性能的关系及材料[M].北京:科学出版社,2006
    [2]宋晓峰.聚酰亚胺的研究与进展[J].纤维复合材料,2007,33(3):33-37
    [3]崔永丽,张仲华,江利,欧雪梅.聚酰亚胺的性能及应用[J].塑料科技,2005,(3):50-53
    [4]Kreuz J A, Edman J R. Polyimide films[J]. Adv. Mater.,1998,15:1229-1232
    [5]汪多仁.聚酰亚胺的合成与应用的进展[J],电线电缆,2001,(6):10-12
    [6]Dorsey K D, Desai P, Abhiraman A S. Structure and properties of melt-extruded laRC-IA (3,4'-ODA 4,4'-ODPA) polyimide fibers[J]. J. Appl. Polym. Sci.,1999,73:1215-1222
    [7]Hedrick J, Labadie J, Russell T. High temperature polymer foams[J]. Polymer,1993,34: 4717-4726
    [8]Asano N, Aoki M, Suzuki S, Miyatake K, Uchida H, and Watanabe M. Aliphatic/aromatic polyimide ionomers as a proton conductive membrane for fuel cell applications[J]. J. Am. Chem. Soc.,2006,128 (5):1762-1769
    [9]王海平,王标兵,胡国胜,陈利,杨云峰.聚酰亚胺的研究进展及应用[J].塑料制造,2007,11月刊,104-107
    [10]唐婷婷,周伍清,戴礼兴.聚酰亚胺的改性研究进展[J].合成技术及应用,2006,2 1(3):25-29
    [11]刘勇,王世敏,许祖勋,董兵海.聚酰亚胺的改性研究新进展[J].胶体与聚合物,2006,24(1):43-45
    [12]孙自淑,江天,马家举,江棂.聚酰亚胺的改性及应用进展[J].化工科技,2005,13(5):54-58
    [13]杨淑珍,卢建军,刘妙青.聚酰亚胺/无机纳米复合材料的应用及发展[J].塑料工业,2008,(36增):55-57
    [14]钱伯章.聚酰亚胺国内外发展分析[J].国外塑料,2008,11(26):40-43
    [15]李玉芳.聚酰亚胺树脂的生产和应用进展[J].化工文摘,2009,(4):17-20
    [16]Lamb R N, Baxter J, Grunze M, Kong C W, Unertl W N. An XPS study of the composition of thin polyimide films formed by vapor deposition[J]. Langmuir,1988,4 (2):249-256
    [17]晁敏,寇开昌,吴广磊,赵春玲,王志超.聚酰亚胺薄膜气相沉积的研究进展[J].材料导报:综述篇,2009,11(23):118-121
    [18]Miyatake K, Zhou H, Matsuo T, Uchida H, Watanabe M. Proton Conductive polyimide electrolytes containing trifluoromethyl groups:synthesis, properties, and DMFC performance[J]. Macromolecules,2004,37 (13):4961-4966
    [19]Cheng C F, Cheng H H, Cheng P W, Lee Y J. Effect of reactive channel functional groups and nanoporosity of nanoscale mesoporous silica on properties of polyimide composite[J]. Macromolecules,2006,39 (22):7583-7590
    [20]Fu G D, Kang E T, Lin K G NeohC C, Liaw D J. Rigid fluorinated polyimides with well-defined polystyrene/poly(pentafluorostyrene) side chains from atom transfer radical polymerization[J]. Macromolecules,2005,38(18):7593-7600
    [21]Wang L, Yi B L, Zhang M H, Xing D M. Characteristics of polyethersulfone/sulfonated polyimide blend membrane for proton exchange membrane fuel cell[J]. J. Phys. Chem. B, 2008,112 (14):4270-4275
    [22]Chang Z J, Xu Y, Zhao X, Zhang Q H, Chen D J. Grafting poly(methyl methacrylate) onto polyimide nanofibers via "click" reaction[J]. ACS Appl. Mater. Interfaces,2009,1(12): 2804-2811
    [23]Fu S Y, Zheng B. Templated silica tubes with high aspect ratios as effective fillers for enhancing the overall performance of polyimide films[J]. Chem. Mater.,2008,20(3): 1090-1098
    [24]Cheng C F, Cheng H H, Cheng P W, Lee Y J. Effect of reactive channel functional groups and nanoporosity of nanoscale mesoporous silica on properties of polyimide composite[J]. Macromolecules,2006,39 (22):7583-7590
    [25]Leu C M, Chang Y T, Wei K H. Synthesis and dielectric properties of polyimide-tethered polyhedral oligomeric silsesquioxane (POSS) nanocomposites via POSS-diamine[J]. Macromolecules,2003,36 (24):9122-9127
    [26]Leu C M, Wu Z W, and Wei K H. Synthesis and properties of covalently bonded layered silicates/polyimide (BTDA-ODA) nanocomposites[J]. Chem. Mater.,2002,14(7):3016-3021
    [27]Tyan H L, Leu C M, Wei K H. Effect of reactivity of organics-modified montmorillonite on the thermal and mechanical properties of montmorillonite/polyimide nanocomposites[J]. Chem. Mater.,2001,13 (1):222-226
    [28]Tyan H L, Liu Y C, and Wei K H. Thermally and mechanically enhanced clay/polyimide nanocomposite via reactive organoclay[J]. Chem. Mater.,1999,11(7):1942-1947
    [29]Qu L W, Lin Y, Hill D E, Zhou B, Wang W, Sun X F, Kitaygorodskiy A, Suarez M, Connell J W, Allard L F, Sun Y P. Polyimide-functionalized carbon nanotubes:synthesis and dispersion in nanocomposite films[J]. Macromolecules,2004,37(16):6055-6060
    [30]Lebron-Colon M, Meador M A, Gaier J R, Sola F, Scheiman D A, McCorkle LS. Reinforced thermoplastic polyimide with dispersed functionalized single wall carbon nanotubes[J]. ACS Appl. Mater. Interfaces,2010,2(3):669-676
    [31]Chen D, Liu T X, Zhou X P, Tjiu W C, Hou H Q. Electrospinning fabrication of high strength and toughness polyimide nanofiber membranes containing multiwalled carbon nanotubes[J]. J. Phys. Chem. B,2009,113 (29):9741-9748
    [32]Wu J T, Hsu S L C, Tsai M H, Hwang W S. Direct inkjet printing of silver nitrate/poly(n-vinyl-2-pyrrolidone) inks to fabricate silver conductive lines[J]. J. Phys. Chem. C,2010,114(10):4659-4662
    [33]Thompson D S, Davis L M, Thompson D W, Southward R E. Single-stage synthesis and characterization of reflective and conductive silver-polyimide films prepared from silver(Ⅰ) complexes with ODPA/4,4'-ODA[J]. ACS Appl. Mater. Interfaces,2009,1(7): 1457-1466
    [34]Akamatsu K, Ikeda S, Nawafune H. Site-selective direct silver metallization on surface-modified polyimide layers[J]. Langmuir,2003,19:10366-10371
    [35]Rubira A F, Rancourt J D, Caplan M L, Claire A K S, Taylor L T. Optically reflective polyimide films created by in situ silver metal formation[J]. Chem. Mater.,1994,6(12): 2351-2358
    [36]Southward R E, Thompson D S, Thompson D W, Caplan M L, Clair A K St. Synthesis of reflective polyimide films via in situ silver(Ⅰ) reduction[J]. Chem. Mater.,1995,7 (11):2171-2180
    [37]Young J T, Tsai W H, Boerio F J. Characterization of the interface between pyromellitic dianhydride/oxydianiline polyimide and silver using surface-enhanced Raman scattering[J]. Macromolecules,1992,25 (2):887-894
    [38]Willecke R, Faupel F. Diffusion of gold and silver in bisphenol a polycarbonate[J]. Macromolecules,1997,30 (3):567-573
    [39]Ifuku S,Tsuji M, Morimoto M, Saimoto H, Yano H. Synthesis of silver nanoparticles templated by tempo-mediated oxidized bacterial cellulose nanofibers[J]. Biomacromolecules,2009,10 (9):2714-2717
    [40]Tsai W H, Young J T, Boerio F J, Hong P P. Characterization of model polyimide/silver interphases using surface-enhanced raman scattering [J]. Langmuir,1991,7 (4):745-754
    [41]Strunskus T, Grunze M, Kochendoerfer G, Woll C. Identification of physical and chemical interaction mechanisms for the metals gold, silver, copper, palladium, chromium, and potassium with polyimide surfaces[J]. Langmuir,1996,12 (11):2712-2725
    [42]Southward R E, Thompson D S, Thompson D W, Clair A K S. Fabrication of highly reflective composite polyimide films via in situ reduction of matrix constrained silver(Ⅰ) [J]. Chem. Mater.,1997,9(7):1691-1699
    [43]Sridhar S, Aminabhavi T M, Mayor S J, Ramakrishna M. Permeation of carbon dioxide and methane gases through novel silver-incorporated thin film composite pebax membranes[J]. Ind. Eng. Chem. Res.,2007,46(24):8144-8151
    [44]Deshmukh R D, Composto R J. Surface segregation and formation of silver nanoparticles created in situ in poly(methyl methacrylate) films[J]. Chem. Mater.,2007,19 (4):745-754
    [45]Nirode W F, Devault G L, Sepaniak M J, Cole R O. On-column surface-enhanced raman spectroscopy detection in capillary electrophoresis using running buffers containing silver colloidal solutions[J]. Anal. Chem.,2000,72(8):1866-1871
    [46]Southward R E, Thompson D W. Metal-polyimide nanocomposite films:single-stage synthesis of silvered polyimide films prepared from silver(Ⅰ) complexes and BPDA/4,4'-ODA[J]. Chem. Mater.,2004,16 (7):1277-1284
    [47]Tsai W H, Boerio F J, Jackson K M. Characterization of interphases between PMDA/4-BDAF polyimides and silver substrates using surface-enhanced Raman scattering and reflection-absorption infrared spectroscopy[J]. Langmuir,1992,8(5): 1443-1450
    [48]Southward R E, Boggs C M, Thompson D W, Clair A K S. Synthesis of surface-metallized polyimide films via in situ reduction of (perfluoroalkanoato)silver(Ⅰ) complexes in a poly(amic acid) precursor[J]. Chem. Mater.,1998,10(5):1408-1421
    [49]Southward R E, Thompson D W, Clair A K S. Control of reflectivity and surface conductivity in metallized polyimide films prepared via in situ silver(Ⅰ) reduction[J]. Chem. Mater.,1997,9(2):501-510
    [50]Tsai W H, Cave N G, Boerio F J. Characterization of interfaces between pyromellitic dianhydride/2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane polyimides and silver and highly oriented pyrolytic graphite substrates using x-ray photoelectron spectroscopy [J]. Langmuir,1992,8 (3):927-935
    [51]Fragala M E, Malandrino G, Puglisi O. Synthesis, x-ray structure, and characterization of Ag(hfa)-tetraglyme [hfa=hexafluoroacetylacetonate]:a novel adduct for the fabrication of metallic silver based films via in situ self reduction[J]. Chem. Mater.,2000,12 (2): 290-293
    [52]Qi S L, Wang W C, Wu D Z, Wu Z P, Jin RG. Preparation of reflective and electrically conductive surface-silvered polyimide films from silver(Ⅰ) complex and PMDA/ODA via an in-situ single-stage technique[J]. Eur. Polym. J.,2006,42(9):2023-2030
    [53]Qi S L, Wu D Z, Wu Z P, Wang W C, Jin R G. Reflective and conductive surface-silvered polyimide films prepared via in-situ technique using copolyimide as matrix[J]. Polymer, 2006,47(9):3150-3156
    [54]Qi S L, Wu Z P, Wu D Z, Wang W C, Jin R G. Highly reflective and conductive double-surface-silvered polyimide films prepared from silver fluoride and BTDA/4,4'-ODA[J]. Langmuir,2007,23 (9):4878-4885
    [55]Qi S L, Wu Z P, Wu D Z, Yang W T, Jin R G. The chemistry involved in the loading of silver(Ⅰ) into poly(amic acid) via ion exchange:a metal-ion-induced crosslinking behavior[J]. Polymer,2009,50(3):845-854
    [56]Qi S L, Wu Z P, Wu D Z. Controlled formation of optically reflective and electrically conductive silvered surfaces on polyimide film via a direct ion-exchange self-metallization technique using silver ammonia complex cation as the precursor[J]. J. Phys. Chem. B,2008,112(18):5575-5584
    [57]Qi S L, Wu D Z, Bai Z W. Direct ion exchange self-metallization:a novel and efficient route for the preparation of double-surface-silvered polyimide films[J]. Macromol. Rapid Commun.2006,27:372-376
    [58]Qi S L, Wu Z P, Wu D Z. Double-surface-silvered polyimide films prepared via a direct ion-exchange self-metallization process[J]. Chem. Mater.,2007,19:393-401
    [59]Wu Z P, Wu D Z, Qi S L. Preparation of surface conductive and highly reflective silvered polyimide films by surface modification and in situ self-metallization technique[J]. Thin Solid Films,2005,493:179-184
    [60]Wu Z P, Wu D Z, Yang W T. Preparation of highly reflective and conductive metallized polyimide films through surface modification:processing, morphology and properties[J]. J. Mater. Chem.,2006,16(3):310-316
    [61]Yang S Q, Wu D Z, Qi S L, Cui G H, Jin R G, Wu Z P. Fabrication of highly reflective and conductive double-surface-silvered layers embedded on polymeric films through all-wet process at room temperature[J]. J. Phys. Chem. B,2009,113:9694-9701
    [62]Porta G M, Rancourt J D, Taylor L T. Copper/polyimide multilayered composites[J]. Chem. Mater.,1989,1(2):269-276
    [63]Zhang J, Sullivan M B, Zheng J W, Loh K P, Wu P. Theoretical study on polyimide-Cu(100)/Ni(100) adhesion[J]. Chem. Mater.,2006,18 (22):5312-5316
    [64]Murdey R, Stuckless J T. calorimetry of polymer metallization:copper, calcium, and chromium on PMDA-ODA polyimide[J]. J. Am. Chem. Soc.,2003,125(13):3995-3998
    [65]Sawada T, Ando S. Synthesis, characterization, and optical properties of metal-containing fluorinated polyimide films[J]. Chem. Mater.,1998,10(11):3368-3378
    [66]Tagawa M, Maeda K, Kajita T, Yokota K, Akamatsu K, Nawafune H. Atomic beam-induced fluorination of polyimide and its application to site-selective Cu metallization[J]. Langmuir,2007,23 (23):11351-11354
    [67]Chen J P, Labarthet F L, Natansohn A, Rochon P. Highly stable optically induced birefringence and holographic surface gratings on a new azocarbazole-based polyimide[J]. Macromolecules,1999,32(25):8572-8579
    [68]郑雪菲.含硫型聚酰亚胺柔性电路板材料的合成与性能研究[D].广州:中山大学硕士学位论文,2008
    [69]Jeon N L, Nuzzo R G. Physical and spectroscopic studies of the nucleation and growth of copper thin films on polyimide surfaces by chemical vapor deposition[J]. Langmuir,1995, 11(1):341-355
    [70]Kowalczyk S P, Jordan-Sweet J L. Formation of polyimide/substrate interfaces: investigation of interfacial chemistry of polyamic acid with surfaces of silicon, copper, and chromium[J]. Chem. Mater.,1989,1 (6):592-596
    [71]Hozumi A, Asakura S, Fuwa A, Shirahata N, Kameyama T. Preparation of a well-defined amino-terminated self-assembled monolayer and copper microlines on a polyimide substrate covered with an oxide nanoskin[J]. Langmuir,2005,21 (18):8234-8242
    [72]KilianH G, Bronnikov S, Sukhanova T. Transformations of the micro-domain structure of polyimide films during thermally induced chemical conversion:characterization via thermodynamics of irreversible processes[J]. J. Phys. Chem. B,2003,107(49): 13575-13582
    [73]Akamatsu K, Ikeda S, Nawafune H. Direct patterning of copper on polyimide using ion exchangeable surface templates generated by site-selective surface modification[J]. J.Am. Chem. Soc.,2004,126:10822-10823
    [74]Akamatsu K, Ikeda S, Nawafune H. Surface modification-based synthesis and microstructural tuning of nanocomposite layers:monodispersed copper nanoparticles in polyimide resins[J]. Chem. Mater.,2003,15:2488-2491
    [75]Ikeda S, Akamatsu K, Nawafune H. Formation and growth of copper nanoparticles from ion-doped precursor polyimide layers[J]. J. Phys. Chem. B,2004,108(40):15599-15607
    [76]Ikeda S, Yanagimoto H, Akamatsu K. Copper/polyimide heterojunctions:controlling interfacial structures through an additive-based, all-wet chemical process using ion-doped precursors [J]. Adv. Funct. Mater.,2007(6),17:889-897
    [77]Akamatsu K, Shinkal H, Ikeda S. Controlling interparticle spacing among metal nanoparticles through metal-catalyzed decomposition of surrounding polymer matrix[J]. J.Am. Chem. Soc.,2005,127(22):7980-7981
    [78]Hsiao Y S, Whang W T, Wu S C, Chuang K R. Chemical formation of palladium-free surface-nickelized polyimide film for flexible electronics[J]. Thin Solid Films,2008, 516:4258-4266
    [79]French B L, Davis L M, Munzinger E S, Slavin J W J, Christy P C, Thompson D W, Southward R E. Palladium-polyimide nanocomposite membranes:synthesis and characterization of reflective and electrically conductive surface-metallized films[J]. Chem. Mater.,2005,17 (8):2091-2100
    [80]Trolger L, Hulnnefeld H, Nunes S, Oehring M, Fritsch D. Structural characterization of catalytically active metal nanoclusters in poly(amide imide) films with high metal loading[J]. J. Phys. Chem. B,1997,101:1279-1291
    [81]Zhang F X, Srinivasan M P. Multilayered gold-nanoparticle/polyimide composite thin film through layer-by-layer assembly[J]. Langmuir,2007,23 (20):10102-10108
    [82]鞠剑锋.纳米TiO2复合材料的制备及应用研究[D].南京:南京理工大学博士学位论文.2006
    [83]梁建.新型结构半导体材料的制备与表征[D].太原:太原理工大学博士学位论文,2005
    [84]Lai T L, Lai Y L, Lee C C, Shu Y Y, Wang C B. Microwave-assisted rapid fabrication of Co3O4 nanorods and application to the degradation of phenol[J]. Catal. Today,2008,131: 105-110
    [85]Kima H, Parkb D W, Wooc H C, Chunga J S. Reduction of SO2 by CO to elemental sulfur over Co3O4-TiO2 catalysts[J]. Appl. Catal. B,1998,19:233-243
    [86]Natile M M, Glisenti A. New NiO/Co3O4 and Fe2O3/Co3O4 nanocomposite catalysts: synthesis and characterization[J]. Chem. Mater.,2003,15:2502-2510
    [87]Wang Y, Fu Z W, Qin Q Z. A nanocrystalline Co3O4 thin film electrode for Li-ion batteries[J]. Thin Solid Films,2003,441:19-24
    [88]Liao C L, Lee Y H, Chang S T, Fung K Z. Structural characterization and electrochemical properties of RF-sputtered nanocrystalline Co3O4 thin-film anode[J]. J. Power Sources, 2006,158:1379-1385
    [89]Liu Y, Mi C H, Su L H, Zhang X G. Hydrothermal synthesis of Co3O4 microspheres as anode material for lithium-ion batteries[J]. Electrochim. Acta,2008,53:2507-2513
    [90]Li YG, Tan B, Wu YY. Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability [J]. Nano lett.,2008,8(1):265-270
    [91]Li W Y, Xu L N, Chen.J. Co3O4 nanomaterials in lithium-ion batteries and gas sensors[J]. Adv. Funct. Mater.,2005,15(5):851-857
    [92]Blaser G, Ruhl Th, Diehl C, Ulrich M, Kohl D. Nanostructured semiconductor gas sensors to overcome sensitivity limitations due to percolation effects[J]. Phys. A,1999, 266:218-223
    [93]Korotcenkov G. Gas response control through structural and chemical modification of metal oxide films:State of the art and approaches[J]. Sens. Actuators B,2005,107: 209-232
    [94]Salabas E L, Rumplecker A, Kleitz F, Radu F, Schulth F. Exchange anisotropy in nanocasted Co3O4 nanowires[J]. Nano lett.,2006,6(12):2977-2981
    [95]Apatiga L M, Castano V M. Magnetic behavior of cobalt oxide films prepared by pulsed liquid injection chemical vapor deposition from a metal-organic precursor[J]. Thin Solid Films,2006,496:576-579
    [96]Takada S, Fujii M, Kohiki S, Babasaki T, Deguchi H, Mitome M, Oku M. Intraparticle magnetic properties of Co3O4 nanocrystals[J]. Nano Lett.,2001,1(7):379-382
    [97]Nethravathi C, Sen S, Ravishankar N, Rajamathi M, Pietzonka C, Harbrecht B. Ferrimagnetic nanogranular Co3O4 through solvothermal decomposition of colloidally dispersed monolayers of a-cobalt hydroxide[J]. J. Phys. Chem. B,2005,109:11468-11472
    [98]Seto T, Akinaga H, Takano F, Koga K, Orii T, Hirasawa M. Magnetic properties of monodispersed Ni/NiO core-shell nanoparticles[J]. J. Phys. Chem. B,2005,109: 13403-13405
    [99]Salgueirino-Maceira V, Correa-Duarte M A, Banobre-Lopez M, Grzelczak M, Farle M, Liz-Marzan L M, Rivas J. Magnetic properties of Ni/NiO nanowires deposited onto CNT/Pt nanocomposites[J]. Adv. Funct. Mater.,2008,9999:1-6
    [100]Fuertes A B, Sevilla M, Valdes-Solis T, Tartaj P. Synthetic route to nanocomposites made up of inorganic nanoparticles confined within a hollow mesoporous carbon shell[J]. Chem. Mater.,2007,19:5418-5423
    [101]葛春桥.金属氧化物纳米材料的湿法制备及其气敏性能研究[D].武汉:华中科技大学博士学位论文,2008
    [102]刘艳.纳米金属氧化物/聚合物复合材料的制备及其应用研究[D].福建:福建师范大学硕士学位论文,2008
    [103]Khor E, Tan H S, Ng S C, Li H Ch. A.c. electrical behaviour of cobalt complex-doped polyimide films[J]. Polymer,1990,31(4):623-626
    [104]Rancourt J D, Porta G M, Taylor L T. Comparison of the electrical properties of polyimide films containing surface metal oxide:Cobalt oxide vs. tin oxide[J]. Thin Solid Films, 1988,158(2):189-206
    [105]Varma I K, Saxena S, Tripathi A, Varma D S. Effect of metal halides on the electrical properties of polyimides[J]. Polymer,1988,29(3):559-565
    [106]Boggess R K, Taylor L T. Characterization of cobalt-modified polyimides[J]. J. Polym. Sci., Part A:Polym. Chem.,1987,25(2):685-702
    [107]Rancourt J D, Taylor L T. Preparation and properties of surface-conductive polyimide films via in situ codeposition of metal salts[J]. Macromolecules,1987,20:790-795
    [108]Bergmeister J J, Taylor L T. Synthetic strategies in the formation of iron-modified polyimide films[J]. Chem. Mater.,1992,4:129-131
    [109]Bergmeister J J, Rancourt J D, Taylor L T. Synthesis and characterization of magnetic iron-modified polyimide films[J]. Chem. Mater.,1990,2:640-641
    [110]Zhan J Y, Tian G F, Jiang L Z, Wu Z P, Wu D Z, Yang X P, Jin R G. Superparamagnetic polyimide/y-Fe2O3 nanocomposite films:preparation and characterization[J]. Thin Solid Films,2008,516:6315-6320
    [111]Vijayanand H V, Arunkumar L, Gurubasawaraj P M, Veeresha Sharma P M, Basavaraja S, Saleem A, Venkataraman A, Ghanwat A, Maldar N N. Synthesis and characterization of polyimide-γ-Fe2O3 nanocomposites[J]. J. Appl. Polym. Sci.,2007,103:834-840
    [112]Lim S K, Chung K J, Kim Y H, Kim C K, Yoon C S. Synthesis of iron oxide nanoparticles in a polyimide matrix[J]. J. Colloid Interface Sci.,2004,273:517-522
    [113]Chunga Y, Lima S K, Kima C K, Kima Y H, Yoona C S. Synthesis of γ-Fe2O3 nanoparticles embedded in polyimide[J]. J. Magn. Magn. Mater.,2004,272-276: e1167-e1168
    [114]Koytepe S, Seckin T. Molecular design of Fe3O4-containing polyimide as a route to nanomagnetic materials[J]. Ind. Eng. Chem. Res.,2008,47:4123-4130
    [115]Khor E, Taylor L T. A study of polyimide properties imparted by the addition of lithium ions[J]. Macromolecules,1982,15:379-382
    [116]Ellison M M, Taylor L T. Modifier and Polymer Interactions in Metal-Modified Polyimide Composites[J]. Chem. Mater.,1994,6 (7):990-998
    [117]Ezzell S A, Taylor L T. Surface-semiconductive polyimide films containing tin complexes[J]. Macromolecules,1984,17:1627-1632
    [118]Thompson D S, Thompson D W, Southward R E. Oxo-metal-polyimide nanocomposites. 2. Enhancement of thermal, mechanical, and chemical properties in soluble hexafluoroisopropylidine-based polyimides via the in situ formation of oxo-lanthanide(iii)-polyimide nanocomposites[J]. Chem. Mater.,2002,14 (1):30-37
    [119]陈枫.纳米复合聚酰亚胺薄膜的介电性研究[D].哈尔滨:哈尔滨理工大学硕士学位论文,2007
    [120]陈昊.纳米氧化铝改性聚酰亚胺薄膜的结构与性能研究[D].哈尔滨:哈尔滨理工大学硕士学位论文,2008
    [121]张沛红.无机纳米-聚酰亚胺复合薄膜介电性及耐电晕老化机理研究[D].哈尔滨:哈尔滨理工大学博士学位论文,2006
    [122]李鸿岩,郭磊,刘斌,陈维,陈寿田.聚酰亚胺/纳米氧化钛复合薄膜的介电性能研究[J].绝缘材料,2005,(6):30-33
    [123]Kuoni A, Holzherr R, Boillat M, Rooij N F. Polyimide membrane with ZnO piezoelectric thin film pressure transducers as a differential pressure liquid flow sensor[J]. J. Micromech. Microeng.,2003,13:S103-S107
    [124]Yang H Y, Lau S P, Yu S F, Huang L, Tanemura M, Tanaka J, Okita T, Hng H H. Field emission from zinc oxide nanoneedles on plastic substrates[J]. Nanotechnology, 2005,16:1300-1303
    [125]Matsumura M, Camata R P. Pulsed laser deposition and photoluminescence measurements of ZnO thin films on flexible polyimide substrates[J]. Thin Solid Films,2005,476:317-321
    [126]Nishinaka H, Kawaharamura T, Fujita S. Low-temperature growth of ZnO thin films by linear source ultrasonic spray chemical vapor deposition[J]. Jpn. J. Appl. Phys.,2007, 46(10A):6811-6813
    [127]Chiang C T, DeLeon R L, Garvey J F. Preparation of zinc oxide thin films by reactive pulsed arc molecular beam deposition[J]. J. Phys. Chem. C,2007,111:17700-17704
    [128]Kitamural K, Yatsui T, Ohtsu M. Optical and structural properties of ZnO nanorods grown on polyimide films[J]. Appl. Phys.,2008,1(8):081202 1-3
    [129]Hsu S C, Whang W T, Hung C H, Chiang P C, Hsiao Y N. Effect of the polyimide structure and ZnO concentration on the morphology and characteristics of polyimide/ZnO nanohybrid films[J]. Macromol. Chem. Phys.,2005,206:291-298
    [130]Somwangthanaroj A, Phanthawonge C, Ando S, Tanthapanichakoon W. Effect of the origin of ZnO nanoparticles dispersed in polyimide films on their photoluminescence and thermal stability[J]. J. Appl. Polym. Sci.,2008,110:1921-1928
    [131]Liu L, Lu Q H, Yin J, Qian X F, Wang W K, Zhu Z K, Wang Z G. Photosensitive polyimide (PSPI) materials containing inorganic nanoparticles (I)PSPI/TiO2 hybrid materials by sol-gel process[J]. Mater. Chem. Phys.,2002,74:210-213
    [132]刘丽,路庆华,印杰,朱子康,王宗光.溶胶—凝胶法制备聚酰亚胺/二氧化钛感光杂化材料[J].高等学校化学学报,2001,22(11):1943-1944
    [133]Ma H, Jen A K-Y, Dalton L R. Polymer-based optical waveguides:materials, proesssing, and devices[J]. Adv. Mater.,2002,14(19):1339-1365
    [134]Marek M, Brynda E, Pientka Z, Schauer J. Crosslinked ultra-thin polyimide film as a gas separation layer for composite membranes. Eur. Polym.J.,1997,33(10-12):1717-1721
    [135]Kratochvil A M, Damle-Mogri S, Koros W J. Effects of supercritical CO2 conditioning on un-cross-linked polyimide membranes for natural gas purification[J]. Macromolecules, 2009,42 (15):5670-5675
    [136]杜宏伟.PI/TiO2有机-无机纳米复合气体分离膜材料的研究[D].东营:石油大学硕士学位论文,2001
    [137]Hu Q, Marand E, Dhingra S, Fritsch D, Wen J, Wilkes G. Poly(amide-imide)/TiO2 nano-composite gas separation membranes:Fabrication and characterization[J]. J. Membr. Sci.,1997,135:65-79
    [138]Kong Y, Du H W, Yang J R, Shi D Q, Wang Y F, Zhang Y Y, Xin W. Study on polyimide/TiO2, nanocomposite membranes for gas separation[J]. Desalination,2002, 146:49-55
    [139]杜宏伟,孔瑛,史德青,文玲.PI/TiO2纳米复合膜的H2/CH4和H2/N2分离性能[J].石油大学学报(自然科学版),2003,27(3):98-100
    [140]杜宏伟,孔瑛,商洪涛.PI/TiO2纳米复合膜的气体分离性能[J].高分子材料科学与工程,2004,20(4):11-114
    [141]Meador M A B, Paul J C J, Aryeh J C, Frimer A A. Oxidative degradation of nadic-end-capped polyimides.2. Evidence for reactions occurring at high temperatures[J]. Macromolecules,1997,30:3215-3223
    [142]Pizem H, Gershevitz O, Goffer Y, Frimer A A, Sukenik C N. Titania deposition on PMR-15[J]. Chem. Mater.,2005,17:3205-3213
    [143]Tsai M H, Chang C J, Chen P J, Ko C J. Preparation and characteristics of poly(amide-imide)/titania nanocomposite thin films[J]. Thin Solid Films,2008,516: 5654-5658
    [144]Liaw W C, Chen K P. Preparation and characterization of poly(imide siloxane) (PIS)/titania (TiO2) hybrid nanocomposites by sol-gel processes[J]. Eur. Polym. J.,2007, 43:2265-2278
    [145]Chiang P C, Whang W T, Wu S C, Chuang K R. Effects of titania content and plasma treatment on the interfacial adhesion mechanism of nano titania-hybridized polyimide and copper system[J]. Polymer,2004,45:4465-4472
    [146]Hu Q, Marand E. In situ formation of nanosized TiO2 domains within poly(amide-imide) by a sol-gel process[J]. Polymer,1999,40:4833-4843
    [147]Qiu W L, Luo Y J, Chen F T, Duo Y Q, Tan H M. Morphology and size control of inorganic particles in polyimide hybrids by using SiO2-TiO2 mixed oxide[J]. Polymer, 2003,44:5821-5826
    [148]Liu L, Lu Q H, Yin J, Qian X F, Wang W K, Zhu Z K, Wang Z G Photosensitive polyimide (PSPI) materials containing inorganic nanoparticles (I)PSPI/TiO2 hybrid materials by sol-gel process[J]. Mater. Chem. Phys.,2002,74:210-213
    [149]Chiang P C, Whang W T, Tsai M H, Wua S C. Physical and mechanical properties of polyimide/titania hybrid films[J]. Thin Solid Films,2004,447-448:359-364
    [150]Wang H T, Zhong W, Xu P, Du Q G. Polyimide/silica/titania nanohybrids via a novel non-hydrolytic sol-gel route. Composites:Part A,2005,36:909-914
    [151]Ahmad Z, Mark J E. Polyimide-ceramic hybrid composites by the sol-gel route[J]. Chem. Mater.,2001,13:3320-3330
    [152]Tong Y J, Li Y S, Xie F C, Ding M X. Preparation and characteristics of polyimide-Ti02 nanocomposite film[J]. Polym. Int.,2000,49:1543-1547
    [153]Liu L, Lu Q H, Yin J, Zhu Z K, Pan D C, Wang Z G. Preparation and properties of photosensitive polyimide/titania-silica hybrid materials[J]. Mater. Sci. Eng., C,2002, 22:61-65
    [154]Tsai M H, Liu S J, Chiang P C. Synthesis and characteristics of polyimide/titania nano hybrid films[J]. Thin Solid Films,2006,515:1126-1131
    [155]Chiang P C, Whang W T. The synthesis and morphology characteristic study of BAO-ODPA polyimide/TiO2 nano hybrid films[J]. Polymer,2003,44:2249-2254
    [156]Chang C M, Chang C L, Chang C C. Synthesis and optical properties of soluble polyimide/titania hybrid thin films[J]. Macromol. Mater. Eng.,2006,291:1521-1528
    [157]邵怀启,钟顺和.负载型聚酰亚胺-二氧化钛-银杂化膜的制备和表征[J].膜科学与技术,2005,25(6):40-44
    [158]杜宏伟,孔瑛,Ying Zheng,史德青.聚酰亚胺/TiO2有机一无机纳米复合膜材料的合成与表征[J].高分子材料科学与工程,2004,20(1):83-86
    [159]董铁权,张明艳,曾恕金.聚酰亚胺/二氧化硅/二氧化钛纳米杂化膜的制备与性能分析[J].绝缘材料,2005,(6):7-10
    [160]童跃进,李秀茹,陈守正,李悦生,丁孟贤.聚酰亚胺无机物纳米杂化材料的研究.Ⅰ.聚酰亚胺(HQDPA/DMMDA)-TiO2纳米杂化物的合成与表征[J].福建师范大学学报(自然科学版),1999,15(3):42-45
    [161]李明,李元庆,付绍云.蒙脱土/二氧化钛/聚酰亚胺纳米杂化薄膜低温力学及热稳定性能研究[J].复合材料学报,2006,23(1):69-73
    [162]李传峰,钟顺和.溶胶凝胶法合成聚酰亚胺二氧化钛杂化膜[J].高分子学报,2002,(3):326-330
    [163]刘丽,路庆华,印杰,朱子康,王宗光.溶胶-凝胶法制备聚酰亚胺/二氧化钛感光杂化材料[J].高等学校化学学报,2001,22(11):1943-1944
    [164]Kim E K, Kim J H, Noh H K, Kim Y H. Electrical properties of ZnO nanoparticles embedded in polyimide[J]. J. Electron. Mater.,2006,35 (4):512-515
    [165]Roh H G, Kim G H, Kim Y H. Effect of curing conditions on the fabrication of Zn-oxide nanoparticles dispersed in a polyimide film[J]. High. Perfm. Polym.,2006,18:739-747
    [166]Girardeaux C, Druet E, Demoncy P, Delamar M. The polyimide (PMDA-ODA) titanium interface. Part 2. XPS study of polyimide treatments and ageing[J]. Electron J. Spectrosc. Relat. Phenom.,1995,74:57-66
    [167]Girardeaux C, Druet E, Demoncy P, Delamar M. The polyimide (PMDA/ODA)-titanium interface. Part 1. Untreated PMDA/ODA:an XPS, AES, AFM and Raman study[J]. Electron J. Spectrosc. Relat. Phenom.,1994,70:11-21
    [168]He T, Chen D R, Jiao X L, Wang Y L, Duan Y Z. Solubility-controlled synthesis of high-quality Co3O4 nanocrystals[J]. Chem. Mater.,2005,17:4023-4030
    [169]Huang Q L, Wang M, Zhong H X, Chen X T, Xue Z L, You X Z. Netlike nanostructures of Zn(OH)F and ZnO:synthesis, characterization, and properties [J]. Cryst. Grow. Des., 2008,8(4):1412-1417
    [170]Tong Y H, Liu Y C, Shao C L, Liu Y X, Xu C S, Zhang J Y, Lu Y M, Shen D Z, Fan X W. Growth and optical properties of faceted hexagonal ZnO nanotubes[J]. J. Phys. Chem. B,2006,110:14714-14718
    [171]Masuda Y, Yamagishi M, Seo W S, Koumoto K. Photoluminescence from ZnO nanoparticles embedded in an amorphous matrix[J]. Cryst. Grow. Des.,2008,8(5): 1503-1508
    [172]Jiang Z Y, Xu T, Xie Z X, Lin Z W, Zhou X, Xu X, Huang R B, Zheng L S. Molten salt route toward the growth of ZnO nanowires in unusual growth directions [J]. J. Phys. Chem. B,2005,109:23269-23273
    [173]Li S, Li Z W, Tay Y Y, Armellin J, Gao W, Growth mechanism and photonic behaviours of nanoporous zno microcheerios[J]. Cryst. Grow. Des.,2008,8(5):1623-1627
    [174]Fan Z Y, Chang P C, Lu J G, Walter E C, Penner R M, Lin C H, Lee H P. Photoluminescence and polarized photodetection of single ZnO nanowires[J]. Appl. Phys. Lett.,2004,85(25):6128-6130
    [175]Hichou E, Addou M, EbotheJ, Troyon M. Influence of deposition temperature (Ts), air flow rate (f) and precursors on cathodoluminescence properties of ZnO thin films prepared by spray pyrolysis[J]. J. Lumin,2005,113:183-190
    [176]Bandara A, Kubota J, Onda K, Wada A, Kano S S, Domen K, Hirose C. Short-lived reactive intermediate in the decomposition of formate on nio(111) surface observed by picosecond temperature jump[J]. J. Phys. Chem. B,1998,102 (31):5951-5954
    [177]Boschloo G, Hagfeldt A. Spectroelectrochemistry of nanostructured NiO[J]. J. Phys. Chem. B,2001,105 (15):3039-3044
    [178]卿波.尿素均匀沉淀法制备单分散四氧化三钴粉末[D].长沙:中南大学硕士学位论文,2007
    [179]Lin T C, Seshadri G, Kelber J A. Combined ultrahigh vacuum/electrochemistry study of the adsorption of lead on clean and sulfur-modified nickel surfaces in aqueous environments[J]. Langmuir,1998,14:3673-3681
    [180]Park K W, Choi J H, Kwon B K, Lee S A, Sung Y E. Chemical and electronic effects of ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation[J]. J. Phys.Chem. B,2002,106:1869-1877
    [181]Davidson A, Tempere J F, Che M, Roulet H, Dufour G. Spectroscopic studies of nickel(ⅱ) and nickel(Ⅲ) species generated upon thermal treatments of nickel/ceria-supported materials [J]. J.Phys. Chem.,1996,100:4919-4929
    [182]Petitto S C, Marsh E M, Langell M A. Adsorption of bromobenzene on periodically stepped and nonstepped NiO(100)[J]. J. Phys. Chem. B,2006,110:1309-1318
    [183]Arranz A, Palacio C. Interaction of Ni/Al interfaces with oxygen[J]. Langmuir,2002,18: 1695-1701
    [184]Huang X D, Bhangale S M, Moran P M, Yakovlev N L, Pan J S. Surface modification studies of Kapton(?) HN polyimide films[J]. Polym. Int.,2003,52:1064-1069
    [185]Meyer A, Jones N, Lin Y, Kranbuehl D. Characterizing and modeling the hydrolysis of polyamide-11 in a ph 7 water environment[J]. Macromolecules,2002,35 (7):2784-2798
    [186]Stephans L E, Myles A, Thomas R R. Kinetics of alkaline hydrolysis of a polyimide surface[J]. Langmuir,2000,16:4706-4710
    [187]Stoffel N C, Hsieh M, Chandra S, Kramer E J. Surface modification studies of polyimide films using rutherford backscattering and forward recoil spectrometry[J]. Chem. Mater. 1996,8:1035-1041
    [188]Liang Z H, Zhu Y J, Hu X L. β-Nickel hydroxide nanosheets and their thermal decomposition to nickel oxide nanosheets[J]. J. Phys. Chem. B,2004,108:3488-3491
    [189]邓彤,史建军.用抗坏血酸还原氯化银[J].贵金属,1997,18(4):20-23
    [190]西鹏,高晶,李文刚等.高技术纤维[M].北京:化学工业出版社,2004,351-364
    [191]孙晋民,吕伟元.纤维新材料[M].上海:上海大学出版社,2007,395-414
    [192]黄少强,邱文革,李生华.非金属材料表面化学镀银[J].北京工业大学学报,2005,31(1):75-80
    [193]苏革,成会明,杜金红,白朔,刘畅,郑红.一种有机纤维的化学镀银方法[P].中国专利,CN 1311369A.2001-9-5
    [194]张清华,陈大俊,丁孟贤.聚酰亚胺纤维[J].高分子通报,2001,(5):66-73
    [195]张清华,张春华,陈大俊,丁孟贤.聚酰亚胺高性能纤维研究进展[J].高科技纤维与应用,2002,27(5):11-14
    [196]马晓野,高连勋,邱雪鹏,丁孟贤.一种导电聚酰亚胺纤维的制备方法[P].中国专利,CN 101446037A.2008-12-29
    [197]Irwin R S, Sweeny W. Polyimide fibers[J]. J. Polym. Sci. Part C:Polym. Symposia,1967, 19(1):41-48
    [198]Gao G Q, Dong L, Liu X Y, Ye G D, Gu Y. Structure and properties of novel PMDA/ODA/PABZ polyimide fibers[J]. Polym. Eng. Sci.,2008,48(5):912-917
    [199]Zhang Q H, Luo W Q, Gao L X, Chen D J, Ding M X. Thermal mechanical and dynamic mechanical property of biphenyl polyimide fibers[J]. J. Appl. Polym. Sci.,2004,92: 1653-1657
    [200]Zhang Q H, Dai M, Ding M X, Chen D J, Gao L X. Mechanical properties of BPDA-ODA polyimide fibers[J]. Eur. Polym. J,2004,40:2487-2493
    [201]Nah C, Han S H, Lee M H, Kim J S, Lee D S. Characteristics of polyimide ultrafine fibers prepared through electrospinning[J]. Polym. Int.,2003,52:429-432
    [202]Zhang Q H, Dai M, Ding M X, Chen D J, Gao L X. Morphology of polyimide fibers derived from 3,3',4,4'-biphenyltetracarboxylic dianhydride and 4,4'-oxydianiline[J]. J. Appl. Polym. Sci.,2004,93:669-675
    [203]Neuber C, Schmidt H W, Giesa R. Polyimide fibers obtained by spinning lyotropic solutions of rigid-rod aromatic poly(amic ethyl ester)s[J]. Macromol. Mater. Eng.,2006, 291:1315-1326
    [204]Liu X Y, Pan R, Xu W, Ye G D, Gu Y. Stretching induced steric interaction between backbone and side chain in a novel polyimide fiber[J]. Polym. Eng. Sci.,2009, 49(6):1225-1233
    [206]Dorsey K D, Desai P, Abhiraman A S, Hinkley J A, Clair T L St. Structure and properties of melt-extruded LaRC-IA (3,4'-ODA 4,4'-ODPA) polyimide fibers[J]. J. Appl. Polym. Sci.,73(7):1215-1222

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700