PbS和PbSe材料的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Ⅳ-Ⅵ族化合物是一种具有立方结构窄禁带的半导体材料,尤其是PbS和PbSe具有优越的电学、光学性质,使其在红外光电探测、光伏转换材料、太阳能电池、非线性光学材料、光电器件、传感与检测等一些高新技术领域中有着广阔的应用前景。本论文主要以这两种半导体材料为研究对象,采用四种较为简便的工艺来合成这些材料。通过XRD、SEM、EDS和荧光光谱等测试手段对样品的结构、形貌及性能等进行表征,通过分析测试结果,进而优化制备工艺,提高产品性能。
     采用简单的化学气相沉积法(CVD)在不同的实验条件下制备了PbS微米立方体结构、PbS纳米线以及PbS网状纳米结构。通过考察反应温度和反应时间对产物形成的影响,得出制备PbS微米立方体结构的最佳实验条件为650℃反应10min。在制备PbS纳米线的过程中,升高反应温度和延长反应时间都使PbS由纳米线向微米立方结构转变;采用催化剂纳米Au有利于PbS纳米线的形成,而纳米Ag则不利于其形成。在制备PbS网状纳米结构的实验过程中发现,H2的流量对产物的形貌影响较大,在内口径为4.3cm的石英管内制备PbS网状纳米结构的最佳H2流量为1 sccm。通过荧光光谱分析,发现PbS纳米线的光致发光性能较PbS微米立方体和PbS网状纳米结构好,而PbS网状纳米结构的光致发光性能则是三者中最差的。
     采用微波辐射法和在表面活性剂十六烷基三甲基溴化铵(CTAB)的辅助下,采用高压釜制备出花状结构PbS和星形结构PbS,通过研究表面活性剂的加入量和反应时间对产物形成的影响,得到了快速制备花状结构PbS和星形结构PbS的最佳条件;同时通过对反应过程的分析,对花状结构PbS和星形结构PbS的形成机理进行了初步探讨。并通过对花状结构和星形结构PbS的荧光光谱分析,得出花状结构PbS的光致发光性能较星形结构好。本实验还借助微波辐射法采用冷凝回流装置制备了PbS纳米颗粒,与传统的制备方法相比,该方法装置简易、耗时短、产物的质量和产量都较高,是一种短时间制备半导体纳米材料的可行性方法。
     此外,采用简单的溶剂热法还制备了立方体结构PbS,通过对样品进行XRD和SEM分析表征,讨论了反应温度、反应时间以及硫源和铅源摩尔之比对PbS产物形貌的影响。
     由于生物诱导法环保、经济的特点近期倍受关注,本实验还尝试采用生物诱导法来制备PbSe纳米材料。本实验利用蛋膜在室温下的诱导作用合成了面心立方结构的PbSe纳米材料,通过考察硒源的陈化对产物形成的影响,得知硒源的陈化可使蛋膜纤维产生明显的包覆现象,而这种现象会使铅离子和硒离子之间产生更加有秩序的结合反应,进而得到分散性相对稳定的PbSe纳米材料
IV-VI compounds are semiconductor materials with a cubic structure and narrow band gap. PbS and PbSe semiconductor materials have a wide application prospect in the infrared optical detection, photovoltaic conversion, solar cells, nonlinear optical materials, optoelectronic devices, sensors and detectors, and some other high-tech fields as a result of their excellent electrical and optical properties. In this work, two kinds of semiconductor material were synthesized by four simple technological processes. A series of analytical methods including:X-ray diffraction (XRD), field emission scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), and fluorescence spectrometer were used to characterize the crystalline phase, microstructure, and optical properties of as-synthesized samples. Based on experimental results and optimization of synthesis processes, the properties of products were further improved.
     PbS micron cube structure, PbS nanowires, and PbS nano-structural network were prepared via chemical vapor deposition (CVD) under different experimental conditions. Through studying the effects of reaction temperature and reaction time on the products, the optimum experimental conditions were found, under which the micro-nano cube structural PbS was prepared at a reaction temperature of 650℃for 10min. For PbS nanowires preparation, elevated reaction temperature or prolonged reaction time result in a change for PbS from nanowires to micrometer cubic structure; nano-Au catalyst was more favorable to the formation of PbS nanowires than the nano-Ag. Flows of H2 had impact on the network structure of PbS products and the optimum H2 flow was 1sccm for preparing PbS network nanostructures in the quartz tube whose diameter is 4.3cm. We found that photoluminescence properties of PbS nanowires was better than PbS micron cube structureand PbS nano-structural network, and the photoluminescence of PbS nano-structured network was the weakest among the three.
     Through studying the effects of surfactant and reaction time on product formation, the flower-like PbS and star-like PbS were prepared via microwave method in an autoclave with the assistance of cetyltrimethylammonium bromide (CTAB). The optimal conditions of rapid preparation for flower-like structural PbS and star structural of PbS were obtained. Through the analysis of the reaction processes, the formation mechanisms for the flower structural PbS and star structural PbS were discussed. And photoluminescence properties of the flower-like structure of PbS and star structural of PbS were discussed by fluorescence spectrometer and photoluminescence properties of star-shaped structure PbS was weaker. In addition, PbS nanoparticles were prepared in a condensate reflux device under the assistance of microwave radiation. Compared with traditional preparation methods, this method showed advantages such as simple devices, short time-consuming, high quality and yield. This is a feasible preparation method for semiconductor nanomaterials.
     The cube PbS was prepared by solvothermal method, microstructures and crystalline structures of as-synthesized PbS products were characterized and analyzed by field emission scanning electron microscopy, and X-ray diffraction. The effects of reaction temperature, reaction time, and the source molar ratio of sulfur to lead on the morphology were discussed.
     As the biologically induced mothed is getting much attention for its environmental protection and economic benefits, egg membrane was introduced into this work to synthesize face-centered cubic structural PbSe at room temperature. Meanwhile, the effect of aging of selenium source solution on product formation was investigated. The aging of Se source resulted in obvious encapsulation of the egg membrane, and this phenomenon led to orderly binding reaction of lead ions and selenium ions so that PbSe nano-materials were synthezised with a relatively good dispersion stability.
引文
[1]Yu W W, Falkner J C, Shih B S, et al. Preparation and characterization of monodisperse PbSe semiconductor nanocrystals in a noncoordinating solvent[J]. Chem. Mater.,2004, 16 (17):3318-3322.
    [2]Hines M A, Scholes G D. Colloidal PbS nanocrystals with size-tunable near-infrared emission:observation of post-synthesis self-narrowing of the particle size distribution[J]. Adv. Mater.,2003,15(21):1844-1849.
    [3]Cademartiri L, Bertolotti J, Sapienza R, et al. Multigram Scale, Solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals[J]. J. Phys. Chem. B,2006,110:671-673.
    [4]Murphy J E, Beard M C, Norman A G, et al. PbTe colloidal nanocrystals:synthesis, characterization, and multiple exciton generation [J]. J. Am. Chem. Soc.,2006,128(10): 3241-3247.
    [5]Dai Q Q, Wang Y N, Zhang Y, et al. Stability study of PbSe semiconductor nanocrystals over concentration, size, atmosphere, and light exposure[J]. Adv. Mater. 2009,25(20):12320-12324.
    [6]Urban J J, Talapin D V, Shevchenko E V, et al. Synergism in binary nanocrystal superlattices leads to enhanced p-type conductivity in self-assembled PbTe/Ag2Te thin films[J]. J. Am. Chem. Soc.,2006,128:3248-3255.
    [7]Kovalenko M V, Heiss W, Shevchenko E V, et al. SnTe nanocrystals:a new example of narrow-gap semiconductor quantum dots[J]. J. Am. Chem. Soc.,2007,129: 11354-11355.
    [8]郭奕玲,沈慧君.物理学史[M].北京:清华大学出版社,1993.413-414.
    [9]Qian H F, Dong C Q, Weng J F, et al. Facile one-pot synthesis of luminescent, water-soluble, and biocompatible glutathione-coated CdTe nanocrystals[J]. Small,2006, 2(6):747-751.
    [10]Kovalenko M V, Kaufmann E, Pachinger D, et al. Colloidal HgTe nanocrystals with widely tunable narrow band gap energies:from telecommunications to molecular vibrations[J].J. Am. Chem. Soc.,2006,128:3516-3517.
    [11]付安英,马睿.PbS红外探测器可靠性研究[J].现代电子技术,2007,30(4):5-8.
    [12]Guha S, Leppert V J, Risbud S H, et al. Observation of excitonic states in PbSe nanocrystals[J]. Solid State Commun.,1998,105:695-699.
    [13]McDonald S A, Konstantatos G, Zhang S G,et al. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics[J]. Nat. Mater.,2005,4:138-142.
    [14]Luther J M, Beard M C, Song Q, et al. Multiple exciton generation in films of electronically coupled PbSe quantum dots[J]. Nano Lett.,2007,7:1779-1784.
    [15]Schaller R D and Klimov V I. Non-poissonian exciton populations in semiconductor nanocrystals via carrier multiplication[J]. Phys. Rev. Lett.,2006,92:097402-097406.
    [16]Ellingson R J, Beard M C, Johnson J C, et al. Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots[J]. Nano Lett.,2005,5:865-871..
    [17]Hines M A and Scholes G D. Colloidal PbS nanocrystals with size-tunable near-infrared emission:observation of post-synthesis self-narrowing of the particle size distribution[J]. Adv. Mater.,2003,15:1844-1849.
    [18]Sargent E H. Infrared quantum dots[J]. Adv. Mater.,2005,17:515-522.
    [19]Smith A M, Gao X and Nie S. Quantum dot nanocrystals for in vivo molecular and cellular imaging[J]. Photochem. Photobiol.,2004,80:377-385.
    [20]Liu X F and Zhang M D. Studies on PbS and PbSe detectors for IR system[J]. Int. J. Infrared Milli.,2000,21:1697-1701.
    [21]De la Paliza G, Caballero O, Garcia-Cabanes A, et al. Superlinear photovoltaic currents in proton-exchanged LiNbO_3 waveguides[J]. Appl. Phys. B-Lasers O.,2003,76(5): 555-559.
    [22]陈广大,褚海斌,李雪梅,等.星形树枝状PbS纳米晶的制备[J].北京大学学报,2006,42(4):427-430.
    [23]覃爱苗.硫族纳米材料的水热合成及表征[D].中山大学博士学位论文,2005.
    [24]Zhang C, Kang Z, Shen E, et al. Synthesis and evolution of PbS nanocrystals through a surfactant-assisted solvothermal route[J]. J. Phys. Chem. B,2006,110(1):184-189.
    [25]Yu D B, Wang D B, Meng Z Y, et al. Synthesis of closed PbS nanowires with regular geometric morphologies[J]. J. Mater. Chem.,2002,12(3):403-405.
    [26]Liu Y, Cao J, Zeng J, et al. A complex-based soft template route to PbSe nanowires [J]. Eur. J. Inorg. Chem.,2003,2003(4):644-647.
    [27]吴丹梅,周晓东,胡正水,等.PbSe纳米晶的溶剂热法制备与表征[J].青岛科技大学学报,2006,27(4):295-298.
    [28]Lifshitz E, Bashouti M, Kloper V, et al. Synthesis and characterization of PbSe quantum wires, multipods, quantum, rods, and cubes[J]. Nano Lett.,2003,3(6):857-862.
    [29]魏代玲,甘自保,张旭,等.溶剂热法制备PbSe亚微米八面体[J].化学工程师,2010,5(5):17-19.
    [30]Ge J P, Wang J, Zhang H X, et al. Orthogonal PbS nanowire arrays and networks and their raman scattering behavior[J]. Chem. Eur. J.,2005,11(6):1889-1894.
    [31]Fardy M, Hochbaum A I, Goldberger J, et al. Synthesis and thermoelectrical characterization of lead chalcogenide nanowires[J]. Adv. Mater.,2007,19:3047-3051.
    [32]Afzaal M and O'Brien P. Silica coated PbS nanowires[J]. J. Mater. Chem.,2006,16: 1113-1115.
    [33]Gao F, Lu Q, Liu X, et al. Controlled synthesis of semiconductor PbS nanocrystals and nanowires inside mesoporous silica SBA-15 phase[J]. Nano Lett.,2001,1(12):743-748.
    [34]Hull K L, Grebinski J W, Kosel T H, et al. Induced branching in confined PbSe nanowires[J]. Chem. Mater.,2005,17(17):4416-4425.
    [35]Cho K S, Talapin D V, Gashler W, et al. Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles[J]. J. Am. Chem. Soc.,2005,127(19): 7140-7147.
    [36]Liao X H, Zhu J J, Chen H Y. Microwave synthesis of nanocrystalline metal sulfides in formaldehyde solution[J]. Mat. Sci. Eng. B,2001,85(1):85-89.
    [37]张勇,乔正平,陈小明.微波辐照元素反应合成PbS纳米粒子[J].中山大学学报,2003,42(2):50-51.
    [38]李庆海,吴正翠,邵名望,等.微波辅助制备均分散PbS纳米棒[J].合成化学,2005,13(3):295-297.
    [39]廖学红,朱玉玲.单模微波水热控制合成PbS纳米晶[J].微纳电子技术,2009,46(8):473-476.
    [40]徐如人.无机合成化学[M].北京:高等教育出版社,1991.217-249.
    [41]Barrer R M. Hydrothermal chemistry of zeolites[M]. London:Academic Press,1982. 132-151.
    [42]徐如人,庞文琴.无机合成与制备化学[M].北京:高等教育出版社,2001.
    [43]Cassell A M, Raymakers J A, Kong J, et al. Large scale CVD synthesis of single-walled carbon nanotubes, J. Phys. Chem. B,1999,103 (31):6484-6492..
    [44]Gedye R,Smith F,Westaway K, et al. The use of microwave ovens for rapid organic synthesis[J]. Tetrahedron Lett.,1986,27:279-282.
    [45]Baghurst D R, Chippindale A M and Mingos D M P. Micro-wave syntheses for superconducting ceramics[J]. Nature,1988,332(24):311-314.
    [46]Harcourt E M, Yonis S R, Lynch D E, et al. Microwave-assisted synthesis of cyclopentadienyl-cobalt sandwich complexes from diaryl acetylenes [J]. Organometallics,2008,27(7):1653-1656.
    [47]Park M, Komarneni S and Roy R. Microwave-hydrothermal decomposition of chlorinated organic compounds[J]. Mater. Lett.,2000,43(5-6):259-263.
    [48]Komarnenial S, Lia Q H and Roy R. Microwave-hydrothermal processing of layered anion exchangers [J]. J. Mater. Res.,1996,11:1866-1869.
    [49]Komarneni S, Roy R and Li Q H. Microwave-hydrothermal synthesis of ceramic powders[J]. Mat Res Bull,1992,27(12):1393-1405.
    [50]宋天佑,徐家宁,徐文国,等.微波辐射合成NaX分子筛[J].高等学校化学学报,1992,13:1209-1210.
    [51]姚云峰,张迈生,杨燕生.纳米介孔分子筛MCM-41的微波辐射合成法[J].物理化学学报,2001,17(12):1117-1121.
    [52]Jung S J, Kim M H, Kim H D, et al. Synergy between microwave irradiation and promoter addition about synthesis of nanosized TPA-silicalite-1 [J]. Stud. Surf. Sci. Catal.,2004,154:180-183.
    [53]Mintova S, Mo S, and Bein T.Nanosized AIPO4-5 Molecular sieves and ultrathin films prepared by microwave synthesis[J]. Chem. Mater.,1998,10 (12):4030-4036.
    [54]杨刚,龙翔云.层状磷锑酸钠的合成与表征[J].无机材料学报,2001,16(3):447-451.
    [55]吕喆,刘江,黄喜强,等.微波合成离子电导复合氧化物导电材料锶[J].高等学校化学学报,2001,22(4):630-633.
    [56]傅戈研,崔得良,庞广生,等.微波固相法合成钠快离子导体Na5YSi4O12[J].高等学校化学学报,1996,17(5):672-675.
    [57]张美红,丁士文,王振兴.化学组装合成Sn掺杂的纳米TiO2介孔材料及其光催化性能[J].中国科学B辑,2005,35(3):206-211.
    [58]徐文国,田一光,刘淼,等.稀土磷酸盐发光材料的微波合成[J].高等学校化学学报,1996,17(10):1513-1515.
    [59]严鹏权,郭荣,沈明,等.层状液晶中KCl超微粒子的制备[J].物理化学学报,1995,11(3):218-221.
    [60]严鹏权,郭荣,黄明昌,等.层状液晶中CuSO4·5H2O超微粒子材料的制备[J].科学通报,1994,39(14):1289-1291.
    [61]Guo R. Preparation of fine particles in the lamellar liquid crystal[J]. J Disp Sci Technol, 1999,20(1&2):105-125.
    [62]杨汉民,向晖,陈国需,PbS纳米微粒在层状液晶中的润滑性能[J].润滑与密封,2004,6:47-49.
    [63]Huynh W U, Dittmer J J, Alivisatos A P. Hybrid nanorod-polymer solar cells[J]. Science,2002,295:2425-2427.
    [64]Wise F W. Lead salt quantum dots:The limit of strong confinement[J]. Accounts Chem. Res.,2000,33:773-780.
    [65]McDonald S A, Konstantatos G, Zhang S G. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics[J]. Nat. Mater.,2005,4:138-143.
    [66]Ji M, Park S, Connor S T. et al. Efficient multiple exciton generation observed in colloidal PbSe quantum dots with temporally and spectrally resolved intraband excitation[J]. Nano Lett.,2009,9(3):1217-1222.
    [67]Lee J C, Kim T G, Lee W, et al. Growth of CdS nanorod-coated TiO2 nanowires on conductive glass for photovoltaic applications[J]. Cryst. Growth Des.,2009,9(10): 4519-4523.
    [68]Trinh M T, Houtepen A J, and Schins J M, et al. In spite of recent doubts carrier multiplication does occur in PbSe nanocrystals[J]. Nano Lett.,2008,8(6):1713-1718.
    [69]Klimov V. Solar power-seriously souped up[N]. New Sci.,2006-5-27(45).
    [70]钱伯章.国际可再生能源新闻[J]. Solar Energy.2008,6:54-55.
    [71]Wu J H, Hao S C, Lan Z, et al. An all-solid-state dye-sensitized solar cell-based poly(N-alkyl-4-vinyl-pyridine iodide) electrolyte with efficiency of 5.64%[J]. J. Am. Chem. Soc.,2008,130:11568-11569.
    [72]Bai Y, Cao Y M, Zhang J, et al. High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts[J]. Nat. Mater.,2008,7:626-630.
    [73]Liu X Z, Luo Y H, Li H, et al. Room temperature fabrication of porous ZnO photoelectrodes for flexible dye-sensitized solar cells[J]. Chem. Commun.,2007,19(27): 2847-2849.
    [74]Cao F F, Wang Y, Shi D, et al. Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar Cells[J]. J. Am. Chem. Soc.,2008,130(32):10720-10728.
    [75]Li Y F, Zou Y P. Conjugated polymer photovoltaic materials with broad absorption band and high charge carrier mobility[J]. Adv. Mater.,2008,20:2952-2958.
    [76]Khalis M, Amine A, Mir Y, et al. Modelling and optimization of GaAs used in mechanically stacked solar cells[J]. M. J. Condensed Matter,2010,12(3):212-217.
    [77]Cheng Z Y, Currie M T, Leitz C W, et al. Electron mobility enhancement in strained-Si n-MOSFETs fabricated on SiGe-on-insulator (SGOI) substrates [J]. IEEE Electron Device Lett.,2001,22(7),321-323.
    [78]任清江,李文连,初蓓,等.有机光伏器件的激子阻挡层的工作机制[J].发光学报,2010,31(1):141-144.
    [79]Mayer A C, Scully S R, Hardin B E, et al. Polymer-based solar cells[J]. Mater. Today, 2007,10(11):28-33.
    [80]Ahma K, Mohammad A, PaulO'B, et al. Morphological evolution of PbSe crystals via the CVD route[J]. Chem.Mater.,2010,22(16):4619-4624.
    [81]Jain P K, Huang X, El-Sayed I H, et al. Noble metals on the nanoscale:optical and photothermal properties and some applications in imaging, sensing, biology, and medicine[J]. Acc. Chem. Res.,2008,41(12):1578-1586.
    [82]Brus L. Noble Metal Nanocrystals:plasmon electron transfer photochemistry and single-molecule raman spectroscopy[J]. Acc. Chem. Res.,2008,41(12):1742-1749.
    [83]Naodovic M, Yamamoto H. Asymmetric silver-catalyzed reactions[J]. Chem. Rev.2008, 108(8):3132-3148.
    [84]Tao A R, Habas S, Yang P D. Shape control of colloidal metal nanocrystals[J]. Small 2008,4(8):310-325.
    [85]Xia Y N, Xiong Y J, Lim B, et al. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics?[J]. Angew. Chem. Int. Ed.,2008,48(1): 60-103.
    [86]Yang J, Elim H Ⅰ, Zhang Q B, et al. Rational synthesis, self-assembly, and optical properties of PbS-Au heterogeneous nanostructures via preferential deposition[J]. J.Am.Chem.Soc.,2006,128(36):11921-11926.
    [87]Lee J, Shevchenko E V and Talapin D V. Au-PbS core-shell nanocrystals:plasmonic absorption enhancementand electrical doping via intra-particle charge transfer[J]. J.Am.Chem.Soc.,2008,130(30):9673-9675.
    [88]徐恒钧.材料科学基础[M].北京:北京工业大学出版社,2001:221-229.
    [89]Zhu J, Peng H L, Chan C K, et al. hyperbranched lead selenide nanowire networks[J]. Nano Lett.,2007,7(4):1095-1099.
    [90]Wongchoosuk C, Subannajui K, Menzel A, et al. Controlled synthesis of ZnO nanostructures:the role of sourceand substrate temperatures[J]. J. Phys. Chem. C,2011, 115(3):757-761.
    [91]Kagan C R, Murray C B, Nirmal M, et al. electronic energy transfer in CdSe quantum dot solids[J]. Phys. Rev. Lett.,1996,76 (9):15172-1520.
    [92]Crooker S A, Hollings worth J A, Tretiak S, et al. Spectrally resolved dynamics of energy transfer in quantum-dot assemblies:towards engineered energy flows in artificial materials[J]. Phys. Rev.Lett.,2002,89(18):186802-186804.
    [93]Parthasarathy R, Lin X M, Jaeger H M. Electronic transport in metal nanocrystal arrays: the effect of structural disorder on scaling behavior[J]. Phys. Rev. Lett.,2001,87 (18): 186807-186811.
    [94]Roest A L, Kelly J J, Vanmaekelbergh D, et al. Staircase in the electron mobility of a ZnO quantum dot assembly due to shell filling[J]. Phys. Rev. Lett.,2002,89 (3): 36801-36805.
    [95]Zeng H, Li J, Liu J P, et al. Exchange-coupled nanocomposite magnets by nanoparticle self-assembly [J]. Nature,2002,420 (6914):395-398.
    [96]Guo S J, Dong S J, Wang E K. Monodis perse ras pberry-like gold submicrometer spheres:large-scale synthesis and interface assembling for colloid sphere array [J]. Cryst. Growth Des.,2008,8 (10):3581-3585.
    [97]Li Y J, Huang W J, Sun S G. An universal approach for the self-assembly of hydrophilic nanoparticles into ordered monolayer films at a toluene/water interface[J]. Angew. Chem. Int. Ed.,2006,45(16):2537-2539.
    [98]糜裕宏,张孝彬,季振国,等.树枝状与球状PbS纳米结构的组装合成及其形成机理研究[J].无机材料学报,2010,25(2):135-140.
    [99]Cao H L, Gong Q, Qian X F, et al. Synthesis of 3-D hierarchical dendrites of lead chalcogenides in large scale via microwave-assistant method[J]. Cryst. Growth Des, 2007,7(2):425-429.
    [100]Ni Y H, Liu H J, Wang F, et al. PbS crystals with clover-like structure:Preparation, characterization, optical properties and influencing factors[J].Cryst Res Technol.,2004, 3(39):200-206.
    [101]Thongtema T, Phuruangrat A and Thongtem S. Preparation of flower-like PbS nano-structures using cyclic microwave radiation[J]. J.Ceram Process Res.,2008,9(4): 335-337.
    [102]Kuang D B, Xu A W, Fang Y P, et al. Surfactant-assisted growth of novel PbS dendritic nanostructures via facile hydrothermal process[J]. Adv.Mater.,2003,15(20):1747-1750
    [103]Xiang J H, CaoH Q, Wu Q Z, et al. L-cysteine-assisted self-assembly of complex PbS structures[J]. Cryst. Growth Des.,2008,8(11):3935-3940.
    [104]Talapin D V, Yu H, Shevchenko E V, et al. Synthesis of colloidal PbSe/PbS core-shell nanowires and PbS/Au nanowire-nanocrystal heterostructures[J]. J.Phys.Chem.C,2007, 111(38):14049-14054.
    [105]Peng Z P, Jiang Y S, Song Y H, et al. Morphology control of nanoscale PbS particles in a polyol process [J]. Chem.Mater.2008,20(9):3153-3162.
    [106]糜裕宏,张孝彬,季振国,等.球状、立方状及空心立方状PbS纳米晶的控制合成及其形成机理[J].无机化学学报,2009,25(9):1563-1568.
    [107]Dong Q, Su H L, Zhang D. In situ depositing silver nanoclusters on silk fibroin fibers supports by a novel biotemplate redox technique at room temperature [J]. J.Phys. Chem.B.,2005.109(37):17429-17434.
    [108]熊浩洋,胡彬彬,薛中会,等.牛血清蛋白单层分子膜诱导生长PbS晶体[J].无机材料学报,2010,25(1):64-67.
    [109]Dong Q, Su H L,Cao W, et al. Assembly and formation of biomorphic tin dioxide by a biomimetic sol-gel approach involving glycoprotein[J]. Eur. J. Inorg. Chem.,2007, 2007(16):2265-2273.
    [110]He J H, Kunitake T, Nakao A. Facile in situ synthesis of noble metal nanoparticles in porous cellulose fibers[J]. Chem. Mater.2003,15(23):4401-4406.
    [111]王娜,苏慧兰,董群,等.室温生物诱导合成PbSe纳米半导体[J].无机材料学报,2007,22(2):209-212.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700