聚碳酸酯/弹性体复合增韧尼龙复合物的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究聚碳酸酯、弹性体在尼龙纳米复合物中的复合增韧机制。根据聚碳酸酯在尼龙基体中的分散状态,从分相层面、微结构层面到分子层面逐级递进建立三种复合增韧模型。并对纳米蒙脱土与复合增韧体系的关系进行了研究。
     第一部分主要研究以尼龙6为复合物基体的聚碳酸酯、聚(苯乙烯-丙烯酰胺)/有机蒙脱土核壳结构复合增韧机制。用自制的以蒙脱土为核、聚苯乙烯为次外层、聚丙烯酰胺为外层的新型聚(苯乙烯-丙烯酰胺)/有机蒙脱土核壳结构,通过熔融共混法制备了聚碳酸酯、核壳结构复合增韧尼龙6复合物。研究了尼龙6复合物的力学性能、加工流动性能、结晶性能和热稳定性能。结果表明,聚碳酸酯、核壳结构复合增韧尼龙6具有明显的弯曲力学性能改性效果;核壳结构对PA6的结晶有成核作用,其结晶温度提高了8.5℃,结晶度提高了3.3%;聚碳酸酯、核壳结构复合增韧尼龙6与纯尼龙6具有基本一致的热稳定行为;核壳结构还能有效提高尼龙6的加工流动性,其熔体流动速率是纯尼龙6的2.18倍。
     第二部分首先通过介绍PA66/PC/硅橡胶复合物的形态和性能来系统性地研究聚碳酸酯硅橡胶的复合增韧机制。以硅橡胶作为增韧剂,尼龙66复合物通过动态硫化制备而得。硅橡胶在PA66/PC基体中交联形成类似semi-IPN的拟网状结构,这有利于增强尼龙66基体和聚碳酸酯之间的相互作用,并且使得聚碳酸酯颗粒紧密镶嵌在尼龙66基体中。这种新型复合物具有良好的力学性能和加工性能,因而硅橡胶和聚碳酸酯复合增韧是一种具有协同效应的理想增韧体系。此外,PA66/PC/硅橡胶/OMMT复合物在其他力学性能不减弱的情况下具有更好的弯曲强度和弯曲弹性模量。
     本文接着对尼龙66/聚碳酸酯/硅橡胶复合物的热性能进行系统研究。在热处理后该尼龙66/聚碳酸酯/硅橡胶复合物表现出非常稳定的冲击强度和更高的硬度。该复合物的平均降解温度和软化点温度要高于其他普通的工程塑料,这主要归功于引入了动态硫化硅橡胶和在尼龙66与聚碳酸酯之间形成了半互穿网络结构。另外蒙脱土的引入进一步提高了复合物的硬度和降解温度。
     第三部分主要研究扩链剂对聚碳酸酯弹性体复合增韧体系的增容效应。以尼龙6(PA6)为主要原料,在聚碳酸酯(PC)和聚烯烃弹性体(POE)复合增韧的基础上,加入扩链剂(HDI),经由反应挤出制备了具有超韧性的新型尼龙6工程塑料。这种新型增韧合金拥有非常出色的机械性能。本文探讨了合金的增韧机理,并且对性能与多重网络结构的关系进行了深入分析。另外蒙脱土的引入显著提高了合金的弯曲性能。另外本文还探讨了不同HDI含量对复合物力学性能的影响,并对相关热性能和流变性能做了比较研究。结果发现HDI的加入能够显著提高尼龙6和聚碳酸酯之间的相容性,同时复合物的粘度显著提高,结晶度有所降低。
     第四部分主要研究尼龙66纳米复合物中的蒙脱土添加方式,弹性体和纳米填料的协同增强效应,力求开发强度和韧性平衡性良好的弹性体增强尼龙合金纳米复合物。首先用熔融共混法制备尼龙6纳米蒙脱土母料,再与尼龙66、弹性体共混,得到尼龙合金纳米材料。由于采用二次加工法,纳米蒙脱土得到很好的剥离分散。蒙脱土纳米硅层同尼龙6的引入改变了橡胶相的形态,缩小了弹性体颗粒尺寸,并且导致合金中γ晶型的出现,限制基体分子链的移动进而阻碍α晶型的结构精致化。POE-g-MA弹性体的添加引起冲击强度值的显著增大。同时拉伸强度随弹性体的添加而降低,随纳米蒙脱土的添加而增大。与PA66/POE-g-MA相比较,添加1%的纳米蒙脱土即显著改善材料的拉伸性能,纳米合金不仅韧性好,而且强度高。可见弹性体和剥离好的纳米蒙脱土的同时添加对于材料的拉伸性能具有互补效应。
The research mainly focused on the combine toughening system of polycarbonate and elastomer in nylon nanocomposites. Based on the dispersion state of PC in the nylon matrix, three different models of combine toughening systems were established on different levels: phase, micro-structure, and molecule. The relationship of nano-montmorillonite and the combine toughening systems was also investigated.
     The first part mainly focused on the combine toughening mechanism of polycarbonate and the (polystyrene-polyacrylamide)/organic montmorillonite core-shell structures for nylon 6 composites. In this experimentation the P(S-AM)/OMMT core-shell structures were synthesized through emulsion polymerization. Core-shell structure particles and PC were used to combine toughen Nylon 6 and their influence on mechanical properties, processability, crystallization behavior and thermal stability of the PA6 composites was also investigated. The results showed that the inducing of core-shell structures and PC has improved the flexile properties of PA6. The core-shell structures acted as nucleating agent can improve the crystallinity of the PA6 composites(the melting temperature increased by 8.5℃and the crystallinity increased by 3.3%) and the PA6 composites also show a good thermal stability and processability(the MFR valve increased by 118%).
     In the second part the combine toughening system of polycarbonate and silicone rubber was studied through the introduction of the morphology and properties of the PA66/PC/silicone rubber composites. By adding silicone rubber as a toughener, the composites were prepared via dynamic vulcanization. The crosslinking of silicone rubber in the PA66/PC matrix formed the netlike structure like semi-IPN which is propitious to enhance the interaction between PA66 matrix and PC and in further makes the PC particles embed in PA66 matrix closely. Novel composites are gained with outstanding mechanical properties and high-temperature-resistance, so the combine toughening by silicone rubber and PC is an ideal toughening system because of the synergistic effect. In addition, The PA66/PC/silicone rubber/OMMT composite exhibits better flexile strength and flexile modulus without the weakening of other mechanical properties.
     The thermal properties of PA66/PC/silicone rubber composites prepared by dynamic vulcanization were also investigated systematically. The PA66/PC/silicone rubber composites show very good retention of impact strength and higher hardness even after heat aging. The average degradation and softening temperatures of the composites are higher than that of other common engineering plastics which we mainly attribute to the introduction of the dynamically vulcanized silicone rubber and the forming of a netlike structure in the PA66/PC matrix. Of the fillers studied, the introduction of montmorillonite even improved the hardness and the degradation temperature of the composites.
     In the third part the compatiblizing effect of chain extender on the combine toughening system of polycarbonate and elastomer was studied. This part focused on a new kind of super-tough PA6 engineering plastic. Based on the combine toughening by polycarbonate(PC) and polyolefin elastomer(POE), the PA6/PC/POE/HDI composites were prepared via reactive extrusion by adding of chain extender (HDI). Novel toughening alloy is gained with outstanding mechanical properties. Toughening mechanism was studied and the relationship between properties and the multi-network structure was analyzed. The influence of different loading of HDI on mechanical properties of the composites was also studied. The results showed that the compatibility between PA6 and PC can be improved by adding the chain extender (HDI), the viscosity of the composites increased sharply and the crystallization degree decreased in some degree with the adding of HDI. In addition, the adding of montmorillonite(OMMT) improve the flexile property of the composite remarkably.
     In the fourth part the synergistic effect of elastomer and nano-filler were studied. The elastomer toughening of PA66/PA6 nanocomposites prepared from the organic modified montmorillonite (OMMT) was examined as a means of balancing stiffness/strength versus toughness/ductility. Several different formulations varying in OMMT content were made by mixing of PA6 and OMMT as a master-batch and then blending it with PA66 and different elastomers in a twin screw extruder. In this sequence, the OMMT layers were well exfoliated in the nylon alloy matrix. The introduction of silicate layers with PA6 induced the appearance of the y crystal phase in the nanocomposites which is unstable and seldom appears in PA66 at room temperature and in further affected the morphology and dispersion of rubber phase resulting in much smaller rubber particles. The incorporation of POE-g-MA particles toughened the nanocomposites markedly, but the tensile modulus and strength were both reduced. Conversely, the use of OMMT increased the modulus but decreased the fracture toughness. The nanocomposites exhibited balanced stiffness and toughness.
引文
[1]王庭慰.马来酸酐接枝EPDM、POE改性尼龙的性能研究[J].中国塑料.2001,9,29-31
    [2]HOBBS S Y, DEKKERS M E J, WATKINS V H. Toughened blends of poly(butylene terephthalate) and BPA polycarbonate, Part 1:Morphology[J]. J Mater Sci.1988,23, 1219-1224.
    [3]DEKKERS M E J, HOBBS S Y, WATKINS V H. Toughened blends of poly(butylene terephthalate) and BPA polycarbonate, Part 2-Toughening mechanisms[J]. J Mater Sci. 1988,23,1225-1230.
    [4]Wu J SH, GUO B H, CHAN CH M, et al. Synergistic toughening effect of SBS and HDPE on the fracture of the PS/HDPE/SBS blends[J]. Polymer.2001,42,8857-8865.
    [5]周丽玲,吴其哗,杨文君,等.刚性有机粒子对聚氯乙烯/氯化聚乙烯共混体系形态和增韧机理的研究[J].高分子学报.1996,1,87-90.
    [6]闫瑞萍,梁善杰.PP/EPDM/HDPE三元共混材料的微观形态结构及增韧机理分析[J].工程塑料应用.1994,22(3):31-34.
    [7]WEI Gang, HUANG Rui, SONG Bo. Toughening effect of ethylene-octene copolymer grafted maleic anhydride on poly(butylene terephthalate)[J]. China Synthetic Rubber Industry.2004,27(2):115-115.
    [8]Szu-Hui Lim, Aravind Dasari, Zhong-Zhen Yu, Yiu-Wing Mai, Songlin Liu, Ming Shyan Yong. Fracture toughness of nylon 6/organoclay/elastomer nanocomposites[J]. Composites Science and Technology.2007, (67):2914-2923
    [9]Yuying L, Xiao H. Polymorphism of Nylon-6 in Nylon-6/Nanoclay/Functionalized Polyolefin Blends[J]. Journal of Polymer Science:Part B:Polymer Physics.2007,45, 1494-1502.
    [10]Chen H B, Yang C C, Zhang H Y. Toughening PA1010 with a functionalized saturated polyolefin elastomer[J]. Journal of Applied Polymer Science.2000,77(4):928-933.
    [11]赵德仁,张慰盛.高聚物合成工艺学(第二版)北京:化学工业出版社,1999.
    [12]Gatliglia E, Turtumo A, Pedemouto E. Blends of polyamide 6 with bisphenol-A polycarbonate. I. Thermal properties and compatibility aspects [J]. J Appl Polym Sci. 1989,38:1807-1818.
    [13]Gatliglia E, Turtumo A, Pedemouto E. Blends of polyamide 6 with bisphenol-A polycarbonate. II. Morphology-mechanical properties relationships [J]. J Appl Polym Sci.1990,41:1411-1423.
    [14]Majumdar B, Keskkula H, Paul D R. Effect of extruder type on the properties and morphology of reactive blends based on polyamides[J]. J Appli Polym Sci.1994,54, 339-354.
    [15]李新法,沈百栓,杨进元等.PC/PA1010共混物的流变性能[J].塑料工业.1993,2,42-45.
    [16]李新法,沈百栓,杨进元等.PC/PA1010共混物的热行为[J].塑料工业.1993,6,49-51.
    [17]傅强,张琴,刘云风等.PC/PA共混物的结晶结构与性能[J].高等学校化学学报.2000,21(4):659-664.
    [18]Costa D A, Oliveria C M F. Blends of polyamide 6, polycarbonate, and poly(propylene oxide). I. Reactive compatibilization-morphology relationships[J]. J Appl Polym Sci. 1998,69,857-864
    [19]Kim Y H, Kikuclu M, akiyarns S, et al. Morphology and coarsening behavior in Polycarbonate/Nylon6-co-12 blends with and without compatibilizer[J]. Polymer.1999, 40:5273-5278
    [20]Horiuchi S, Marchariychal N, Yase K, et al. Compatibilizing effect of a maleic anhydride functionalized SEBS triblock elastomer through a reaction induced phase formation in the blends of polyamide 6 and polycarbonate:1. Morphology and interfacial situation[J]. Polymer.1996,37:3065-3078
    [21]Lee C H, Lee Y M, Choi H K, et al. Effect of a functional triblock elastomer on morphology in polyamide 6/polycarbonate blend[J]. Polymer.1999,40,6321-6327
    [22]张凯,曾敏.核壳高分子微球的制备及应用[J].材料导报.2002,16(6):70-75
    [23]L. J. Hughes, George L. Brown. Heterogeneous polymer systems. I. orsional modulus studies[J]. J Appl Polym Sci.1961,5:580-588
    [24]Masayoshi Okubo, Akira Yamada, Tsunetaka Matsumoto. Estimation of morphology of composite polymer emulsion particles by the soap titration method [J]. J Polym. Sci., part A.1980,18,3219-3228
    [25]阚成友.具有核壳结构的聚合物粒子[J].合成橡胶工业.1999,22(2):65-69
    [26]阚成友.核壳结构聚合物复合粒子的合成与表征[J].化工科技,1999,7(2):1-4
    [27]何卫东.核壳聚合物粒子[J].功能高分子学报.1997,10(1):110-117
    [28]M. Okubo, J. Izumi and R. Takekoh. Production of micron-sized monodispersed core/shell composite polymer particles by seeded dispersion polymerization [J]. Colloid Polym Sci.1999,277:875-880
    [29]朱雪燕,等.核壳结构微球的制备方法与展望[J].化学研究与应用.2004,6(3):309-313
    [30]M. Okubo, R. Takekoh, J. Izumi and T. Yamashita. Morphology of micron-sized monodispersed poly(butyl methacrylate)/polystyrene composite particles produced by seeded dispersion polymerization[J]. Colloid Polym Sci.1999,277:972-978
    [31]D. I. Lee, T. Ishikawa. The formation of invered core-shell latexes[J]. J. Polym.Sci., part A.1983,21:147-154
    [32]Jan-Erik, Joensson, Helen Hassander, Bertil Toernell. Polymerization Conditions and the Development of a Core-Shell Morphology in PMMA/PS Latex Particles
    [J]. Macromolecules.1994,27:1932-1937
    [33]W. He, J. Tong, M. Wang, C. Pan, Q. Zhu. One stage method of preparing core-shell particles [J]. J. Appl. Polym. Sci.1995,55,667-674
    [34]R. H. Ottewill, A. B. Schofield, J. A. Waters and N. St. J. Williams. Preparation of core-shell polymer colloid particles by encapsulation[J]. Coloid Polym. Sci.1997,275(3): 274-283
    [35]Tao Wang, Mozhen Wang, Zhicheng Zhang, Xuewu Ge, Yue'e Fang. Preparation of core (PBA/layered silicate)-shell (PS) structured complex via y-ray radiation seeded emulsion polymerization[J]. Materials Letters.2006,60:2544-2548
    [36]陶氏公司(美国).用硅橡胶增韧的热塑性树脂.CN1373793A.2002.10.916.
    [37]Chorvath, et al. Thermoplastic silicone elastomers formed from nylon resins[P]. US 6,713,569. March 30,2004
    [38]Ju M.Y., Chang F.C.. Compatibilization of PET/PS blends through SMA and PMPI dual compatibilizers [J]. Polymer.2000,41(5):1719-1730
    [39]OUYANG.Chu(欧阳初),GUO Jian.Ming(郭建明),SHEN Kai.Zhi((申开智).茂金属聚乙烯的固态挤出行为及力学性能[J]Polymer Materials Science and Technology(高分子材料科学与工程).2003,19(6):168-171
    [40]Bilgili E., Arastoopour H., Bernstein B.. Pulverization of rubber granulates using the solid-state shear extrusion (SSSE) process::Part I. Process concepts and characteristics[J]. Powder Technology.2001,115(3):265-276
    [41]Bong Shik Kim, Roger S.. Porter. Uniaxial draw of poly(ethylene oxide) by solid-state extrusion [J]. Maeromoleeules.1985,18(6):1214-1217
    [42]Don.D, Mitchell, Roger S.. Porter. Characterization of poly(ethylene oxide) drawn by solid-state extrusion [J]. Macromolecules.1985,18(6):1218-1221
    [43]Daisuke Sawai, Kazuyo Takahashi, Toshiyuki Imamura, et al.. Preparation of oriented β-form poly(L-lactic acid) by solid-state extrusion [J]. Journal of Polymer Science, Part B:Polymer Physics.2002,40(1):95-104
    [44]Daisuke Sawai, Kazuyo Takahashi, Aki Sasashige, el al.. Preparation of Oriented β-Form Poly(L-lactic acid) by Solid-State Coextrusion:Effect of Extrusion Variables [J]. Macromolecules 2003,36(10):3601-3605
    [45]Nesarikar A.R., Carr S.H.,Khait K., el al. Self-compatibilization of polymer blends via novel solid-state shear extrusion pulverization [J]. Appl.Polym.Sci.1997,63(9): 1179-1187
    [46]Fornes T D, H unter D I, Paul D R. Effect of sodium montmorillonite source on nylon 6 /clay nanocomposites. Polymer.2004,45(7):2321-2331
    [47]Chavarria F, Paul D R. Comparison of nanocomposites based on nylon 6 and nylon 66 Polymer.2004,45(25):8501-8515
    [48]Fornes T D, Yoon P J, Paul D R. Polymer matrix degradation and color formation in melt processed nylon 6/clay nanocomposites. Polymer.2003,44(24):7545-7556
    [49]Dasari Aravind, Yu Zhongzhen, Yiu W ingmai, et al. Clay exfoliation and organic modification on wear of nylon 6 nanocomposites processed by different routes. Composites Science and Technology.2005,65(15-16):2314-2328
    [50]Fleming S., Mandal T. K., Walt D. R.. Nanosphere-microsphere assembly methods for core-shell materials preparation[J]. Chem. Mater.2001,13:2210-2216
    [51]Schneider J. J.. Magnetic core/shell and quantum-confined semiconductor nanoparticles via organometallic synthesis[J]. Adv. Mater.2001,13(7):529-534
    [52]OU Yuchun, ZHU Jin, ENG Yupeng. Interfacial design of the nonpolar polyolefin ternary composite with high strength, high toughness, and high modulus[J]. J. Appl. Polym. Sci.1996,9:287-291
    [53]张志毅,赵宁,魏伟,等.MMT/PMMA和MMT/PBA/PMMA纳米杂化材料的制备和表征[J].精细化工.2005,(3):149-153
    [54]张志毅,赵宁,魏伟,等.核壳结构和层状结构改性剂的制备及其对PC性能的影响[J].工程塑料应用.2005,33(3):5-10
    [55]曹同玉,刘庆普,胡金生.聚合物乳液合成原理性能及应用[M].北京:化学工业出版社.2007,16-28.
    [56]U. Basuli, T. K. Chaki, K. Naskar. Mechanical properties of thermoplastic elastomers based on silicone rubber and an ethylene-octene copolymer by dynamic vulcanization[J]. J Appl Polym Sci.2008,108,1079-1085
    [57]Machado J. M., Lee C. S. Compatibilization of immiscible blends with a mutually miscible third polymer[J]. Polym Eng Sci.1994,34,59-68
    [58]Kim J. K., Kim S., Park, C. E. Compatibilization mechanism of polymer blends with an in-situ compatibilizer[J]. Polymer.1997,38,2155-2164
    [59]Al-Malaika S., Kong W. Reactive processing of polymers:Melt grafting of glycidyl methacrylate on ethylene propylene copolymer in the presence of a coagent[J]. J Appl Polym Sci.2001,79,1401-1415
    [60]Wilkinson A. N., Clemens M. L., Harding V. M. The effects of SEBS-g-maleic anhydride reaction on the morphology and properties of polypropylene/PA6/SEBS ternary blends[J]. Polymer.2004,45,5239-5249
    [61]Al-Malaika S., Kong W. Reactive processing of polymers:effect of in situ compatibilisation on characteristics of blends of polyethylene terephthalate and ethylene-propylene rubber[J]. Polymer.2005,46,209-228
    [62]Cheng T. W., Keskkula H., Paul D. R. Property and morphology relationships for ternary blends of polycarbonate, brittle polymers and an impact modifier [J]. Polymer.1992,33, 1606-1619
    [63]Guo H. F., Packirisamy S., Gvozdic N. V., Meier D. J.. Prediction and manipulation of the phase morphologies of multiphase polymer blends:1. Ternary systems[J]. Polymer. 1997,38,785-794
    [64]Guo H. F., Gvozdic N. V., Meier D. J.. Prediction and manipulation of the phase morphologies of multiphase polymer blends:Ⅱ. Quaternary systems[J]. Polymer.1997,
    38,4915-4923
    [65]Reignier J., Favis B. D.. Heuzey, M. C. Factors influencing encapsulation behavior in composite droplet-type polymer blends[J]. Polymer.2003,44,49-59
    [66]E. Gattiglia, A. Turturro, E. Pedemonte, and G. Dondero, Blends of polyamide 6 with bisphenol-A polycarbonate. Ⅱ. Morphology-mechanical properties relationships[J]. J. Appl. Polym. Sci.1990,41,1411-1423
    [67]P. Jannasch, B. Wessle¨n. Poly(styrene-graft-ethylene oxide) as a compatibilizer in polystyrene/polyamide blends[J]. J. Appl. Polym. Sci.1995,58,753-770.
    [68]M. W. Huang, K. J. Zhu, E. M. Pearce, and T. K. Kwei. The modification of nylon6 by a phenol-formaldehyde resin[J]. J. Appl. Polym. Sci.1993,48,563-573
    [69]M. S. Li, C. C. Ma, F. C. Chang. The mechanism and model reactions of epoxy-polycarbonate blends cured with aromatic amine[J]. Polymer.1997,38,855-863
    [70]I. Mondragon, M. Gaztelamendi, J. Nazabal. Polycarbonate/phenoxy blends:Physical behavior and development of interchange reactions in melt-processing conditions [J]. Polym. Eng. Sci.1986,26,1478-1482.
    [71]G. Montaudo, C. Puglisi, F. Samperi. Chemical reactions occurring in the thermal treatment of polymer blends investigated by direct pyrolysis mass spectrometry: Polycarbonate/polybuthyleneterephthalate[J]. J. Polym. Sci., Polym. Che.1993,31, 13-25.
    [72]H. Ishida, Y. H. Lee, Study of exchange reaction in polycarbonate-modified polybenzoxazine via model compound[J]. J. Appl. Polym. Sci.2002,83,1848-1855
    [73]C. Berty, V. Bonora, F. Pilati, M. Fiorini. Reactive blending of poly(ethylene terephthalate) and polycarbonate,2. A novel route to copoly(ester-ether)[J]. Macromol. Chem.1992,193,1679-1686
    [74]Abu-isa I. a-y transition in nylon 6 Journal of Polymer Science Part A-l:Polymer Chemistry[J]. J Polym Sci.1971, A-1,9,199-216
    [75]Jincheng Wang, Yuehui Chen. Preparation of an organomontmorillonite master batch and its application to high-temperature-vulcanized silicone-rubber systems[J]. J. Appl. Polym. Sci.2008,107,2059-2066
    [76]Feng S. Y., Zhang J., Li M. J., Zhu Q. Z.. Silicone Polymer and its Application; Chemical Industrial Press:Beijing.2004, p.94.
    [77]Jia Y, Sun S., Liu L., Xue S., Zhao G. Investigation of computer-aided engineering of silicone rubber vulcanizing (Ⅰ)-vulcanization degree calculation based on temperature field analysis[J]. Polymer.2003,44,319.
    [78]Gornowicz G. A., Lupton K. E., Romenesko D. J., Struble, K., Zhang H.. (to Dow Corning Corp.). Thermoplastic silicone elastomers. U.S. Pat.6,013,715,2000.
    [79]Gornowicz G. A. (to Dow Corning Corp.). Thermoplastic silicone elastomers based on fluorocarbon resin. U.S. Pat.6,015,858,2000.
    [80]Gornowicz G. A., Zhang H. (to Dow Corning Corp.). Thermoplastic silicone vulcanizates prepared by condensation cure. U.S. Pat.6,153,691,2000.
    [81]Dong Q., Chen Q., Yang W., Zheng Y., Liu X., Li Y., Yang M.. Thermal properties and flame retardancy of polycarbonate/hydroxyapatite nanocomposite[J]. J. Appl. Polym. Sci. 2008,109,659-663.
    [82]E. Gattiglia, A. Turturro, E. Pedemonte, G. Dondero.. Blends of polyamide 6 with bisphenol-A polycarbonate. Ⅱ. Morphology-mechanical properties relationships [J]. J. Appl. Polym. Sci.1990,41,1411.
    [83]Montaudo G., Puglisi C., Samperi F., Lamantia F. P.. Synthesis of AB and ABA block copolymers as compatibilizers in nylon 6/polycarbonate blends[J]. J. Polym. Sci., Part A. 1996,34,1283.
    [84]Jannasch P., Wesslen B.. Poly(styrene-graft-ethylene oxide) as a compatibilizer in polystyrene/polyamide blends[J]. J. Appl. Polym. Sci.1995,58,753.
    [85]Huang M. W., Zhu K. J., Pearce E. M., Kwei T. K. The modification of nylon 6 by a phenol-formaldehyde resin[J]. J. Appl. Polym. Sci.1993,48,563.
    [86]Gattiglia E., Turturro A., Pedemonte E.. Blends of polyamide 6 with bisphenol-A polycarbonate. I. Thermal properties and compatibility aspects[J]. J. Appl. Polym. Sci. 1989,38,1807.
    [87]Gattiglia E., La Mantia F. P., Turturro A., Valenza A.. Effects of mixing time and blend composition on properties and morphologies of polyamide 6/polycarbonate blends[J]. Polym. Bull.1989,21,47.
    [88]Gattiglia E., Turturro A., La Mantia F. P., Valenza A.. Blends of polyamide 6 and bisphenol-A polycarbonate. Effects of interchange reactions on morphology and mechanical properties[J]. J. Appl. Polym. Sci.1992,46,1887.
    [89]Kim W., Park C., Burns C. M.. Ternary blends of poly(amide-6)/polycarbonate/ poly(ε-caprolactone) [J]. J. Appl. Polym. Sci.1993,49,1003.
    [90]Montaudo G., Puglisi C., Samperi F.. Exchange reactions occurring through active chain ends:Melt mixing of nylon 6 and polycarbonate [J]. J. Polym. Sci., Part A.1994,32,15.
    [91]Tavares M. I. B., Castro W. P., Costa D. A.. Study of nylon 6 and poly(propylene oxide) blends by thermal measurements and carbon-13 NMR high resolution solid-state [J]. J. Appl. Polym. Sci.1995,55,1165.
    [92]Zweifel H.. In Stabilization of Polymeric Materials; Springer Verlag:Berlin,1998,18.
    [93]Gugumus F.. In Developments in Polymer Stabilization-8; Scott, G., Ed.; Elsevier Applied Science Publishers:London.1987, p.239.
    [94]Factor A., Ligon W. V., May R. J.. The role of oxygen in the photoaging of bisphenol A polycarbonate.2. GC/GC/high-resolution MS analysis of Florida-weathered polycarbonate [J]. Macromolecules.1987,20,2462.
    [95]Gugumus F.. Thermooxidative degradation of polyolefins in the solid state-7. Effect of sample thickness and heterogeneous oxidation kinetics for polypropylene[J]. Polym Degrad Stabil1998,62,245.
    [96]Van Krevelen D. W.. Properties of polymer[M]. Amsterdam:Elsevier Science Publishing Co.1990,641.
    [97]Tang Z.. The Influence of Phenyl Content on the Properties of Methyl Vinyl Silicone Rubber[J]. Rubber Industry (China).2007,54,610
    [98]Arkles Barry C..Curable silicone semi-interpenetrating polymer networks and methods of making same. U.S. Pat.4,714,739,1987.
    [99]Dilma A., Costa Clara, Marize F. Oliveira.. Blends of polyamide 6, polycarbonate, and poly(propylene oxide). II. Reactive compatibilization-thermal degradation relationships[J]. J. Appl. Polym. Sci.2001,81,2556
    [100]Yano K., Usuki A., Okada A.. Synthesis and properties of polyimide-clay hybrid[J]. J Polym Sci Part A:Polym Chem.1993,31,2493.
    [101]Kong Q., Hu Y., Song L., Wang Y., Chen Z., Fan W.. Influence of Fe-MMT on crosslinking and thermal degradation in silicone rubber/clay nanocomposites[J]. Polym. Adv. Technol.2006,17,463
    [102]Gatliglia E,Turtumo A, Pedemouto E. Blends of polyamide 6 with bisphenol-A polycarbonate. Ⅰ. Thermal properties and compatibility aspects [J]. J Appl Polym Sci. 1989,38,1807-1818.
    [103]Gatliglia E, Turtumo A, Pedemouto E. Blends of polyamide 6 with bisphenol-A polycarbonate. Ⅱ. Morphology-mechanical properties relationships [J]. J Appl Polym Sci.1990,41,1411-1423.
    [104]Gattiglua E., Turturro A., Lamantia F. P.. Blends of polyamide 6 and bisphenol-A polycarbonate. Effects of interchange reactions on morphology and mechanical properties [J]. J Appl Polym Sci.1992,46,1887-1897
    [105]Horiuchi S, Matehariyakul N, Yase K, et al. Compatibilizing effect of a maleic anhydride functionalized SEBS triblock elastomer through a reaction induced phase formation in the blends of polyamide 6 and polycarbonate:1. Morphology and interfacial situation [J]. Polymer.1996,37(14):3065-3078.
    [106]Xianwen Tang, Weihong Guo, Guorong Yin, Binyao Li, Chifei Wu. Reactive Extrusion of Recycled Poly(ethylene terephthalate) with Polycarbonate by Addition of Chain Extender[J]. Journal of Applied Polymer Science.2007,104,2602-2607.
    [107]INATA H, MATSUMURA S. Chain extenders for polyester. Ⅱ. Reactivities of carboxyl-addition-type chain extenders; bis cyclic-imino-ethers [J]. J Appl Polym Sci. 1986,32(5):5193-5202
    [108]M.-S. Li, C.-C. Ma, F.C. Chang. The mechanism and model reactions of epoxy-polycarbonate blends cured with aromatic amine[J]. Polymer.1997,38,855-863
    [109]I. Mondragon, M. Gaztelamendi, J. Nazabal. Polycarbonate/phenoxy blends:Physical behavior and development of interchange reactions in melt-processing conditions [J]. Polym. Eng. Sci.1986,26,1478-1482
    [110]G. Montaudo, C. Puglisi, F. Samperi. Chemical reactions occurring in the thermal treatment of polymer blends investigated by direct pyrolysis mass spectrometry: Polycarbonate/polybuthyleneterephthalate[J]. J. Polym. Sci., Polym. Chem.1993,31, 13-25
    [111]H. Ishida, Y.-H. Lee. Study of exchange reaction in polycarbonate-modified polybenzoxazine via model compound[J]. J. Appl. Polym. Sci.2002,83,1848-1855
    [112]C. Berty, V. Bonora, F. Pilati, M. Fiorini. Reactive blending of poly(ethylene terephthalate) and polycarbonate,2. A novel route to copoly(ester-ether)s[J]. Macromol. Chem.1992,193,1679-1686
    [113]胡孝勇,袁晓玲.HDI化学反应的研究进展[J].化工科技,2008,16(3):60-64
    [114]X. C. WANG, Q. ZHENG, G. S. YANG.. Influence of preparation methods on structure and properties of PA6/PA66 blends:A comparison of melt-mixing and in situ blending[J]. Journal of Polymer Science:Part B:Polymer Physics.2007,45, 1176-1186.
    [115]Oshinski AJ, Keskkula H, Paul DR.. Rubber toughening of polyamides with functionalized block copolymers:1. Nylon-6[J]. Polymer.1992,33(2):268-283.
    [116]Oshinski AJ, Keskkula H, Paul DR.. Rubber toughening of polyamides with functionalized block copolymers:2. Nylon-6,6[J]. Polymer.1992,33(2):284-293.
    [117]Takeda Y, Keskkula H, Paul DR.. Effect of polyamide functionality on the morphology and toughness of blends with a functionalized block copolymer[J]. Polymer.1992, 33(15):3173-3181.
    [118]Stewart M. E., Cox A. J., Naylor D. M.. Reactive processing of poly(ethylene 2,6-naphthalene dicarboxylate)/poly(ethylene terephthalate) blends[J]. Polymer.1993, 34,4060-4067.
    [119]Eersels K. L., Groeninckx G.. Influence of interchange reactions on the crystallization and melting behaviour of polyamide blends as affected by the processing conditions [J]. Polymer.1996,37,983-989.
    [120]Walia P. S., Gupta R. K., Kiang C. T.. Influence of interchange reactions on the crystallization and melting behavior of nylon 6,6 blended with other nylons[J]. Polym Eng Sci.1999,39,2431-2444.
    [121]Kim SW, Jo WH, Lee MS, Ko MB, Jho JY.. Preparation of clay-dispersed poly(styrene-co-acrylonitrile) nanocomposites using poly(s-caprolactone) as a compatibilizer[J]. Polymer.2001,42 (24):9837-9842.
    [122]Lepoittevin B, Pantoustier N, Devalckenaere M, Alexandre M, Calberg C, Je'ro^me R et al. Polymer/layered silicate nanocomposites by combined intercalative polymerization and melt intercalation:a masterbatch process[J]. Polymer.2003,44(7): 2033-2040.
    [123]Dharaiya D, Jana SC, Shafi A.. A study on the use of phenoxy resins as compatibilizers of polyamide 6 (PA6) and polybutylene terephthalate (PBT) [J]. Polym Eng Sci.2003, 43(3):580-595.
    [124]Dennis HR, Hunter DL, Chang D, Kim S, White JL, Cho JW et al. Effect of melt processing conditions on the extent of exfoliation in organoclay-based nanocomposites[J]. Polymer.2001,42(23):9513-9522.
    [125]Fornes T D, Yoon P J, Hunter D L, Keskkula H, Paul D R.. Effect of organoclay structure on nylon 6 nanocomposite morphology and properties [J]. Polymer.2002, 43(22):5915-5933.
    [126]Alexandre M, Dubois P.. Polymer-layered silicate nanocomposites:preparation,
    properties and uses of a new class of materials[J]. Mater Sci Eng.2000, R28(1-2): 61-63.
    [127]Kojima Y, Usuki A, Kawasumi M, Okada, Kurauchi T, Kamigaito O. Sorption of water in nylon 6-clay hybrid[J]. J Appl Polym Sci.1993,49(7):1259-1264.
    [128]Sheng N, Boyce M C, Parks D M, Rutledge G C, Abes J I, Cohen R E. Multiscale micromechanical modeling of polymer/clay nanocomposites and the effective clay particle[J]. Polymer.2004,45(2):487-506.
    [129]Yu Z Z, Yan C, Yang M S, Mai Y W. Mechanical and dynamic mechanical properties of nylon 66/montmorillonite nanocomposites fabricated by melt compounding [J]. Polym Int.2004,53(8):1093-1098.
    [130]Wu S. A generalized criterion for rubber toughening:The critical matrix ligament thickness[J]. J Appl Polym Sci.1988,35(2):549-561.
    [131]Dijkstra K, Wevers H H, Gaymans RJ. Nylon-6/rubber blends:7. Temperature-time effects in the impact behaviour of nylon/rubber blends[J]. Polymer.1994,35(2): 323-331.
    [132]Szu-Hui Lim, Aravind Dasari, Zhong Zhen Yu, Yiu Wing Mai, Songlin Liu, Ming Shyan Yong. Fracture toughness of nylon 6/organoclay/elastomer nanocomposites[J]. Composites Science and Technology.2007,67,2914-2923
    [133]Ramesh C., Keller A., Eltink S. J. E. A.. Studies on the crystallization and melting of nylon-6,6:1. The dependence of the Brill transition on the crystallization temperature [J]. Polymer.1994,35,2483-2487.
    [134]Abu-isa I. α-Y transition in nylon 6[J]. J Polym Sci, A-1.1971,9,199-203.
    [135]Lincoln D M, Vaia R A, Wang Z G, Hsiao B S. Secondary structure and elevated temperature crystallite morphology of nylon-6/layered silicate nanocomposites[J]. Polymer.2001,42,1621-1631.
    [136]Palierne J. F., Lequeux F. J.. Non-Newtonian Fluid Mech.1991,40,389-306.
    [137]Wu S. Formation of dispersed phase in incompatible polymer blends:Interfacial and rheological effects[J]. Polym. Eng. Sci.1987,27,335-343.
    [138]Liu Z. H., Marechal Ph., Jerome R.. Blends of poly(vinylidene fluoride) with polyamide 6:interfacial adhesion, morphology and mechanical properties [J]. Polymer.1998,39, 1779-1785.
    [139]Steger T R, Nielsen L E. Micro void formation during deformation of high-impact polystyrene[J]. J Polym Sci, Polym Phys Ed.1978,16,613-625.
    [140]Thio Y S, Argon A S, Cohen R E. Role of interfacial adhesion strength on toughening polypropylene with rigid particles[J]. Polymer.2004,45(10):3139-3147.
    [141]Wu S. Phase structure and adhesion in polymer blends:A criterion for rubber toughening[J]. Polymer.1985,26,1855-1863.
    [142]Oshinski A J, Keskkula H, Paul D R. The role of matrix molecular weight in rubber toughened nylon 6 blends:2. Room temperature Izod impact toughness[J]. Polymer. 1996,37,4909-4918.
    [143]Oshinski A J, Keskkula H, Paul D R. Rubber toughening of polyamides with functionalized block copolymers:2. Nylon-6,6[J]. Polymer.1992,33(2):284-293.
    [144]Fornes T D, Yoon P J, Paul D R. Polymer matrix degradation and color formation in melt processed nylon 6/clay nanocomposites. Polymer 2003,44(24):7545-7556.
    [145]Chavarria, D. R. Paul. Comparison of nanocomposites based on nylon 6 and nylon 66[J]. Polymer.2004,45,8501-8515.
    [146]刘秩良,张怀中,姚亮红.尼龙6/尼龙66合金的性能研究[J].现代塑料加工应用.2002,14(1):1-4.
    [147]Xiaofeng He, Jun Yang, Lianchao Zhu, Biao Wang, Guangping Sun, Pengfei Lv, In Yee Phang, Tianxi Liu. Morphology and melt rheology of nylon 11/clay nanocomposites [J]. J Appl Polym Sci.2006,102,542-549.
    [148]Shu-Ying Gu, Jie Ren, Qin-Feng Wang. Rheology of poly(propylene)/clay nanocomposites[J]. J Appl Polym Sci.2004,91,2427-2434.
    [149]Ferry J. D.. Viscoelastic Properties of Polymers,3rd ed. Wiley:New York,1980.
    [150]V. F. Shumsky, Y. Lipatov, I. Getmanchuk, A. Usenko, P. Cassagnau, G. Boiteux, F. Melis, J. M. Lucas. Viscoelasticity and morphology of poly(ethylene-co-vinyl acetate) /polyisobutylene blends[J]. J Appl Polym Sci.2006,102,2700-2707.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700