紫外光固化聚氨酯丙烯酸酯/ZrO_2纳米复合涂层的制备和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机无机纳米复合材料综合了有机材料的特性(韧性好、耐冲击、质量轻、易加工等)和无机材料的优点(高强度、高硬度、热稳定性、抗腐蚀和优异的光学性能等),受到了科学界越来越广泛的关注,并在许多领域已得到较好的应用。紫外光纳米复合材料既有杂化材料的高性能和新功能,又有紫外固化的环保友好性,完美结合纳米复合与紫外光固化技术的优点,大大推动涂料的发展与应用。目前,文献中有关紫外光固化纳米复合涂层的研究集中在纳米SiO_2、纳米TiO_2、粘土等纳米材料体系,对纳米ZrO_2的应用研究较少。但纳米ZrO_2具有硬度高、折光指数高、化学惰性、热稳定好等优点,是制备高力学性能涂层或光功能涂层的理想纳米填料。本文以市售纳米ZrO_2粉体和非水合成纳米ZrO_2晶粒为原料,通过与不同比例的活性单体、聚氨酯丙烯酸酯(PUA)低聚物及光引发剂相复合,制备纳米复合涂料。并以此为涂料体系,采用介电树脂固化监测仪(DEA)为新的在线监测手段,考察了紫外光固化纳米复合涂料的固化动力学行为,研究了纳米ZrO_2粒子在完全初级粒子分散状态下,纳米复合涂层的力学性能、光学性能及热学性能,考察了改性ZrO_2纳米粒子在不同活性单体及低聚物中的相行为以及纳米ZrO_2粒子的涂层性能调节效率对有机基质组成的依赖性。具体研究内容及结果如下:
     采用市售ZrO_2粉体为原料,经γ-缩水甘油醚氧丙基三甲氧基硅烷(Z-6040)改性后,与聚氨酯丙烯酸酯低聚物(UVU6219)和二缩三丙二醇二丙烯酸酯(TPGDA)等组分共混制备了紫外光固化聚氨酯/ZrO_2纳米复合涂层。利用DEA系统研究了引发剂类型与用量、光强、膜厚、固化气氛、纳米ZrO_2用量等因素对纳米复合涂层紫外光固化动力学的影响规律,并与在线红外光谱研究结果进行了比较。研究发现,DEA获得的离子粘度对数(Logη)-时间(t)曲线与占线红外光谱获得的双键转化率(C)-时间(t)曲线在转化率低于85%时有很好的对应关系,而在高转化率阶段(>85%),DEA具有更高的灵敏度,对于纳米复合涂料配方和固化工艺优化具有很好的使用价值。另外,由于纳米ZrO_2粉体的复合导致涂层透明性下降,纳米复合涂层的光固化转化率随着纳米ZrO_2用量的增加而下降。
     采用溶剂热合成法获得的高结晶性纳米ZrO_2粒子为原料,经甲基丙烯酰氧基丙基三甲氧基硅烷(MPS)表面修饰后,与聚氨酯丙烯酸酯低聚物(6148J-75)共混,制备纳米复合涂料。考察了纳米ZrO_2晶粒改性工艺对涂层透明性以及改性纳米ZrO_2用量对涂层光固化动力学、光学性能、力学性能和热学性能的影响规律。研究表明,纳米复合涂层存在从透明向不透明转变的临界ZrO_2用量,即20wt%。在临界浓度以下,纳米复合涂层完全透明,纳米ZrO_2粒子在涂层中完全达到初级粒子分散水平,涂层的光固化转会率随着纳米ZrO_2用量的增加而增大,硬度、耐磨损和热稳定性等性能得到显著改善,折光指数最高可达1.63。但在临界ZrO_2含量以上时,涂层中的纳米粒子发生团聚,涂层透明性迅速下降,各项性能急剧恶化,甚至低于纯聚氨酯涂层的性能。
     在前述工作基础上,进一步深入研究了MPS改性的纳米ZrO_2晶粒在不同紫外光固化单体和低聚物中的分散稳定行为,并考察了相应纳米复合涂层的力学性能和光学性能。研究发现,MPS改性纳米ZrO_2粒子在小分子活性剂中的分散性优于PUA低聚物中的分散性,MPS接枝量越少,纳米复合涂层的透明性越好。在TPGDA中,ZrO_2添加量可以达到62wt%而保持透明。因此,涂层透明向不透明转变的临界ZrO_2用量可以通过在PUA低聚物中加入活性稀释单体加以调节。性能测试表明,有机基质的力学性能越佳,则纳米ZrO_2粒子对涂层力学性能的改进效率越高。
     另外,本文还初步探讨了TiO_2溶胶作为热固性丙烯酸树脂涂层固化剂的可行性,以替代传统的异氰酸酯等毒性大的有机固化剂。该TiO_2溶胶由溶胶—凝胶法制备,为网络状团簇结构。采用DEA考察了其与含羧基官能团的丙烯酸树脂的固化行为。研究初步证实了TiO_2溶胶对丙烯酸树脂的固化交联能力,并且研究表明,TiO_2的引入,有助于提高涂层的力学性能、热稳定性及紫外屏蔽性。为新型无毒固化剂与纳米杂化技术在双组分热固化涂层中应用开辟了新的思路。
Organic-inorganic hybrid materials combine both the advantages of organic polymer(flexibility,light weight,good impact resistance,good processability,etc.) and inorganic materials(high mechanical strength,high hardness,good chemical resistance,thermal stability,optical properties,etc.) and have been widely applied in various fields.Especially,the UV curable hybrid coatings have been widely concerned since they possess both the advantages of UV-curing process and of hybrid nanocomposite materias,namely,environmental-friend and high performance(or new function).Up to now,some UV curable nanocomposite coatings were reported. However,the study was still limited and mostly focused on the systems containing SiO_2,TiO_2,and clay.The application of ZrO_2 nanoparticles was rarely reported.ZrO_2 nanoparticles would be an ideal building block for nanocomposites because they offer several advantages such as chemical inertness,excellent thermal stability,high refractive index,and high hardness.In this study,commercial ZrO_2 nanopowder or non-aqueous synthesized ZrO_2 nanocrystals was incorporated into poly(urethane-acrylate) oligomer(PUA),monomers to fabricate UV-curable nanocomposite coatings.The photopolymerization kinetics of PUA/ZrO_2 nanocomposite coatings was on-line and in-real-time monitored with microdielectrometry(DEA).Their mechanical properties,thermal properties and optical properties of the nanocomposite coatings as well as the phase behavior of ZrO_2 nanoparticles in different monomers and PUA oligomerr was studied.The dependence of the improving efficiency of nano-ZrO_2 on the properties of organic coatings was deeply investigated.All the results are expected to provide some concrete evidence for the development and application of nanocomposites.The detailed research contents and results are detailedly described as follows:
     Commercial ZrO_2 nanoparticles were functionalized by 3-glycidyloxypropyltrimethoxysilane(Z-6040),After that,the modified nano-ZrO_2 were incorporated into PUA oligomer(UVU6219) and tripropylene glycol diacrylate (TPGDA) to prepare UV-curable PUA/ZrO_2 nanocomposite coatings.Effect of the zirconia content on the UV-curing kinetics of the coatings was investigated by dielectric analysis(DEA).The influence of photoinitiator types,photoinitiator content, UV irradiation intensity,atmospheric character and film thickness were also investigated.For comparison,real-time infrared spectroscopy(RTIR) was also employed.Linear relationship between logηand C at conversion lower than about 85%is acquired via a large numbers of comparisons between DEA and RTIR results for those PUA/ZrO_2 nanocomposite coatings.DEA monitoring has longer time to reach polymerization equilibrium than RTIR for those cases with high limited conversion,suggesting that the former is more sensitive to C=C bond conversion than RTIR at high conversion stage(C>~85%).Due to the good reproducibility and sensitivity,DEA will be a highly efficient tool for the optimizations of both UV-curable coatings formulation and curing condition.In addition,the final double bond conversion decreases with increasing nano-ZrO_2 content because the transparency of the coatings unavoidably reduces after ZrO_2 nanopowder is incorporated.
     Highly-dispersible zirconia nanocrystals,ex situ synthesized from a solvothermal reaction of zirconium-(Ⅳ) isopropoxide isopropanol complex in benzyl alcohol,were functionalized with 3-(trimethoxysilyl)propyl methacrylate(MPS) and blended with UV-curable polyurethane oligomer(6148J-75) to fabricate transparent PUA/ZrO_2 nanocomposite coatings.Their photopolymerization kinetics,mechanical properties, thermal properties and optical properties were investigated.A critical ZrO_2 concentration of 20 wt%was observed for the evolutions of both the structure and properties of the nanocomposites as a function of ZrO_2 content.Below the critial concentration,completely transparent nanocomposite film was obtained and homogeneous dispersions of ZrO_2 nanoparticles with primary particle size level were achieved.As a consequence,the nanocomposites exhibit increasing final C=C double bond conversion,refractive index,hardness,modulus,and thermal stability as ZrO_2 content increases.Particularly,the nanocomposite with 20 wt%of ZrO_2 has extremely high performance,namely,a high refractive index of 1.63,82%increment on hardness and about 60℃higher thermal decomposition temperature relative to pure PUA film.However,beyond this critical ZrO_2 loads,ZrO_2 nanoparticles tend to agglomerate in the nanocomposite,leading to serious reduction of the transparency and thus lower final conversion,nearly no improvement on properties in comparison with pure PUA coating.
     Based on the above study,the phase behavior of MPS-functionalized ZrO_2 was further investigated in monomers or PUA/monomer mixtures.Their mechanical properties and optical properties were investigated as well.It's found that the existence of reactive monomers with low molecular weight facilitates the compatibility between the PUA and MPS-functionalized ZrO_2.And the higher the amount of MPS attached to ZrO_2 nanoparticle is,the lower the transparency of nanocomposite coating is.The coatings keep transparent even at ZrO_2 content of 62 wt%in pure TPGDA.Thus,the critical ZrO_2 concentration can be adjusted by the composition of organic matrix.Moreover,the better the mechanical properties of the organic matrix are,the higher the improving efficiency of ZrO_2 on mechanical properties of the coatings is.
     In addition,preparation of thermosetting acrylic coatings with titanium-oxo-cluster as a curing agent is primarily confirmed.The effects of the titania content,the preparation condition on the structures and properties of the hybrid materials were studied.DEA was employed to monitor the curing reaction.The results indicate that the resulted acrylic/titania coatings have better thermal stability, mechanical property and UV-block property.Anyway,this method opens another way for fabrication of thermosetting coatings,which can eliminate the toxicity of common organic curing agent and meanwhile endow the coatings with the high performance of hybrid coatings.
引文
1.Hoffman D W,Roy R,Komarneri S.J Am Ceram Soc,1984,67(7):468.
    2.李凤生,杨毅,马振叶.纳米功能复合材料及应用[M],北京:国防工业出版社,2003.6.
    3.Fu Y,Willander M.SurfSci,1996,3612362(123):500.
    4.Ghannoum S,Xin Y,Jaber J,et al.Langmuir,2003,19(11):4804.
    5.Aifantis E C,ASME Mater Div Publ MD,1992,(32):1.
    6.周震,阎杰,王先友.化学通报,1998,61(4):23.
    7.王丽萍,洪广言.功能材料,1998,29(4):243.
    8.曹立新,等.应用化学,1998,15(3):1.
    9.Messerrnith P B,Stupp S L.Polym Prepr,1991,32:536.
    10.Landry C J,Coltrain B K.Polym Prepr,1991,32:514.
    11.Novak B M,Ellsworth M,Wallow T L.Polym Prepr,1990,31:698.
    12.Huang H H,Wilkes G L.Polym Bull,1987,18:455.
    13.Huang H H,WiIkes G L,Carlson J G.Polymer,1989,30:2001.
    14.黄智华,丘坤元.高等学校化学学报,1997,18:803.
    15.Betrabet C S,Wilkes G L,Chem Mater,1995,7:535.
    16.陈艳,王新宇,高宗明等.高分子学报,1997,1:73.
    17.Suzuki F,Onozato K.J Appl Polym Sci,1990,39:371.
    18.Chan C K,Chu L M.Polymer,2001,42:6823.
    19.Xiong M N,Zhou S X,You B,Gu G X,Wu L M,J Polym Sci Part B:Polym Phys,2004,42:3682.
    20.Nakane K,Takeharu K,Takashi O.Composites:Part B,2004,35:219
    21.Huang C J,Fu S T,Zhang Y H,et al.Cryogenics,2005,45:450
    22.Sehmidt H,Philipp G.J Non—Cryst Solids,1984,63:283.
    23.赵竹第,高宗明,欧玉春等.高分子学报,1996,2:228.
    24.张隽,罗胜成,桂琳琳等.物理化学学报,1996,12:289.
    25.Xiong M N,Zhou S X,Wu L M,Wang B,Yang L.Polymer 2004,45:8127.
    26.Ellsworth MW,Novak B M.J Am Chem Soc,1991,113:2756.
    27.Jaekson C L,Bauer B J,Nakatani A L,Barnes J D.Chem Mater 1996,8:727.
    28.Yu T,Lin J P,Xu J F,et al.Polymer,2005,46:5697.
    29.欧玉春,杨锋,漆宗能.高分子学报,1997,10(2):199.
    30.Masami O,Satoshi M,Higeyuki,et al.Polymer,2000,41(10):2337.
    31.刘竞超,李小兵,张华林,杨亚辉,傅万里.胶体与聚合物,2000,18:15.
    32.庞金兴,熊焰,吴力立,张超灿.华中科技大学学报(自然科学版)2002,30:108.
    33.邬润德,童筱莉,王锐兰.有机硅材料,2002,16:5.
    34.Maeda S,Armes S P,Chem Mater,1995,7:171.
    35.Zhou H S,Wada T,Sasabe H J.Chem Commun,1995,8:1525.
    36.杨柏,黄金满,郝恩才.高等学校化学学报,1997,18(7):1219.
    37.Chen X C,Wu L M,Zhou S X,You B.Polym Int,2003,52:993.
    38.Li H,You B,Gu G X,Wu L M,Chen G D.Polym Int,2005,54:191.
    39.Li F S,Zhou S X,Gu G X,You B,Wu L M.J Appl Polym Sci,2005,96:912.
    40.Chen G D,Zhou S X,Gu G X,Yang H H,Wu L M.J Colloid Interf Sci 2005,281:339.
    41.Chen Y C,Zhou S X,Gu G X,Yang H H,Wu L M.Macromol Mater Eng,2005,290(10):1001.
    42.赵竹第,李强,欧玉春,等.高分子学报,1997,5:519.
    43.Odada A,kwaasumim M,Kurauehi T.Polym Prepr,1987,28:447.
    44.乔放,等.高分子通报,1997,3:135.
    45.李强,等.高分子学报,1997,2:188.
    46.Cuillermo J,NoBoo C.J Appl Polym Sci.1997,11:2211.
    47.Furuiehi N,Kurokawa Y,Fujita K,et al.J Mater Sci,1996,31:4307.
    48.Ruls E,Ltzky H,Adv Mater,1995,7:180.
    49.Vaia R A,Jandt K D,Kramer E J.Macromolecules,1993,28:8080.
    50.Vaia R A,Giannelis E P,J Am Chem Soc,1995,117:7568.
    51.Carris C H M,Elven L P M,Herk A M,German A.Polym J,1989,21:133.
    52.Espiard E,Guyot A.Polymer,1995,36:4391.
    53.Bougeat L E,Lang J.J Colloid Interface Sci,1998,197:293.
    54.Sondi I,Fedynyshyn T H,Sinta R,Matijevic E.Langmuir,2000,16:9031.
    55.Tempeton N,Knight R L.J Oil Colour Chem Assoc,1990,73:459.
    56.Quaroni L,Chumanov G.J Am Chem Soc,1999,121:10642.
    57.Percy MJ,Barthet C,Lobb J C,et al.Langmuir,2000,16:6913.
    58.Marikanos S M,Schultz D A,Feldheim D L.Adv Mater,1999,11:34.
    59.Marikanos S M,Novak J,Brousseau L C,et al.J Am Chem Soc,1999,21:8518.
    60.Yoshinaga K,Nakashima F,Nishi T.Colloid Polym Sci,1999,277:136.
    61.Luna X J L,Bourgeat L E,Guyot A.Colloid Polym Sci,2001,279:947.
    62.Luna X J L,Guyot A,Bourgeat L E.J Colloid Inter Sci,2002,242:2493.
    63.Erdem B,Sudol D,Diminie V L,Elsasser M.J Polym Sci A:Polym Chem,2000,38:4431.
    64.Tiarks F,Landfester K,Antonietti M.Macromol Chem Phys,2001,202:51.
    65.Tiarks F,Landfester K,Antonietti M.Langmuir,2001,17:5775.
    66.Bamnolker H,Nitzan B,Gura S,Margel S.J Mater Sci Lett,1997,16:1412.
    67.Shisho H,Kawashashi N.Colloid Polym Sci,2000,278:270.
    68.Tissot I,Reymond J P,Lefebvre F,Bourgear L E.Chem Mater,2002,14:1325.
    69.Tissot I,Novot C,Lefebvre F,Bourgeat L E.Macromolecules,2001,279:171.
    70.Marston N J,Vincent B,Wright N G.Prog Colloid Polym,1998,23:159.
    71.Du H,Zhang P,Liu F.et al.Polym Int,1997,43:274.
    72.Mori H.Lanzendorfer M G.Muller A H E,Klee J E.Langmuir,2004,20:1934.
    73.Pagba C,Zordan G,Galoppini E.et al.J Am Chem Soc,2004,126:9888.
    74.Portney N G,Singh K,Chaudhary S.et al.Langmuir,2005,21:2098.
    75.Kurokawa Y,Yasuda H,Oya A.J Mater Sci Lett,1996,15:1481
    76.张立群,特种橡胶制品.1998,19:628.
    77.王胜杰,李强,漆宗能,等.高分子学报,1998,42:149.
    78.Zhou S X.J mater Sci 2004,39:1593.
    79.董元彩,孟卫,魏欣.塑料工业,1999,27:3.
    80.Xiong M L,Wu L M,Zhou S X,You B.Polym Int,2002,51:693.
    81.Xiong M L,Gu G X,You B,Wu L M.J Appl Polym Sci,2003,90:1923.
    82.黄锐,徐伟平,蔡碧华,等.塑料工业,1997,25(3):106.
    83.郭卫红,李盾.塑料工业,1998,26:10.
    84.胡平,范守善,万建伟.工程塑料应用,1998,26:1.
    85.王林江.化工矿物与加工,2000,3:1.
    86.Shoiehiro Y.Polymer,1994,35:5565.
    87.Gilman J W,Giannelis E P,Hilton D,et al.Chem Mater,2000,12:1866.
    88.Salleh N G,Glasel H J,Mehnert R,Alias M S.Proceeding of Radtech Asia Conference,2005,P541.
    89.Muh E,Stieger M,Klee J E,Frey H,Mulhaupt R.J Polym Sci A,2001,39:4274.
    90.Glasel H J,Bauer F,Ernst H,Findeisen M,Hartmann E,Langguth H,Mehnert R,Schubert R.Macromol Chem Phys,2000,201:2765.
    91.Bauer F,Sauerland V,Glasel H J,Ernst H,Findeisen M,Hartmann E,Langguth H.Marquardt B,Mehnert R.Macromol Mater Eng,2002,287:546.
    92.Sangermano M,Pegel S,Potschke P,Voit B.Macromol Rapid Commun.2008,29:734-742.
    93.Soloukhin V A,Brokken J M,Dewith G.J Polym Sci Part B:Polym.Phys.2007,45:2147.
    94.Zan L,Fa W J,Wang S L.Environ Sci Technol,2006,40:1681.
    95.王德海,江棂.紫外光固化材料理论与应用[M],科学出版社,北京,2001,P 11.
    96.孟庆飞,华明杨.安徽化工,2002,118(4):17.
    97.许岩,何德良,曾凌三.电镀与涂饰,2000,19(1):47.
    98.任杰,刘艳,唐小真.材料导报,2003,17(2):58.
    99.Uhl F M,Davuluri SP,Wong SC,Webster DC.Polymer,2004,45:6175.
    100.Uhl F M,Davuluri S P,Wong S C,Webster D C.Chem Mater,2004,16:1135.
    101.Decker C,Zahouily K,Keller L,Benfarhi S,Bendaikha T,Baron J.J Mater Sci,2002,37:4831.
    102.Benfarhi S,Decker C,Keller L,Zahouily K.Eur Polym J,2004,40:493.
    103.Keller L,Decker C,Zahouily K,Benfarhi S,Meins J M L,Miehe-Brendle J.Polymer,2004,45:7437.
    104.王慧敏,王炎,李林林,韩冬冰.材料科学与工程学报,2006,22(6):906.
    105.侣庆法,唐中华,范晓东.高分子材料科学与工程,2004,20(4):206.
    106.Decker C.Macromol Rapid Commun,2002,23:1067.
    107.Zhou S X,Wu L M,Shen W D,Gu G X.J Mater Sci,2004,39:1593.
    108.Allen N S,Edge M,Ortega A,Sandoval G,Liauw C M,Verran J,Stratton J,McIntyre R B.Polym Degrad Stabil,2004,85:927.
    109.Brickweg L J,Floryancic B R,Sapper E D,Femando R H.J Coat Tech,2007,4:107.
    110.Xu T,Xie C S.Prog Org Coat,2003,46:297.
    111.Yin Y J,Zhou S X,Gu G X,Wu L M.J Mater Sci,2007,42:5959.
    112.Zhou SX,Gamweitner G,Niederberge M,Antonietti M.Langmuir,2007,23:9178.
    113.Sangermano M,Gross S,Pracella L,Priola A,Rizza G.Macromol Chem Phys,2007,208:1730.
    114.Sangermano M,Voit B,Sordo F,Eichhorn K J,Rizza G.Polymer,2008,49:2018.
    115.Lee S,Shin H J,Yoon S M,Yi D K,Choi J Y,Paik U.J Mater Chem,2008, 18:1751.
    116.艾德生,赵昆,高喆,邓长生,戴遐明。钛工业进展,2008,25:11.
    117.李岳锋,幕慧,王舒婷,刘洪浪。高分子材料科学与工程,2008,24(11):25.
    118.Hu Y Q,Zhou S X,Wu L M.Polymer,2009.(in press)
    1. Scherzer T, Decker U. Radiat Phys Chem, 1999, 55: 615.
    2. Maffezzoli A, Terzi R. Thermochimica Acta, 1998,321:111.
    3. Katoh E, Sugisawa H, Oshima A, et al. Radiat Phys Chem, 1999,54:165.
    4. Pamell S, Min K, Cakmak M. Polymer, 2003, 44: 5137.
    5. Scherzer T, Mehnert R, Lucht H. Macromol Symp, 2004, 205:151.
    6. Anseth K S, Bowman C N, Peppas N A. J Polym Sci Part A: Polym Chem, 1994, 32:139.
    7. Carre C, Lougnot D J, Fouassier J-P. Macromolecules, 1989, 22: 791.
    8. Falk B, Vallinas S M, Crivello J V. J Polym Sci Part A: Polym Chem, 2003, 41: 579.
    9. Cui Y Y, Yang J W, Zeng Zh H. European Polymer Journal, 2007, 43:3912-3922.
    10. Choi H S, Kim Y H, Shin S M. J Polym Sci Part A: Polym Chem, 2006, 44:2428.
    11. Kienle R, Race H, Trans Electrochem Soc, 1934, 65:87.
    12. Eloundou J P, Ayina O, Nga H N, Gerard J F, Pascault J P, Boiteux G, Seytre G. J Polym Sci Part B: Polym Phys, 1998, 36:2911.
    13. Chen J H, Hojjati M. Polym Eng Sci, 2007,47 :150.
    14. Eloundou J P, Gerard J F, Pascault J P, Boiteux G, Seytre G, Die Angewandte. Makromolekulare Chemie, 1998, 263 : 57.
    15. David R, David D, Kelly S, Craven J. Polym Eng Sci, 1992, 32 :524.
    16. Selli E, Bellobono I R, Photopolymerization of Multifunctional Monomer: Kinetic Aspects, Chapman and Hall, London, 1993.
    17. Decker C, Jenkins AD. Macromolecules 1985, 18:1241.
    18. Studer K, Decker C, Beck E Prog Org Coat 2003, 48:92
    1. Zhou S X, Gamweitner G, Niederberge M, Antonietti M. Langmuir, 2007, 23: 9178.
    2. Gamweitner G, Goldenberg LM, Sakhno OV, Antonietti M, Niederberger M, Stumpe J. Small, 2007, 3:1626.
    3. Zhou S X,Wu L M. Macromol Chem Phys, 2008, 209(11):1170.
    4. Gamweitner G, Niederberger M. J Am Ceram Soc, 2006, 89:1801.
    5. Corbierre M K, Cameron N S, Sutton M, Laaziri K, Lennox R B, Langmuir, 2005, 21:6063.
    6. Lee S, Shin H J, Yoon S M, Yi D K, Choi J Y, Paik U, J Mater Chem, 2008, 18:1751.
    7. Wang J, Montville D, Gonsalves KE.J Appl Polym Sci, 1999, 72:1851.
    8. Sangermano M, Voit B, Sordo F, Eichhorn K J, Rizza G. Polymer, 2008, 49(8):2018.
    9. Lu C L, Guan Ch, Liu Y F, Cheng Y R, Yang B. Chem Mater, 2005, 17:2448.
    10. Mustafa M D, Kaloian K, Umit A, Christoph B, Insun P, Ingo L W, Gerhard, W. Macromolecules, 2007, 40:1089.
    11. Guan C, Lu C L, Liu Y F ,Yang B. J Appl Polym Sci, 2006, 102:1631.
    12. Liu J, Nakamura Y, Ogura T, Shibasaki, Y, Ando S J, Ueda M. Chem Mater, 2008, 20:273.
    13. Lu, C.L., Cui, Z.C., Wang, Y, Li, Z., Guan, Ch., Yang, B. and Shen, J.C., J.Mater.Chem., 2003,13: 2189
    14. Lu S, Wang L, Liu T X, He C B. Macromol Mater Eng, 2006, 291: 1358.
    15. Manoj K S, Tolou S, Hamid G, Said A, et al. Adv Funct Mater, 2008, 18:694
    1. Corbierre M K, Cameron N S, Sutton M, Laaziri K, Lennox R B. Langm uir, 2005, 21: 6063.
    2. Wenning A. Macromol Symp, 2002, 187: 597.
    3. Hwang D K, Moon J H, Shul Y G, et al. J Sol-Gel Sci Tech, 2003, 26: 783.
    4. Oestreich S, Struck D S. Macromol Symp, 2002, 187: 333.
    1.汪长春,包启宇.丙烯酸酯涂料[M].北京:化学工业出版社,2005.
    2.武利民,李丹,游波.现代涂料配方设计[M].北京:化学工业出版社,2000.
    3.Lee L H,Chen W C.Chem Mater,2001,13:1137.
    4.Chang C C,Chen W C,J Polym Sci Part A:Polym Chem,2001,39(19):3419.
    5.Lu C L,Cui Z C,Guan C,Guan J Q,Yang B,Chen J C.Macromol Mater Eng,2003,288(9):717.
    6.Teng G,Wegner J,Hurtt G,Soucek M,Prog Org coat,2001,42(1-2):29.
    7.Li C,Wilkes G L.Chem Mater,2001,13:3663.
    8.Wen J,Wilkes G L.Chem Mater,1996,8(8):1667.
    9.Xiong M N,You B,Zhou S X,Wu L M,Polymer,2004,45:2967.
    10.Chen Y C,Zhou S X,Yang H H,Wu L M.Macromol Mater Eng,2005,290(10):1001.
    11.Chen Y C,Zhou S X,Gu G X,Wu L M.Journal of Sol-gel Science and Technology,2006,37(1):39.
    12.Xiong M N,Zhou S X,You B,Wu L M.J Polym Sci Part B:Polym Phys,2005,43(6):637.
    13.Xiong M N,Zhou S X,You B,Gu G X,Wu L M,J Polym Sci Part B:Polym Phys,2004,42(20):3682.
    14.Li M Q,Zhou S X,You B,Wu L M.Macromol Mater Eng,2006,291:984.
    15.Li M Q,Zhou S X,You B,Wu L M.J Macromol Sci,Phys B 2005,44:481.
    16.Xiong M N,You B,Zhou S X,Wu L M.Polymer,2004,45:8127.
    17.Hoebbel D,Reinert T,Schmidt H,Arpac E.J Sol-Gel Sci Tech,1997,10:115.
    18.Connor P A,Dobson K D,McQuillan A J.Langmuir,1995,11:4193.
    19.Perrin F X,Nguyen V,Vernet J L.J Sol-Gel Sci Tech,2003,28:205.
    20.Perrin F X,Nguyen V,Vernet J L.Polym Int,2002,51:1013.
    21.Stephan F,Fit A,Duteurtre X.Polym Eng Sci,1997,37:436.
    22.Yeh J M,Weng C J,Huang K Y,Huang H,Yu Y S,Yin C H.J Appl Polym Sci,2004,94:400.
    23.Levita G,Livi A,Rolla P A,Culicchi C.J Polym Sci Part B:Polym Phys,1996,34:2731.
    24.Chen J H,Hojjati M.Polym Eng Sci,2007,47(2),150.
    25.Eloundou J P,Jean F G,Jean P P,Boiteux G,Seytre G.Die Angewandte Makromolekulare Chemie,1998, 263(1): 57.
    26. David R D, David D, Shepard K, Craven J. Polym Eng Sci, 1992, 32(8): 524.
    27. Eloundou J P, Jean F G, Jean P P, Kranbuehl D. Macromol chem phys, 2002, 203(13):1974.
    28. Kazilas M C, Partridge I K. Polymer, 2005, 46:5868.
    29. Mcllhagger A, Brown D, Hill B. Composites: Part A, 2000, 31:1373
    30. Chen Y C, Zhou S X, Gu G X, Wu L M. Polymer, 2006, 47:1640.
    31. Xiong M N, You B, Zhou S X, Wu L M. Polymer, 2004, 45:8127.
    32. Ballard R L, Williams J P, Njus J M. European Polymer Journal, 2001 37:381.
    33. Xiong M N, Zhou S X, Wu L M. Acta Polymeric Sinica, 2005, 3:417.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700