新型光学活性聚苯乙烯-b-聚乳酸/纳米晶体杂化材料的化学、物理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料因具有特殊物理、化学性质在催化、超导、复合材料、生物科技等许多领域具有广泛的应用前景,已经成为二十一世纪材料科学研究的前沿。利用分子自组装过程,将无机纳米粒子负载到嵌段共聚物的有序微观分相结构中是制备纳米粒子/嵌段共聚物杂化材料十分有效的一条途径。我们受到大分子能够通过手性相互作用形成有序的自组装聚集体的启发,希望在嵌段共聚物自组装、纳米粒子自组装之外引入手性相互作用的理念,从而通过这三种推动力的协同作用促进纳米粒子在嵌段共聚物母体内的有序化分布,制备出具有实际应用价值的纳米粒子/嵌段共聚物杂化材料。围绕这一目标,本论文主要开展了以下几个方面的工作:
     一、具有光学活性的嵌段共聚物聚苯乙烯-b-聚乳酸的设计、合成及表征
     运用原子转移自由基聚合(ATRP)和开环聚合(ROP)设计、合成了两个系列分子量范围在29.5~76.1 KDa、分子量分布窄(PDI=1.11~1.23),且光学纯度高的PS-b-PLA两嵌段聚合物,通过核磁共振(1H NMR)、凝胶渗透色谱(GPC)、热失重分析(TGA)和旋光仪(OR)等多种手段对其化学结构和热性能进行表征分析。依照类似的方法合成了两个系列光学活性的聚乳酸,并同样进行化学结构表征。
     二、新型含巯基的生物可降解聚乳酸及其修饰CdSe纳米粒子的设计、合成及性能研究
     设计、合成了一系列结构对称的聚乳酸PLLA-SS-PLLA,进一步还原成α-羟基-ω-巯基聚乳酸HO-PLLA-SH,然后通过与TOPO@CdSe进行配体交换方法合成了核壳结构的量子点HO-PLLA@CdSe QD-I系列。在另外一条途径中,首先通过与TOPO@CdSe进行配体交换反应,合成了11-巯基-1-十一醇(MUD)修饰的量子点MUD@CdSe QD,然后原位聚合合成了另外一种核壳结构的量子点HO-PLLA@CdSe QD-II系列。最后通过1H NMR和傅立叶变换红外光谱(FT-IR)表征上述两种方法合成的量子点化学结构,并通过广角X射线衍射(WAXD)和透射电子显微镜(TEM)和紫外(UV-vis)、荧光光谱(PL)分别表征了其晶体结构和荧光性能,重点考察影响量子点荧光性能的因素。
     三、基于聚乳酸手性相互作用的立体复合物聚集体的生长动力学及形成机理研究
     系统研究了PS-b-PLLA和PS-b-PDLA在非选择性溶剂中原位形成立体复合物聚集体的过程,重点讨论样品制备条件对立体复合物生长动力学和最终形态的影响。在此基础上提出本体系的原位自组装机理:光学异构的PLA嵌段之间立体复合作用是自组装聚集体形成的唯一驱动力。最后,以量子点标记的PDLA作为荧光探针,利用共聚焦激光扫描荧光显微镜(CLFM)直观地监测立体复合物聚集体形成过程,从而进一步验证上述自组装机理。
     四、手性嵌段共聚物PS-b-PDLA的结晶行为研究
     运用示差扫描量热分析仪(DSC)和温度调制示差扫描量热分析仪(MDSC)研究PS-b-PDLA嵌段共聚物的热性能和等温和非等温结晶动力学结晶行为。结果表明:随着PDLA在嵌段共聚物中组分的减少,热性能和结晶能力都有所降低。当加入少量的PLLA后,形成少量的立体复合物非常有利于PDLA结晶,但是加入量太多时,反而使综合结晶能力有所下降。用偏光显微镜(POM)研究球晶的生长动力学的结果表明:PS-b-PDLA在等温条件下能形成球晶,但是球晶的生长速度与结晶温度、PDLA嵌段的链长以及外加PLLA的量有关系。
     五、基于手性相互作用的无机纳米粒子/嵌段共聚物纳米复合材料的研究
     首先,利用小角X射线散射(SAXS)研究了PS-b-PDLA样品在本体中的微观分相,发现微观分相的有序度与样品的状态和测试温度有关系,而且可以通过等温结晶、退火或者流变剪切等方式来提高。其次,在中性表面上研究了PS-b-PDLA嵌段共聚物薄层在不同因素影响下的自组装行为。最后重点考察了纳米粒子的加入对嵌段共聚物本体和薄层微观分相的影响。
     总之,利用聚乳酸链段的分子间相互作用力,通过嵌段共聚物PS-b-PDLA的微观相分离并借助等温结晶、溶剂退火等方法,可以获得有序的纳米粒子/嵌段共聚物纳米杂化材料,从而为简单地制备具有工业应用价值的、有序的嵌段共聚物纳米模板提供一条新的思路。
Nano-materials have been extensively applied in catalyst, superconductor, composite material and biotechnology et al, due to their specific physical and chemical properties, which is becoming the hot-point in the field of material science in 21th century. Loading organic nanoparticle into microphase-separated block copolymer matrix by molecular self-assembly is an effective approach to prepare high-ordered nanoparticle/block copolymer hybrid. Inspirited by the fact that macromolecules can self-assembly into ordered aggregate by recognition, we hope to prepare high ordered nanoparticel/block copolymer hybrid by combining the self-assembly of block copolymer and nanoparticle with chiral recognition. In order to reach this goal, research works in this thesis was divided into several parts as following:
     1. Design, synthesis and characterization of optical active block copolymer PS-b-PLLA and PS-b-PDLA and their homopolymer PLLA and PDLA
     First, a series of enantiomeric PS-b-PLLA and PS-b-PDLA diblock coplymer bearing a PS (Mn,NMR=30.0 KDa, PDI=1.11) and various PLA blocks were synthesized via combination of ATRP of styrene and living ring-opening polymerization (ROP) of enantiomeric l-/d-lactide. By means of nuclear magnetic resonance spectrometer (NMR), gel permeation chromatography (GPC), polarimeter and thermal gravimetrical analyzer (TGA), macromolecular structures and therm physical properties of the synthesized diblock copolymers were characterized. By the same approach, two series of homopolymer PLLA and PDLA were also synthesized and characterized.
     2. Design and syntheses of new biodegradable poly(l-lactide) disulfides and successive preparation of their stabilized photoluminescent CdSe Quantum Dots HO-PLLA@CdSe QD
     First, new aliphatic poly(l-lactide) disulfides HO-PLLA-SS-PLLA-OH were designed and synthesized and then were reduced intoα-hydroxyl-ω-mercapto heterofunctional poly(l-lactide) (HO-PLLA–SH).With these less toxic HO-PLLA–SH , photoluminescent CdSe QDs (HO-PLLA@CdSe QD-I series) were successively prepared through a surface ligand exchanging process. In an alterative strategy, the biodegradable poly(l-lactide) surface stabilized CdSe QDs (HO-PLLA@CdSe QD-II series) were comparatively synthesized by surface hydroxyl initiated ROP of (l-)-lactide from a prepared 11-mercapto-1-undecanol (MUD) stabilized CdSe QD precursor (MUD@CdSe QD).Chemical and crystal structures of the two series of QDs were characterized by NMR ,FT-IR ,WAXD,TEM ,UV and PL,the effect of preparation conditions on the quantum yields (QY) were investigated in detail.
     3. Growth kinetic and mechanism of stereocomplex aggregates by PS-b-PLLA/PS-b-PDLA (or PLLA) in nonselective solvent
     In-situ self-assembly in non-selective solvents THF was explored at ambient temperature for the mixtures of a pair of enantiomeric diblock PS-b-PLLA and PS-b-PDLA. It was noted that the growth kinetic of in-situ self-assembly depended on the concentration and molecular weight of enantiomeric PLA block population as well as preparation condition such as agitation, and the isolated self-assemblies were found to form PLLA/PDLA racemic crystal structures as analyzed by means of DSC, WAXD, and FT-IR. Therefore, in a view of the mechanism of aggregations formed in current system, it was suggested to be solely driven by the interplay of stereocomplexation between the PLLA and PDLA blocks. At last, utilizing the new achieved HO-PDLA@CdSe QD as a suitable fluorescent label, in-situ aggregation in THF driven only by the stereocomplexation of enantiomeric PLLA and PDLA blocks and morphologies of the aggregated stereocomplex microparticles were investigated by confocal laser fluorescent microscope (CLFM) and SEM.
     4. Thermal physical properties and crystallization behavior of chiral block copolymer PS-b-PDLA
     With the help of DSC and MDSC, the thermal physical properties and crystallization of PS-b-PDLA were investigated and compared with homopolymer PDLA. It was found that: with the decrease of PDLA block length, therm physical parameters and crystallization capability of PS-b-PDLA reduce accordingly,and adding PLLA can improved the thermal property and crystallization capability of PS-b-PDLA due to the nucleation of stereocomplex. However, too much addition of PLLA resulted in retain of PDLA in the abundant stereocomplex matrix, which would reduce the total crystallization capability of PS-b-PDLA. The study on the growth kinetic of spherocrystal by POM displayed that growth rate of spherulite of PS-b-PDLA depended on the isotherm temperature, volume fraction of PDLA block and amount of PLLA.
     5. Study on the organic nanoparticle/block copolymer hybrid based on the chiral recognition and self-asssembly of block copolymer and nanoparticle
     At first, the study on the micro-phase behavior of PS-b-PDLA in bulk by SAXS showed that the degree of order of micro-phase separated domain not only depended on the state of sample and temperature, but can be improved by means of method such as isotherm crystallization, annealing and shearing et al.Then, dependence of preparation conditions on the self-assemble behavior of PS-b-PDLA thin film on a neutral surface was investigated in detail. At last, the effects of incorporation of nanopartilcles on the microphase speration behavior of block copolymer in bulk and in thin film were investigeated in detail.
     In summary, high ordered nano-particel/block copolymer hybrid can be obtain by combining the self-assembly of block copolymer and nanoparticle with chiral recognizing, and the degree of order of micro-domain can be improved by isotherm crystallization and solvent annealing et al. Therefore, current result provided an alternative facile way to prepared industrial applicable and high-ordered nanoparticle/block copolymer template.
引文
1. Forster, S.; Plantenberg, T., From self-organizing polymers to nanohybrid and biomaterials. Angew. Chem., Int. Ed. 2002, 41, 688-714.
    2. Whitesides, G. M.; Mathias, J. P.; Seto, C. T., Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science 1991, 254, 1312-19.
    3. Whitesides, G. M.; Grzybowski, B., Self-assembly at all scales. Science 2002, 295, 2418-2421.
    4. De Gennes, P. G., Soft material (Nobel lecture). Angew. Chem. 1992, 104, 856-9 (See also Angew Chem , Int Ed Engl , 1992, 31(7), 842-5).
    5. Khandpur, A. K.; Foerster, S.; Bates, F. S.; Hamley, I. W.; Ryan, A. J.; Bras, W.; Almdal, K.; Mortensen, K., Polyisoprene-Polystyrene Diblock Copolymer Phase Diagram near the Order-Disorder Transition. Macromolecules 1995, 28, 8796-806.
    6. Matsen, M. W.; Bates, F. S., Origins of Complex Self-Assembly in Block Copolymers. Macromolecules 1996, 29, 7641-7644.
    7. Fredrickson, G. H.; Bates, F. S., Dynamics of block copolymers: theory and experiment. Annu. Rev. Mater. Sci. 1996, 26, 501-550.
    8. Hamley, I., The Physics of Block Copolymers. 1998; p 432 pp.
    9. Russell, T. P.; Coulon, G.; Deline, V. R.; Miller, D. C., Characteristics of the surface-induced orientation for symmetric diblock PS/PMMA copolymers. Macromolecules 1989, 22, 4600-6.
    10. Matsen, M. W., The standard Gaussian model for block copolymer melts. J. Phys.: Condens. Matter 2002, 14, R21-R47.
    11. Bates, F. S.; Fredrickson, G. H., Block copolymers-designer soft materials. Phys. Today 1999, 52, 32-38.
    12. Bailey, T. S.; Pham, H. D.; Bates, F. S., Morphological Behavior Bridging the Symmetric AB and ABC States in the Poly(styrene-b-isoprene-b-ethylene oxide) Triblock Copolymer System. Macromolecules 2001, 34, 6994-7008.
    13. Bailey, T. S.; Hardy, C. M.; Epps, T. H., III; Bates, F. S., A noncubic triply periodic network morphology in poly(isoprene-b-styrene-b-ethylene oxide) triblock copolymers. Macromolecules 2002, 35, 7007-7017.
    14. Epps, T. H., III; Cochran, E. W.; Bailey, T. S.; Waletzko, R. S.; Hardy, C. M.; Bates, F. S., Ordered Network Phases in Linear Poly(isoprene-b-styrene-b-ethylene oxide) Triblock Copolymers. Macromolecules 2004, 37, 8325-8341.
    15. Chatterjee, J.; Jain, S.; Bates, F. S., Comprehensive Phase Behavior of Poly(isoprene-b-styrene-b-ethylene oxide) Triblock Copolymers. Macromolecules (Washington, DC, U. S.) 2007, 40, 2882-2896.
    16. Goldacker, T.; Abetz, V.; Stadler, R.; Erukhimovich, I.; Leibler, L., Non-centrosymmetric superlattices in block copolymer blends. Nature (London) 1999, 398, 137-139.
    17. Chen, B.; Zeng, X.; Baumeister, U.; Ungar, G.; Tschierske, C., Liquid Crystalline Networks Composed of Pentagonal, Square, and Triangular Cylinders. Science (Washington, DC, U. S.) 2005, 307, 96-99.
    18. Matsushita, Y., Creation of Hierarchically Ordered Nanophase Structures in Block Polymers Having Various Competing Interactions. Macromolecules 2007, 40, 771-776.
    19. Yu, Y.; Zhang, L.; Eisenberg, A., Morphogenic Effect of Solvent on Crew-Cut Aggregates of Amphiphilic Diblock Copolymers. Macromolecules 1998, 31, 1144-1154.
    20. Shen, H.; Eisenberg, A., Block Length Dependence of Morphological Phase Diagrams of the Ternary System of PS-b-PAA/Dioxane/H2O. Macromolecules 2000, 33, 2561-2572.
    21. Desbaumes, L.; Eisenberg, A., Single-Solvent Preparation of Crew-Cut Aggregates of Various Morphologies from an Amphiphilic Diblock Copolymer. Langmuir 1999, 15,36-38.
    22. Liu, X.-M.; Wang, L.-S.; Wang, L.; Huang, J.; He, C., The effect of salt and pH on the phase-transition behaviors of temperature-sensitive copolymers based on N-isopropylacrylamide. Biomaterials 2004, 25, 5659-5666.
    23. Chen, E.-Q.; Xia, Y.; Graham, M. J.; Foster, M. D.; Mi, Y.; Wu, W.-L.; Cheng, S. Z. D., Glass Transition Behavior of Polystyrene Blocks in the Cores of Collapsed Dry Micelles Tethered by Poly(Dimethylsiloxane) Coronae in a PS-b-PDMS Diblock Copolymer. Chem. Mater. 2003, 15, 2129-2135.
    24. Zhang, L.; Eisenberg, A., Morphogenic Effect of Added Ions on Crew-Cut Aggregates of Polystyrene-b-poly(acrylic acid) Block Copolymers in Solutions. Macromolecules 1996, 29, 8805-8815.
    25. Shen, H.; Zhang, L.; Eisenberg, A., Multiple pH-Induced Morphological Changes in Aggregates of Polystyrene-block-poly(4-vinylpyridine) in DMF/H2O Mixtures. J. Am. Chem. Soc. 1999, 121, 2728-2740.
    26. Zhang, L.; Shen, H.; Eisenberg, A., Phase Separation Behavior and Crew-Cut Micelle Formation of Polystyrene-b-poly(acrylic acid) Copolymers in Solutions. Macromolecules 1997, 30, 1001-1011.
    27. Terreau, O.; Bartels, C.; Eisenberg, A., Effect of Poly(acrylic acid) Block Length Distribution on Polystyrene-b-poly(acrylic acid) Block Copolymer Aggregates in Solution. 2. A Partial Phase Diagram. Langmuir 2004, 20, 637-645.
    28. Discher, D. E.; Ortiz, V.; Srinivas, G.; Klein, M. L.; Kim, Y.; Christian, D.; Cai, S.; Photos, P.; Ahmed, F., Emerging applications of polymersomes in delivery: From molecular dynamics to shrinkage of tumors. Prog. Polym. Sci. 2007, 32, 838-857.
    29. Discher, D. E.; Eisenberg, A., Materials science: Soft surfaces: Polymer vesicles. Science (Washington, DC, U. S.) 2002, 297, 967-973.
    30. Zhang, L.; Yu, K.; Eisenberg, A., Ion-induced morphological changes in "crew-cut" aggregates of amphiphilic block copolymers. Science1996, 272, 1777-1779.
    31. Gao, Z.; Varshney, S. K.; Wong, S.; Eisenberg, A., Block Copolymer "Crew-Cut" Micelles in Water. Macromolecules 1994, 27, 7923-7.
    32. Chu, B., Structure and Dynamics of Block Copolymer Colloids. Langmuir 1995, 11, 414-21.
    33. Booth, C.; Attwood, D., Effects of block architecture and composition on the association properties of poly(oxyalkylene) copolymers in aqueous solution. Macromol. Rapid Commun. 2000, 21, 501-527.
    34. Alexandridis, P.; Spontak, R. J., Solvent-regulated ordering in block copolymers. Curr. Opin. Colloid Interface Sci. 1999, 4, 130-139.
    35. Moffitt, M.; Khougaz, K.; Eisenberg, A., Micellization of Ionic Block Copolymers. Acc. Chem. Res. 1996, 29, 95-102.
    36. Zhang, L.; Eisenberg, A., Multiple Morphologies and Characteristics of "Crew-Cut" Micelle-like Aggregates of Polystyrene-b-poly(acrylic acid) Diblock Copolymers in Aqueous Solutions. J. Am. Chem. Soc. 1996, 118, 3168-81.
    37. Yu, K.; Eisenberg, A., Bilayer Morphologies of Self-Assembled Crew-Cut Aggregates of Amphiphilic PS-b-PEO Diblock Copolymers in Solution. Macromolecules 1998, 31, 3509-3518.
    38. Zhang, L.; Eisenberg, A., Multiple morphologies of "crew-cut" aggregates of polystyrene-b-poly(acrylic acid) block copolymers. Science (Washington, D. C.) 1995, 268, 1728-31.
    39. Walther, A.; Goldmann, A. S.; Yelamanchili, R. S.; Drechsler, M.; Schmalz, H.; Eisenberg, A.; Mueller, A. H. E., Multiple Morphologies, Phase Transitions, and Cross-Linking of Crew-Cut Aggregates of Polybutadiene-block-poly(2-vinylpyridine) Diblock Copolymers. Macromolecules 2008, 41, 3254-3260.
    40. Lu, C.; Guo, S.-r.; Zhang, Y.; Yin, M., Synthesis and aggregation behavior of four types of different shaped PCL-PEG block copolymers. Polym. Int. 2006, 55, 694-700.
    41. Burke, S. E.; Eisenberg, A., Kinetics and Mechanisms of the Sphere-to-Rod and Rod-to-Sphere Transitions in the Ternary System PS310-b-PAA52/Dioxane/Water. Langmuir 2001, 17, 6705-6714.
    42. Chen, L.; Shen, H.; Eisenberg, A., Kinetics and Mechanism of the Rod-to-Vesicle Transition of Block Copolymer Aggregates in Dilute Solution. J. Phys. Chem. B 1999, 103, 9488-9497.
    43. Burke, S. E.; Eisenberg, A., Kinetic and mechanistic details of the vesicle-to-rod transition in aggregates of PS310-b-PAA52 in dioxane-water mixtures. Polymer 2001, 42, 9111-9120.
    44. Russell, T. P., X-ray and neutron reflectivity for the investigation of polymers. Mater. Sci. Rep. 1990, 5, 171-271.
    45. Fasolka, M. J.; Mayes, A. M., Block copolymer thin films: physics and applications. Annu. Rev. Mater. Res. 2001, 31, 323-355.
    46. Darling, S. B., Directing the self-assembly of block copolymers. Prog. Polym. Sci. 2007, 32, 1152-1204.
    47. Stocker, W.; Beckmann, J.; Stadler, R.; Rabe, J. P., Surface Reconstruction of the Lamellar Morphology in a Symmetric Poly(styrene-block-butadiene-block-methyl methacrylate) Triblock Copolymer: A Tapping Mode Scanning Force Microscope Study. Macromolecules 1996, 29, 7502-7507.
    48. Krausch, G.; Magerle, R., Nanostructured thin films via self-assembly of block copolymers. Adv. Mater. (Weinheim, Ger.) 2002, 14, 1579-1583.
    49. Rehse, N.; Knoll, A.; Magerle, R.; Krausch, G., Surface Reconstructions of Lamellar ABC Triblock Copolymer Mesostructures. Macromolecules 2003, 36, 3261-3271.
    50. Knoll, A.; Horvat, A.; Lyakhova, K. S.; Krausch, G.; Sevink, G. J. A.; Zvelindovsky, A. V.; Magerle, R., Phase Behavior in Thin Films of Cylinder-Forming Block Copolymers. Phys. Rev. Lett. 2002, 89, 035501/1-035501/4.
    51. Knoll, A.; Tsarkova, L.; Krausch, G., Nanoscaling of Microdomain Spacings in Thin Films of Cylinder-Forming Block Copolymers. Nano Lett. 2007, 7, 843-846.
    52. Lyakhova, K. S.; Horvat, A.; Zvelindovsky, A. V.; Sevink, G. J. A., Dynamics of Terrace Formation in a Nanostructured Thin Block Copolymer Film. In 2006; Vol. 22, pp 5848-5855.
    53. Xu, T.; Hawker, C. J.; Russell, T. P., Interfacial Interaction Dependence of Microdomain Orientation in Diblock Copolymer Thin Films. Macromolecules 2005, 38, 2802-2805.
    54. Tsarkova, L.; Knoll, A.; Krausch, G.; Magerle, R., Substrate-Induced Phase Transitions in Thin Films of Cylinder-Forming Diblock Copolymer Melts. Macromolecules 2006, 39, 3608-3615.
    55. Horvat, A.; Sevink, G. J. A.; Zvelindovsky, A. V.; Krekhov, A.; Tsarkova, L., Specific Features of Defect Structure and Dynamics in the Cylinder Phase of Block Copolymers. In 2008; Vol. 2, pp 1143-1152.
    56. huang, Y.-m.; Han, X.; Xiao, X.-q.; Zhou, Y.; LIU, h.-l., Progress in the Study on Self-Asembling of Block Copolymer. Journal of Functional Polymers 2008, 21, 102-116.
    57. Mingqi, L.; A.Coenjarts, C.; K.Ober, C., Patternable Block Copolymer. Adv. Mater. (Weinheim, Ger.) 2005, 190, 183-226.
    58. A.Segalman, R., Patterning with block copolymer thin film. Materials Science and Engineering R 2005, 48, 191-226.
    59. F.Green, P.; Limary, R., Block copolymer thin films:pattern formation and phase behavior. Adv. Col. & Int.Sci. 2001, 94, 53-81.
    60. Yokoyama, H.; Mates, T. E.; Kramer, E. J., Structure of Asymmetric Diblock Copolymers in Thin Films. Macromolecules 2000, 33, 1888-1898.
    61. Elbs, H.; Drummer, C.; Abetz, V.; Krausch, G., Thin Film Morphologies of ABC Triblock Copolymers Prepared from Solution. Macromolecules 2002, 35, 5570-5577.
    62. Fukunaga, K.; Elbs, H.; Magerle, R.; Krausch, G., Large-Scale Alignment of ABC BlockCopolymer Microdomains via Solvent Vapor Treatment. Macromolecules 2000, 33, 947-953.
    63. Albalak, R. J.; Capel, M. S.; Thomas, E. L., Solvent swelling of roll-cast triblock copolymer films. Polymer 1998, 39, 1647-1656.
    64. Albalak, R. J.; Thomas, E. L.; Capel, M. S., Thermal annealing of roll-cast triblock copolymer films. Polymer 1997, 38, 3819-3825.
    65. Radzilowski, L. H.; Carvalho, B. L.; Thomas, E. L., Structure of minimum thickness and terraced free-standing films of block copolymers. J. Polym. Sci., Part B: Polym. Phys. 1996, 34, 3081-3093.
    66. Elbs, H.; Fukunaga, K.; Stadler, R.; Sauer, G.; Magerle, R.; Krausch, G., Microdomain Morphology of Thin ABC Triblock Copolymer Films. Macromolecules 1999, 32, 1204-1211.
    67. Wang, Y.; Hong, X.; Liu, B.; Ma, C.; Zhang, C., Two-Dimensional Ordering in Block Copolymer Monolayer Thin Films upon Selective Solvent Annealing. Macromolecules (Washington, DC, U. S.) 2008, 41, 5799-5808.
    68. Kim, T. H.; Hwang, J.; Hwang, W. S.; Huh, J.; Kim, H.-C.; Kim, S. H.; Hong, J. M.; Thomas, E. L.; Park, C., Hierarchical ordering of block copolymer nanostructures by solvent annealing combined with controlled dewetting. Adv. Mater. 2008, 20, 522-527.
    69. Guo, R.; Huang, H.; Chen, Y.; Gong, Y.; Du, B.; He, T., Effect of the Nature of Annealing Solvent on the Morphology of Diblock Copolymer Blend Thin Films. Macromolecules 2008, 41, 890-900.
    70. Kimura, M.; Misner, M. J.; Xu, T.; Kim, S. H.; Russell, T. P., Long-Range Ordering of Diblock Copolymers Induced by Droplet Pinning. Langmuir 2003, 19, 9910-9913.
    71. De Rosa, C.; Park, C.; Thomas, E. L.; Lotz, B., Microdomain patterns from directional eutectic solidification and epitaxy. Nature 2000, 405, 433-437.
    72. Park, C.; De Rosa, C.; Thomas, E. L., Large Area Orientation of Block Copolymer Microdomains in Thin Films via Directional Crystallization of a Solvent. Macromolecules 2001, 34, 2602-2606.
    73. Park, C.; De Rosa, C.; Lotz, B.; Fetters, L. J.; Thomas, E. L., Molecular and microdomain orientation in semicrystalline block copolymer thin films by directional crystallization of the solvent and epitaxy. Macromol. Chem. Phys. 2003, 204, 1514-1523.
    74. Yoon, J.; Lee, W.; Thomas, E. L., Highly oriented thin-film microdomain patterns of ultrahigh molecular weight block copolymers via directional solidification of a solvent. Adv. Mater. 2006, 18, 2691-2694.
    75. Tseng, W.-H.; Hsieh, P.-Y.; Ho, R.-M.; Huang, B.-H.; Lin, C.-C.; Lotz, B., Oriented Microstructures of Polystyrene-b-poly(l-lactide) Thin Films Induced by Crystallizable Solvents. In 2006; Vol. 39, pp 7071-7077.
    76. Huang, W.; Luo, C.; Li, B.; Han, Y., Solvent-Induced Crystallization of Spherical Micelles Formed by Copolymer Blends. Macromolecules 2006, 39, 8075-8082.
    77. Kim, S. H.; Misner, M. J.; Xu, T.; Kimura, M.; Russell, T. P., Highly oriented and ordered arrays from block copolymers via solvent evaporation. Adv. Mater. 2004, 16, 226-231.
    78. Kim, S. H.; Misner, M. J.; Russell, T. P., Solvent-induced ordering in thin film diblock copolymer/homopolymer mixtures. Adv. Mater. 2004, 16, 2119-2123.
    79. Amundson, K.; Helfand, E.; Davis, D. D.; Quan, X.; Patel, S. S.; Smith, S. D., Effect of an electric field on block copolymer microstructure. Macromolecules 1991, 24, 6546-8.
    80. Amundson, K.; Helfand, E.; Quan, X.; Smith, S. D., Alignment of lamellar block copolymer microstructure in an electric field. 1. Alignment kinetics. Macromolecules 1993, 26, 2698-703.
    81. Amundson, K.; Helfand, E.; Quan, X.; Hudson, S. D.; Smith, S. D., Alignment of Lamellar Block Copolymer Microstructure in an Electric Field. 2. Mechanisms of Alignment. Macromolecules 1994, 27, 6559-70.
    82. Morkved, T. L.; Lu, M.; Urbas, A. M.; Ehrichs, E. E.; Jaeger, H. M.; Mansky, P.; Russell, T. P., Local control of microdomain orientation in diblock copolymer thin films with electric fields. Science 1996, 273, 931-933.
    83. Thurn-Albrecht, T.; Schotter, J.; Kastle, G. A.; Emley, N.; Shibauchi, T.; Krusin-Elbaum, L.; Guarini, K.; Black, C. T.; Tuominen, M. T.; Russell, T. P., Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates. Science 2000, 290, 2126-2129.
    84. Xiang, H.; Lin, Y.; Russell, T. P., Electrically Induced Patterning in Block Copolymer Films. Macromolecules 2004, 37, 5358-5363.
    85. Xu, T.; Goldbach, J. T.; Russell, T. P., Sequential, Orthogonal Fields: A Path to Long-Range, 3-D Order in Block Copolymer Thin Films. Macromolecules 2003, 36, 7296-7300.
    86. Xu, T.; Zhu, Y.; Gido, S. P.; Russell, T. P., Electric Field Alignment of Symmetric Diblock Copolymer Thin Films. Macromolecules 2004, 37, 2625-2629.
    87. Thurn-Albrecht, T.; DeRouchey, J.; Russell, T. P.; Kolb, R., Pathways toward Electric Field Induced Alignment of Block Copolymers. Macromolecules 2002, 35, 8106-8110.
    88. Xu, T.; Zvelindovsky, A. V.; Sevink, G. J. A.; Gang, O.; Ocko, B.; Zhu, Y.; Gido, S. P.; Russell, T. P., Electric Field Induced Sphere-to-Cylinder Transition in Diblock Copolymer Thin Films. Macromolecules 2004, 37, 6980-6984.
    89. Ly, D. Q.; Honda, T.; Kawakatsu, T.; Zvelindovsky, A. V., Kinetic Pathway of Gyroid-to-Cylinder Transition in Diblock Copolymer Melt under an Electric Field. Macromolecules2007, 40, 2928-2935.
    90. Keller, A.; Pedemonte, E.; Willmouth, F. M., Macro-lattice from segregated amorphous phases of a three block copolymer. Nature 1970, 225, 538-9.
    91. Okamoto, S.; Saijo, K.; Hashimoto, T., Real-Time SAXS Observations of Lamella-Forming Block Copolymers under Large Oscillatory Shear Deformation. Macromolecules 1994, 27, 5547-55.
    92. Albalak, R. J.; Thomas, E. L., Microphase separation of block copolymer solutions in a flow field. J. Polym. Sci., Part B: Polym. Phys. 1993, 31, 37-46.
    93. Cohen, Y.; Albalak, R. J.; Dair, B. J.; Capel, M. S.; Thomas, E. L., Deformation of oriented lamellar block copolymer films. Macromolecules 2000, 33, 6502-6516.
    94. Albalak, R. J., The anisotropic thermal expansion of 'single-crystal' triblock copolymer films. Polymer 1994, 35, 4115-19.
    95. Honeker, C. C.; Thomas, E. L.; Albalak, R. J.; Hajduk, D. A.; Gruner, S. M.; Capel, M. C., Perpendicular Deformation of a Near-Single-Crystal Triblock Copolymer with a Cylindrical Morphology. 1. Synchrotron SAXS. Macromolecules 2000, 33, 9395-9406.
    96. Mansky, P.; Chaikin, P.; Thomas, E. L., Monolayer films of diblock copolymer microdomains for nanolithographic applications. J. Mater. Sci. 1995, 30, 1987-92.
    97. Mansky, P.; Liu, Y.; Huang, E.; Russell, T. P.; Hawker, C., Controlling polymer-surface interactions with random copolymer brushes. Science 1997, 275, 1458-1460.
    98. Huang, E.; Rockford, L.; Tussell, T. P.; Hawker, C. J., Nanodomain control in copolymer thin films. Nature 1998, 395, 757-758.
    99. In, I.; La, Y.-H.; Park, S.-M.; Nealey Paul, F.; Gopalan, P., Side-chain-grafted random copolymer brushes as neutral surfaces for controlling the orientation of block copolymer microdomains in thin films. Langmuir 2006, 22, 7855-60.
    100. Ryu, D. Y.; Shin, K.; Drockenmuller, E.; Hawker, C. J.; Russell, T. P., A generalized approach to the modification of solid surfaces. Science 2005, 308, 236-239.
    101. Ryu, D. Y.; Wang, J.-Y.; Lavery, K. A.; Drockenmuller, E.; Satija, S. K.; Hawker, C. J.; Russell, T. P., Surface Modification with Cross-Linked Random Copolymers: Minimum Effective Thickness. Macromolecules 2007, 40, 4296-4300.
    102. De Rosa, C.; Park, C.; Lotz, B.; Wittmann, J.-C.; Fetters, L. J.; Thomas, E. L., Control of molecular and microdomain orientation in a semicrystalline block copolymer thin film by epitaxy. Macromolecules 2000, 33, 4871-4876.
    103. Park, C.; Rosa, C.; Fetters, L. J.; Thomas, E. L., Influence of an Oriented Glassy Cylindrical Microdomain Structure on the Morphology of Crystallizing Lamellae in a Semicrystalline Block Terpolymer. Macromolecules 2000, 33, 7931-7938.
    104. Park, C.; De Rosa, C.; Fetters, L. J.; Lotz, B.; Thomas, E. L., Alteration of classical microdomain patterns of block copolymers by degenerate epitaxy. Adv. Mater. 2001, 13, 724-728.
    105. Park, C.; Cheng, J. Y.; Fasolka, M. J.; Mayes, A. M.; Ross, C. A.; Thomas, E. L.; De Rosa, C., Double textured cylindrical block copolymer domains via directional solidification on a topographically patterned substrate. Appl. Phys. Lett. 2001, 79, 848-850.
    106. Cheng, J. Y.; Ross, C. A.; Chan, V. Z. H.; Thomas, E. L.; Lammertink, R. G. H.; Vancso, G. J., Formation of a cobalt magnetic dot array via block copolymer lithography. Adv. Mater. (Weinheim, Ger.) 2001, 13, 1174-1178.
    107. Cheng, J. Y.; Ross, C. A.; Thomas, E. L.; Smith, H. I.; Vancso, G. J., Fabrication of nanostructures with long-range order using block copolymer lithography. Appl. Phys. Lett. 2002, 81, 3657-3659.
    108. Cheng, J. Y.; Ross, C. A.; Thomas, E. L.; Smith, H. I.; Vancso, G. J., Templated self-assembly of block copolymers: Effect of substrate topography. Adv. Mater. 2003, 15, 1599-1602.
    109. Deng, T.; Ha, Y.-H.; Cheng, J. Y.; Ross, C. A.; Thomas, E. L., Micropatterning of Block Copolymer Solutions. Langmuir 2002, 18, 6719-6722.
    110. Sundrani, D.; Sibener, S. J., Spontaneous Spatial Alignment of Polymer Cylindrical Nanodomains on Silicon Nitride Gratings. Macromolecules 2002, 35, 8531-8539.
    111. Sundrani, D.; Darling, S. B.; Sibener, S. J., Guiding Polymers to Perfection: Macroscopic Alignment of Nanoscale Domains. Nano Lett. 2004, 4, 273-276.
    112. Sundrani, D.; Darling, S. B.; Sibener, S. J., Hierarchical Assembly and Compliance of Aligned Nanoscale Polymer Cylinders in Confinement. Langmuir 2004, 20, 5091-5099.
    113. Li, H.-W.; Huck, W. T. S., Ordered Block-Copolymer Assembly Using Nanoimprint Lithography. Nano Lett. 2004, 4, 1633-1636.
    114. Simonyi, M.; Bikadi, Z.; Zsila, F.; Deli, J., Supramolecular exciton chirality of carotenoid aggregates. Chirality 2003, 15, 680-698.
    115. Seo, J. S.; Whang, D.; Lee, H.; Jun, S. I.; Oh, J.; Jeon, Y. J.; Kim, K., A homochiral metal-organic porous material for enantioselective separation and catalysis. Nature 2000, 404, 982-986.
    116. Verbiest, T.; Van Elshocht, S.; Karuanen, M.; Heliemans, L.; Snauwaert, J.; Nuckolls, C.; Katz, T. J.; Persoons, A., Strong enhancement of nonlinear optical properties through supramolecular chirality. Science1998, 282, 913-915.
    117. Jha, S. K.; Cheon, K.-S.; Green, M. M.; Selinger, J. V., Chiral Optical Properties of a Helical Polymer Synthesized from Nearly Racemic Chiral Monomers Highly Diluted with Achiral Monomers. J. Am. Chem. Soc. 1999, 121, 1665-1673.
    118. Ogoshi, H.; Mizutani, T., Multifunctional and Chiral Porphyrins: Model Receptors for Chiral Recognition. Acc. Chem. Res. 1998, 31, 81-89.
    119. Wulff, G.; Petzoldt, J., Chirality of polyvinyl compounds. 14. Optically active "stereo complexes" of main chain chiral isotactic poly(methyl methacrylates). Angew. Chem. 1991, 103, 870-1 (See also Angew Chem , Int Ed Engl , 1991, 30(7), 849-50).
    120. Slager, J.; Domb, A. J., Biopolymer stereocomplexes. Adv. Drug Delivery Rev. 2003, 55, 549-583.
    121. Fox, T. G.; Garrett, B. S.; Goode, W. E.; Gratch, S.; Kincaid, J. F.; Spell, A.; Stroupe, J. D., Crystalline polymers of methyl methacrylate. J. Am. Chem. Soc. 1958, 80, 1768-9.
    122. Brizzolara, D.; Cantow, H.-J.; Diederichs, K.; Keller, E.; Domb, A. J., Mechanism of the Stereocomplex Formation between Enantiomeric Poly(lactide)s. Macromolecules 1996, 29, 191-7.
    123. Serizawa, T.; Hamada, K.-i.; Kitayama, T.; Fujimoto, N.; Hatada, K.; Akashi, M.,Stepwise Stereocomplex Assembly of Stereoregular Poly(methyl methacrylate)s on a Substrate. J. Am. Chem. Soc. 2000, 122, 1891-1899.
    124. Grohens, Y.; Castelein, G.; Carriere, P.; Spevacek, J.; Schultz, J., Multiscale Aggregation of PMMA Stereocomplexes at a Surface: An Atomic Force Microscopy Investigation. Langmuir 2001, 17, 86-94.
    125. Vainionpaa, S.; Rokkanen, P.; Tormala, P., Surgical applications of biodegradable polymers in human tissues. Prog. Polym. Sci. 1989, 14, 679-716.
    126. Langer, R.; Vacanti, J. P., Tissue engineering. Science 1993, 260, 920-6.
    127. Levenberg, S.; Huang, N. F.; Lavik, E.; Rogers, A. B.; Itskovitz-eldor, J.; Langer, R., Differentiation of human embryonic stem cells on three-dimensional polymer scaffolds. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 12741-12746.
    128. Kobayashi, K.; Sumitomo, H.; Itoigawa, T., Maltopentaose- and maltoheptaose-carrying styrene macromers and their homopolymers. Macromolecules 1987, 20, 906-8.
    129. Tsuji, H., Poly(lactide) Stereocomplexes: Formation, Structure,Properties, Degradation, and Applications. Macromol. Biosci. 2005, 5, 569-597.
    130. Okihara, T.; Tsuji, M.; Kawaguchi, A.; Katayama, K.; Tsuji, H.; Hyon, S. H.; Ikada, Y., Crystal structure of stereocomplex of poly(L-lactide) and poly(D-lactide). J. Macromol. Sci., Phys. 1991, 30, 119-40.
    131. Cartier, L.; Okihara, T.; Lotz, B., Triangular Polymer Single Crystals: Stereocomplexes, Twins, and Frustrated Structures. Macromolecules 1997, 30, 6313-6322.
    132. Ikada, Y.; Jamshidi, K.; Tsuji, H.; Hyon, S. H., Stereocomplex formation between enantiomeric poly(lactides). Macromolecules 1987, 20, 904-6.
    133. Tsuji, H.; Hyon, S. H.; Ikada, Y., Stereocomplex formation between enantiomeric poly(lactic acid)s. 4. Differential scanning calorimetric studies on precipitates from mixed solutions of poly(D-lactic acid) and poly(L-lactic acid). Macromolecules 1991, 24, 5657-62.
    134. Tsuji, H.; Hyon, S. H.; Ikada, Y., Stereocomplex formation between enantiomeric poly(lactic acid)s. 3. Calorimetric studies on blend films cast from dilute solution. Macromolecules 1991, 24, 5651-6.
    135. Tsuji, H.; Hyon, S. H.; Ikada, Y., Stereocomplex formation between enantiomeric poly(lactic acids). 5. Calorimetric and morphological studies on the stereocomplex formed in acetonitrile solution. Macromolecules 1992, 25, 2940-6.
    136. Tsuji, H.; Ikada, Y., Stereocomplex formation between enantiomeric poly(lactic acids). 9. Stereocomplexation from the melt. Macromolecules 1993, 26, 6918-26.
    137. Tsuji, H.; Ikada, Y., Crystallization from the melt of poly(lactide)s with different optical purities and their blends. Macromol. Chem. Phys. 1996, 197, 3483-3499.
    138. Fujiwara, T.; Mukose, T.; Yamaoka, T.; Yamane, H.; Sakurai, S.; Kimura, Y., Novel thermo-responsive formation of a hydrogel by stereo-complexation between PLLA-PEG-PLLA and PDLA-PEG-PDLA block copolymers. Macromol. Biosci. 2001, 1, 204-208.
    139. Yamane, H.; Sasai, K., Effect of the addition of poly(d-lactic acid) on the thermal property of poly(l-lactic acid). Polymer 2003, 44, 2569-2575.
    140. Hennink, W. E.; De Jong, S. J.; Bos, G. W.; Veldhuis, T. F. J.; Van Nostrum, C. F., Biodegradable dextran hydrogels crosslinked by stereocomplex formation for the controlled release of pharmaceutical proteins. Int. J. Pharm. 2004, 277, 99-104.
    141. Slager, J.; Domb, A. J., Stereocomplexes based on poly(lactic acid) and insulin: formulation and release studies. Biomaterials 2002, 23, 4389-4396.
    142. Slager, J.; Domb, A. J., Heterostereocomplexes Prepared from D-PLA and L-PLA and Leuprolide. II. Release of Leuprolide. Biomacromolecules 2003, 4, 1316-1320.
    143. Lim, D. W.; Choi, S. H.; Park, T. G., A new class of biodegradable hydrogels stereocomplexed by enantiomeric oligo(lactide) side chains of poly(HEMA-g-OLA)s. Macromol. Rapid Commun. 2000, 21, 464-471.
    144. Li, S., Bioresorbable hydrogels prepared through stereocomplexation betweenpoly(L-lactide) and poly(D-lactide) blocks attached to poly(ethylene glycol). Macromol. Biosci. 2003, 3, 657-661.
    145. Li, S.; Vert, M., Synthesis, characterization, and stereocomplex-induced gelation of block copolymers prepared by ring-opening polymerization of L(D)-Lactide in the presence of poly(ethylene glycol). Macromolecules 2003, 36, 8008-8014.
    146. Dong, Y.; Feng, S.-S., Methoxy poly(ethylene glycol)-poly(lactide) (MPEG-PLA) nanoparticles for controlled delivery of anticancer drugs. Biomaterials 2004, 25, 2843-2849.
    147. Lucke, A.; Fustella, E.; Tessmar, J.; Gazzaniga, A.; Gopferich, A., The effect of poly(ethylene glycol)-poly(DL-lactic acid) diblock copolymers on peptide acylation. J. Controlled Release 2002, 80, 157-168.
    148. Hiemstra, C.; Zhong, Z.; Li, L.; Dijkstra, P. J.; Feijen, J., In-Situ Formation of Biodegradable Hydrogels by Stereocomplexation of PEG-(PLLA)8 and PEG-(PDLA)8 Star Block Copolymers. Biomacromolecules 2006, 7, 2790-2795.
    149. Hiemstra, C.; Zhou, W.; Zhong, Z.; Wouters, M.; Feijen, J., Rapidly in situ forming biodegradable robust hydrogels by combining stereocomplexation and photopolymerization. J. Am. Chem. Soc. 2007, 129, 9918-9926.
    150. Hiemstra, C.; Zhong, Z.; Van Tomme, S. R.; van Steenbergen, M. J.; Jacobs, J. J. L.; Den Otter, W.; Hennink, W. E.; Feijen, J., In vitro and in vivo protein delivery from in situ forming poly(ethylene glycol)-poly(lactide) hydrogels. J. Controlled Release 2007, 119, 320-327.
    151. Jia, L.; Yin, L.; Li, Y.; Li, Q.; Yang, J.; Yu, J.; Shi, Z.; Fang, Q.; Cao, A., New enantiomeric polylactide-block-poly(butylene succinate)-block-polylactides: Syntheses, characterization and in situ self-assembly. Macromol. Biosci. 2005, 5, 526-538.
    152. Portinha, D.; Belleney, J.; Bouteiller, L.; Pensec, S.; Spassky, N.; Chassenieux, C., Formation of Nanoparticles of Polylactide-Containing Diblock Copolymers: Is Stereocomplexation the Driving Force? Macromolecules 2002, 35, 1484-1486.
    153. Portinha, D.; Bouteiller, L.; Pensec, S.; Richez, A.; Chassenieux, C., Influence of Preparation Conditions on the Self-Assembly by Stereocomplexation of Polylactide Containing Diblock Copolymers. Macromolecules 2004, 37, 3401-3406.
    154. Portinha, D.; Boue, F.; Bouteiller, L.; Carrot, G.; Chassenieux, C.; Pensec, S.; Reiter, G., Stable Dispersions of Highly Anisotropic Nanoparticles Formed by Cocrystallization of Enantiomeric Diblock Copolymers. Macromolecules 2007, 40, 4037-4042.
    155. de Jong, S.; van Dijk-Wolthuis, W. N. E.; Kettenes-van den Bosch, J. J.; Schuyl, P. J. W.; Hennink, W. E., Monodisperse Enantiomeric Lactic Acid Oligomers: Preparation, Characterization, and Stereocomplex Formation. Macromolecules 1998, 31, 6397-6402.
    156. de Jong, S. J.; De Smedt, S. C.; Wahls, M. W. C.; Demeester, J.; Kettenes-van den Bosch, J. J.; Hennink, W. E., Novel Self-assembled Hydrogels by Stereocomplex Formation in Aqueous Solution of Enantiomeric Lactic Acid Oligomers Grafted To Dextran. Macromolecules 2000, 33, 3680-3686.
    157. Slager, J.; Domb, A. J., Heterostereocomplexes Prepared from D-Poly(lactide) and Leuprolide. I. Characterization. Biomacromolecules 2003, 4, 1308-1315.
    158. Slager, J.; Cohen, Y.; Khalfin, R.; Talmon, Y.; Domb, A. J., Peptides Form Stereoselective Complexes with Chiral Polymers. Macromolecules 2003, 36, 2999-3000.
    159. Watanabe, J.; Eriguchi, T.; Ishihara, K., Stereocomplex Formation by Enantiomeric Poly(lactic acid) Graft-Type Phospholipid Polymers for Tissue Engineering. Biomacromolecules 2002, 3, 1109-1114.
    160. Corbierre, M. K.; Cameron, N. S.; Sutton, M.; Mochrie, S. G. J.; Lurio, L. B.; Ruehm, A.; Lennox, R. B., Polymer-Stabilized Gold Nanoparticles and Their Incorporation into Polymer Matrices. J. Am. Chem. Soc. 2001, 123, 10411-10412.
    161. Gratt, J. A.; Cohen, R. E., The role of ordered block copolymer morphology in the performance of organic/inorganic photovoltaic devices. J. Appl. Polym. Sci. 2004, 91, 3362-3368.
    162. Gratt, J. A.; Cohen, R. E., Optical properties of block copolymers containing pendant carbazole groups and in situ synthesized CdS nanoclusters. J. Appl. Polym. Sci. 2003, 88, 177-182.
    163. Gratt, J.; Cohen, R. E., Synthesis of Block Copolymers Containing Pendant Carbazole Groups via Living Ring-Opening Metathesis Polymerization. Macromolecules 1997, 30, 3137-3140.
    164. Fink, Y.; Urbas, A. M.; Bawendi, M. G.; Joannopoulos, J. D.; Thomas, E. L., Block copolymers as photonic bandgap materials. J. Lightwave Technol. 1999, 17, 1963-1969.
    165. Templin, M.; Franck, A.; Du Chesne, A.; Leist, H.; Zhang, Y.; Ulrich, R.; Schadler, V.; Wiesner, U., Organically modified aluminosilicate mesostructures from block copolymer phases. Science 1997, 278, 1795-1798.
    166. Zehner, R. W.; Lopes, W. A.; Morkved, T. L.; Sita, L. R., Selective Decoration of a Phase-Separated Diblock Copolymer with Thiol-Passivated Gold Nanocrystals. Langmuir 1998, 14, 241-244.
    167. Huh, J.; Ginzburg, V. V.; Balazs, A. C., Thermodynamic Behavior of Particle/Diblock Copolymer Mixtures: Simulation and Theory. Macromolecules 2000, 33, 8085-8096.
    168. Thompson, R. B.; Ginzburg, V. V.; Matsen, M. W.; Balazs, A. C., Predicting the mesophases of copolymer-nanoparticle composites. Science2001, 292, 2469-2472.
    169. Wang, Q.; Nealey, P. F.; De Pablo, J. J., Behavior of single nanoparticle/homopolymer chain in ordered structures of diblock copolymers. J. Chem. Phys. 2003, 118, 11278-11285.
    170. Schultz, A. J.; Hall, C. K.; Genzer, J., Computer simulation of block copolymer/nanoparticle composites. Macromolecules 2005, 38, 3007-3016.
    171. Chan, Y. N. C.; Craig, G. S. W.; Schrock, R. R.; Cohen, R. E., Synthesis of palladium and platinum nanoclusters within microphase-separated diblock copolymers. Chem. Mater. 1992, 4, 885-94.
    172. Saito, R.; Okamura, S.; Ishizu, K., Introduction of colloidal silver into a poly(2-vinylpyridine) microdomain of microphase separated poly(styrene-b-2-vinylpyridine) film. Polymer 1992, 33, 1099-101.
    173. Saito, R.; Okamura, S.; Ishizu, K., Introduction of colloidal silver into poly(2-vinylpyridine) microdomains of microphase-separated poly(styrene-b-2-vinylpyridine) film. 2. Concentration effect. Polymer 1993, 34, 1183-8.
    174. Saito, R.; Okamura, S.; Ishizu, K., Introduction of colloidal silver into poly(2-vinylpyridine) microdomains of microphage-separated poly(styrene-b-2-vinylpyridine) film. 3. Poly(2-vinylpyridine) spherical microdomain. Polymer 1993, 34, 1189-95.
    175. Hashimoto, T.; Harada, M.; Sakamoto, N., Incorporation of Metal Nanoparticles into Block Copolymer Nanodomains via in-Situ Reduction of Metal Ions in Microdomain Space. Macromolecules 1999, 32, 6867-6870.
    176. Sohn, B. H.; Seo, B. H., Fabrication of the Multilayered Nanostructure of Alternating Polymers and Gold Nanoparticles with Thin Films of Self-Assembling Diblock Copolymers. Chem. Mater. 2001, 13, 1752-1757.
    177. Sohn, B.-H.; Seo, B.-W.; Yoo, S.-I., Changes of the lamellar period by nanoparticles in the nanoreactor scheme of thin films of symmetric diblock copolymers. J. Mater. Chem. 2002, 12, 1730-1734.
    178. Spatz, J. P.; Roescher, A.; Sheiko, S.; Krausch, G.; Moeller, M., Noble metal loaded block ionomers. Micelle organization, adsorption of free chains, and formation of thin films. Adv. Mater. 1995, 7, 731-5.
    179. Spatz, J. P.; Roescher, A.; Moeller, M., Gold nanoparticles in micellar poly(styrene)-b-poly(ethylene oxide) films. Size and interparticle distance control in monoparticulate films. Adv. Mater. (Weinheim, Ger.) 1996, 8, 337-40.
    180. Bronstein, L.; Kraemer, E.; Berton, B.; Burger, C.; Foerster, S.; Antonietti, M., Successive Use of Amphiphilic Block Copolymers as Nanoreactors and Templates: Preparation of Porous Silica with Metal Nanoparticles. Chem. Mater. 1999, 11,1402-1405.
    181. Bronstein, L. M.; Seregina, M. V.; Platonova, O. A.; Kabachii, Y. A.; Chernyshov, D. M.; Ezernitskaya, M. G.; Dubrovina, L. V.; Bragina, T. P.; Valetsky, P. M., Synthesis of Pd-, Pt-, and Rh-containing polymers derived from polystyrene-polybutadiene block copolymers; micellization of diblock copolymers due to complexation. Macromol. Chem. Phys. 1998, 199, 1357-1363.
    182. Bronstein, L. M.; Sidorov, S. N.; Valetsky, P. M.; Hartmann, J.; Coelfen, H.; Antonietti, M., Induced Micellization by Interaction of Poly(2-vinylpyridine)-block-poly(ethylene oxide) with Metal Compounds. Micelle Characteristics and Metal Nanoparticle Formation. Langmuir 1999, 15, 6256-6262.
    183. Kim, B. J.; Bang, J.; Hawker, C. J.; Kramer, E. J., Effect of Areal Chain Density on the Location of Polymer-Modified Gold Nanoparticles in a Block Copolymer Template. Macromolecules 2006, 39, 4108-4114.
    184. Chiu, J. J.; Kim, B. J.; Kramer, E. J.; Pine, D. J., Control of Nanoparticle Location in Block Copolymers. J. Am. Chem. Soc. 2005, 127, 5036-5037.
    185. Bockstaller, M. R.; Lapetnikov, Y.; Margel, S.; Thomas, E. L., Size-Selective Organization of Enthalpic Compatibilized Nanocrystals in Ternary Block Copolymer/Particle Mixtures. J. Am. Chem. Soc. 2003, 125, 5276-5277.
    186. Kim, B. J.; Chiu, J. J.; Yi, G.-R.; Pine, D. J.; Kramer, E. J., Nanoparticle-induced phase transitions in diblock-copolymer films. Adv. Mater. 2005, 17, 2618-2622.
    187. Chiu, J. J.; Kim, B. J.; Yi, G.-R.; Bang, J.; Kramer, E. J.; Pine, D. J., Distribution of Nanoparticles in Lamellar Domains of Block Copolymers. Macromolecules2007, 40, 3361-3365.
    188. Lin, Y.; Boeker, A.; He, J.; Sill, K.; Xiang, H.; Abetz, C.; Li, X.; Wang, J.; Emrick, T.; Long, S.; Wang, Q.; Balazs, A.; Russell, T. P., Self-directed self-assembly of nanoparticle/copolymer mixtures. Nature 2005, 434, 55-59.
    189. Kim, B. J.; Given-Beck, S.; Bang, J.; Hawker, C. J.; Kramer, E. J., Importance of End-Group Structure in Controlling the Interfacial Activity of Polymer-Coated Nanoparticles. Macromolecules 2007, 40, 1796-1798.
    190. Tsutsumi, K.; Funaki, Y.; Hirokawa, Y.; Hashimoto, T., Selective Incorporation of Palladium Nanoparticles into Microphase-Separated Domains of Poly(2-vinylpyridine)-block-polyisoprene. Langmuir 1999, 15, 5200-5203.
    191. Yeh, S.-W.; Wei, K.-H.; Sun, Y.-S.; Jeng, U. S.; Liang, K. S., CdS Nanoparticles Induce a Morphological Transformation of Poly(styrene-b-4-vinylpyridine) from Hexagonally Packed Cylinders to a Lamellar Structure. Macromolecules 2005, 38, 6559-6565.
    192. Baron, R.; Huang, C.-H.; Bassani, D. M.; Onopriyenko, A.; Zayats, M.; Willner, I., Hydrogen-bonded CdS nanoparticle assemblies on electrodes for photoelectrochemical applications. Angew. Chem., Int. Ed. 2005, 44, 4010-4015.
    193. Wang, C. W.; Moffitt, M. G., Nonlithographic Hierarchical Patterning of Semiconducting Nanoparticles via Polymer/Polymer Phase Separation. Chem. Mater. 2005, 17, 3871-3878.
    194. Sankaran, V.; Yue, J.; Cohen, R. E.; Schrock, R. R.; Silbey, R. J., Synthesis of zinc sulfide clusters and zinc particles within microphase-separated domains of organometallic block copolymers. Chem. Mater. 1993, 5, 1133-42.
    195. Cummins, C. C.; Schrock, R. R.; Cohen, R. E., Synthesis of zinc sulfide and cadmium sulfide within ROMP block copolymer microdomains. Chem. Mater. 1992, 4, 27-30.
    196. Karanikolos, G. N.; Alexandridis, P.; Mallory, R.; Petrou, A.; Mountziaris, T. J., Template synthesis of ZnSe nanostructures using lyotropic liquid crystals. Nanotechnology 2005, 16, 2372-2380.
    197. Fogg, D. E.; Radzilowski, L. H.; Dabbousi, B. O.; Schrock, R. R.; Thomas, E. L.; Bawendi, M. G., Fabrication of Quantum Dot-Polymer Composites: Semiconductor Nanoclusters in Dual-Function Polymer Matrixes with Electron-Transporting and Cluster-Passivating Properties. Macromolecules 1997, 30, 8433-8439.
    198. Kane, R. S.; Cohen, R. E.; Silbey, R., Synthesis of Doped ZnS Nanoclusters within Block Copolymer Nanoreactors. Chem. Mater. 1999, 11, 90-93.
    199. Nolte, A. J.; Rubner, M. F.; Cohen, R. E., Creating Effective Refractive Index Gradients within Polyelectrolyte Multilayer Films: Molecularly Assembled Rugate Filters. Langmuir 2004, 20, 3304-3310.
    200. Lintinen, K.; Efimov, A.; Hietala, S.; Nagao, S.; Jalkanen, P.; Tkachenko, N.; Lemmetyinen, H., Cationic photopolymerization of liquid fullerene derivative under visible light. J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 5194-5201.
    201. Bennett, R. D.; Miller, A. C.; Kohen, N. T.; Hammond, P. T.; Irvine, D. J.; Cohen, R. E., Strategies for Controlling the Planar Arrangement of Block Copolymer Micelles and Inorganic Nanoclusters. Macromolecules 2005, 38, 10728-10735.
    202. Lauter-Pasyuk, V.; Lauter, H. J.; Gordeev, G. P.; Mueller-Buschbaum, P.; Toperverg, B. P.; Jernenkov, M.; Petry, W., Nanoparticles in block-copolymer films studied by specular and off-specular neutron scattering. Langmuir 2003, 19, 7783-7788.
    203. Rajan, G. S.; Mauritz, K. A.; Stromeyer, S. L.; Kwee, T.; Mani, P.; Weston, J. L.; Nikles, D. E.; Shamsuzzoha, M., Poly(styrene-b-ethylene/butylene-b-styrene)/cobalt ferrite magnetic nanocomposites. J. Polym. Sci., Part B: Polym. Phys. 2005, 43, 1475-1485.
    204. Garcia, C. B. W.; Zhang, Y.; Mahajan, S.; DiSalvo, F.; Wiesner, U., Self-Assembly Approach toward Magnetic Silica-Type Nanoparticles of Different Shapes from Reverse Block Copolymer Mesophases. J. Am. Chem. Soc. 2003, 125, 13310-13311.
    205. Darling, S. B.; Yufa, N. A.; Cisse, A. L.; Bader, S. D.; Sibener, S. J., Self-organization of FePt nanoparticles on photochemically modified diblock copolymer templates. Adv. Mater. (Weinheim, Ger.) 2005, 17, 2446-2450.
    206. Darling, S. B.; Bader, S. D., A materials chemistry perspective on nanomagnetism. J. Mater. Chem. 2005, 15, 4189-4195.
    207. Hinderling, C.; Keles, Y.; Stoeckli, T.; Knapp, H. F.; De Los Arcos, T.; Oelhafen, P.; Korczagin, I.; Hempenius, M. A.; Vancso, G. J.; Pugin, R.; Heinzelmann, H., Organometallic block copolymers as catalyst precursors for templated carbon nanotube growth. Adv. Mater. 2004, 16, 876-879.
    208. Yin, D.; Horiuchi, S.; Masuoka, T., Lateral Assembly of Metal Nanoparticles Directed by Nanodomain Control in Block Copolymer Thin Films. Chem. Mater. 2005, 17, 463-469.
    209. Fahmi Amir, W.; Stamm, M., Spatially correlated metallic nanostructures on self-assembled diblock copolymer templates. Langmuir 2005, 21, 1062-6.
    210. Niessen, H. G.; Eichhorn, A.; Woelk, K.; Bargon, J., Homogeneous hydrogenation in supercritical fluids mediated by colloidal catalysts. J. Mol. Catal. A: Chem. 2002, 182-183, 463-470.
    211. Hashimoto, T.; Okumura, A.; Tanabe, D., Visualization of Isolated Poly(2-vinylpyridine)-block-Polyisoprene Chains Adhered to Isolated Palladium Nanoparticles. Macromolecules 2003, 36, 7324-7330.
    212. Ribbe, A. E.; Okumura, A.; Matsushige, K.; Hashimoto, T., Element Spectroscopic Imaging of Poly(2-vinylpyridine)-block-polyisoprene Microdomains Containing Palladium Nanoparticles. Macromolecules 2001, 34, 8239-8245.
    213. Dufour, B.; Tang, C.; Koynov, K.; Zhang, Y.; Pakula, T.; Matyjaszewski, K., Polar Three-Arm Star Block Copolymer Thermoplastic Elastomers Based on Polyacrylonitrile. Macromolecules 2008, 41, 2451-2458.
    214. Liff, S. M.; Kumar, N.; McKinley, G. H., High-performance elastomeric nanocomposites via solvent-exchange processing. Nat. Mater. 2007, 6, 76-83.
    215. Bronstein, L. M.; Chernyshov, D. M.; Volkov, I. O.; Ezernitskaya, M. G.; Valetsky, P. M.; Matveeva, V. G.; Sulman, E. M., Structure and Properties of Bimetallic Colloids Formed in Polystyrene-block-Poly-4-vinylpyridine Micelles: Catalytic Behavior in Selective Hydrogenation of Dehydrolinalool. J. Catal. 2000, 196, 302-314.
    216. Hadziioannou, G., Semiconducting block copolymers: optimized synthesis andprocessing for efficient photovoltaic devices. PMSE Prepr. 2007, 96, 191-192.
    217. Barber, R. P.; Gomez, R. D.; Herman, W. N.; Romero, D. B., Organic photovoltaic devices based on a block copolymer/fullerene blend. Org. Electron. 2006, 7, 508-513.
    218. Hillmyer, M. A.; Chen, L.; Meuler, A. J.; Olson, D. A.; Bates, F. S., Mechanically robust nanoporous plastics from multicomponent block copolymers. PMSE Prepr. 2007, 97, 215.
    219. Muralidharan, V.; Hui, C.-Y., Stability of nanoporous materials. Macromol. Rapid Commun. 2004, 25, 1487-1490.
    220. Haupt, M.; Miller, S.; Glass, R.; Arnold, M.; Sauer, R.; Thonke, K.; Moller, M.; Spatz, J. P., Nanoporous gold films created using templates formed from self-assembled structures of inorganic-block copolymer micelles. Adv. Mater. 2003, 15, 829-831.
    221. Matyjaszewski, K.; Teodorescu, M.; Acar, M. H.; Beers, K. L.; Coca, S.; Gaynor, S. G.; Miller, P. J.; Paik, H.-J., Novel segmented copolymers by combination of controlled ionic and radical polymerizations. Macromol. Symp. 2000, 157, 183-192.
    222. Kim, Y. H.; Ford, W. T.; Mourey, T. H., Structures of branched poly(styrene-b-tert-butyl acrylate) prepared by ATRP from a poly(propylene imine)(NH2)64 core. Polym. Prepr. 2006, 47, 935-936.
    223. An, S. G.; Li, G. H.; Cho, C. G., Synthesis of amphiphilic star block copolymers of polystyrene with PEG core via ATRP-control of chain architecture and the formation of core-shell type globular structure. Polymer 2006, 47, 4154-4162.
    224. Ishizu, K.; Ochi, K., Architecture of Star-Block Copolymers Consisting of Triblock Arms via a N,N-Diethyldithiocarbamate-Mediated Living Radical Photo-Polymerization and Application for Nanocomposites by Using as Fillers. Macromolecules 2006, 39, 3238-3244.
    225. Min, K.; Gao, H.; Matyjaszewski, K., Preparation of Homopolymers and Block Copolymers in Miniemulsion by ATRP Using Activators Generated by Electron Transfer (AGET). J. Am. Chem. Soc. 2005, 127, 3825-3830.
    226. Ho, R.-M.; Chiang, Y.-W.; Tsai, C.-C.; Lin, C.-C.; Ko, B.-T.; Huang, B.-H., Three-Dimensionally Packed Nanohelical Phase in Chiral Block Copolymers. J. Am. Chem. Soc. 2004, 126, 2704-2705.
    227. Zalusky, A. S.; Olayo-Valles, R.; Wolf, J. H.; Hillmyer, M. A., Ordered Nanoporous Polymers from Polystyrene-Polylactide Block Copolymers. J. Am. Chem. Soc. 2002, 124, 12761-12773.
    228. Rzayev, J.; Hillmyer, M. A., Nanoporous Polystyrene Containing Hydrophilic Pores from an ABC Triblock Copolymer Precursor. Macromolecules 2005, 38, 3-5.
    229. Shueh, M.-L.; Wang, Y.-S.; Huang, B.-H.; Kuo, C.-Y.; Lin, C.-C., Reactions of
    2,2'-Methylenebis(4-chloro-6-isopropyl-3-methylphenol) and
    2,2'-Ethylidenebis(4,6-di-tert-butylphenol) with MgnBu2: Efficient Catalysts for Ring-Opening Polymerization of e-Caprolactone and L-Lactide. Macromolecules 2004, 37, 5155-5162.
    230. Tao, L.; Luan, B.; Pan, C.-y., Block and star block copolymers by mechanism transformation. VIII Synthesis and characterization of triblock poly(LLA-b-St-b-MMA) by combination of ATRP and ROP. Polymer 2003, 44, 1013-1020.
    231. Gallardo, A.; San Roman, J.; Dijkstra, P. J.; Feijen, J., Random Polyester Transesterification: Prediction of Molecular Weight and MW Distribution. Macromolecules 1998, 31, 7187-7194.
    232. Dubois, P.; Jacobs, C.; Jerome, R.; Teyssie, P., Macromolecular engineering of polylactones and polylactides. 4. Mechanism and kinetics of lactide homopolymerization by aluminum isopropoxide. Macromolecules 1991, 24, 2266-70.
    233. Slivniak, R.; Domb, A. J., Stereocomplexes of Enantiomeric Lactic Acid and Sebacic Acid Ester-Anhydride Triblock Copolymers. Biomacromolecules 2002, 3, 754-760.
    234. Tonelli, A. E.; Flory, P. J., Configuration statistics of random poly(lactic acid) chains. I. Experimental results. Macromolecules 1969, 2, 225-7.
    235. Gupta, A. P.; Kumar, V., New emerging trends in synthetic biodegradable polymers - Polylactide: A critique. Eur. Polym. J. 2007, 43, 4053-4074.
    236. Gupta, B.; Revagade, N.; Hilborn, J., Poly(lactic acid) fiber: An overview. Prog. Polym. Sci. 2007, 32, 455-482.
    237. Mehta, R.; Kumar, V.; Bhunia, H.; Upadhyay, S. N., Synthesis of poly(lactic acid): A review. J. Macromol. Sci., Polym. Rev. 2005, C45, 325-349.
    238. Vert, M.; Schwarch, G.; Coudane, J., Present and future of PLA polymers. J. Macromol. Sci., Pure Appl. Chem. 1995, A32, 787-96.
    239. Schwach, G.; Coudane, J.; Engel, R.; Vert, M., More about the polymerization of lactides in the presence of stannous octoate. J. Polym. Sci., Part A: Polym. Chem. 1997, 35, 3431-3440.
    240. Huynh Wendy, U.; Dittmer Janke, J.; Alivisatos, A. P., Hybrid nanorod-polymer solar cells. Science 2002, 295, 2425-7.
    241. Craig Colleen, F.; Duncan Walter, R.; Prezhdo Oleg, V., Trajectory surface hopping in the time-dependent Kohn-Sham approach for electron-nuclear dynamics. Phys Rev Lett 2005, 95, 163001.
    242. Qian, H.; Dong, C.; Peng, J.; Qiu, X.; Xu, Y.; Ren, J., High-Quality and Water-Soluble Near-Infrared Photoluminescent CdHgTe/CdS Quantum Dots Prepared by Adjusting Size and Composition. J. Phys. Chem. C 2007, 111, 16852-16857.
    243. Geller, M.; Hopfer, F.; Bimberg, D., Nanostructures for nanoelectronics: No potential for room temperature applications? Microelectron. J. 2008, 39, 302-306.
    244. Fortina, P.; Kricka, L. J.; Surrey, S.; Grodzinski, P., Nanobiotechnology: the promise and reality of new approaches to molecular recognition. Trends Biotechnol.2005, 23, 168-173.
    245. Uyeda, H. T.; Medintz, I. L.; Jaiswal, J. K.; Simon, S. M.; Mattoussi, H., Synthesis of Compact Multidentate Ligands to Prepare Stable Hydrophilic Quantum Dot Fluorophores. J. Am. Chem. Soc. 2005, 127, 3870-3878.
    246. Wiesner, U., Bright and stable fluorescent silica core-shell nanoparticles for imaging and sensing. Polym. Prepr. 2006, 47, 808-809.
    247. Medintz, I. L.; Berti, L.; Pons, T.; Grimes, A. F.; English, D. S.; Alessandrini, A.; Facci, P.; Mattoussi, H., A Reactive Peptidic Linker for Self-Assembling Hybrid Quantum Dot-DNA Bioconjugates. Nano Lett. 2007, 7, 1741-1748.
    248. Onoshima, D.; Kaji, N.; Tokeshi, M.; Baba, Y., Nuclease tolerant FRET probe based on DNA-quantum dot conjugation. Anal. Sci. 2008, 24, 181-183.
    249. Zhou, D.; Ying, L.; Hong, X.; Hall, E. A.; Abell, C.; Klenerman, D., A Compact Functional Quantum Dot-DNA Conjugate: Preparation, Hybridization, and Specific Label-Free DNA Detection. Langmuir 2008, 24, 1659-1664.
    250. Peng, Z. A.; Peng, X., Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J. Am. Chem. Soc. 2001, 123, 183-184.
    251. Skaff, H.; Emrick, T., Reversible addition fragmentation chain transfer (RAFT) polymerization from unprotected cadmium selenide nanoparticles. Angew. Chem., Int. Ed. 2004, 43, 5383-5386.
    252. Wang, Q.; Seo, D.-K., Synthesis of Deep-Red-Emitting CdSe Quantum Dots and General Non-Inverse-Square Behavior of Quantum Confinement in CdSe Quantum Dots. Chem. Mater. 2006, 18, 5764-5767.
    253. Mao, W.; Guo, J.; Yang, W.; Wang, C.; He, J.; Chen, J., Synthesis of high-quality near-infrared-emitting CdTeS alloyed quantum dots via the hydrothermal method. Nanotechnology 2007, 18, 485611/1-485611/7.
    254. Ouyang, J.; Ratcliffe, C. I.; Kingston, D.; Wilkinson, B.; Kuijper, J.; Wu, X.; Ripmeester, J. A.; Yu, K., Gradiently Alloyed ZnxCd1-xS Colloidal Photoluminescent Quantum Dots Synthesized via a Noninjection One-Pot Approach. J. Phys. Chem. C 2008, 112, 4908-4919.
    255. Peng, X.; Wilson, T. E.; Alivisatos, A. P.; Schultz, P. G., Synthesis and isolation of ahomodimer of cadmium selenide nanocrystals. Angew. Chem., Int. Ed. Engl. 1997, 36, 145-147.
    256. Bruchez, M., Jr.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P., Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281, 2013-2016.
    257. Pathak, S.; Choi, S.-K.; Arnheim, N.; Thompson, M. E., Hydroxylated Quantum Dots as Luminescent Probes for in Situ Hybridization. J. Am. Chem. Soc. 2001, 123, 4103-4104.
    258. Yamaguchi, K.; Kato, T.; Hirao, A.; Nakahama, S., Protection and polymerization of functional monomers. 9. Synthesis of poly[1-(4-mercaptomethylphenyl)ethylene] by hydrolysis of poly{1-[4-(tert-butyldimethylsilylthiomethyl)phenyl]ethylene} produced with a radical initiator. Makromol. Chem., Rapid Commun. 1987, 8, 203-7.
    259. Kalarickal, N. C.; Rimmer, S.; Sarker, P.; Leroux, J. C., Thiol-Functionalized Poly(ethylene glycol)-b-polyesters: Synthesis and Characterization. Macromolecules 2007, 40, 1874-1880.
    260. Tohyama, M.; Hirao, A.; Nakahama, S.; Takenaka, K., Synthesis of end-functionalized polymer by living anionic polymerization. Part 5. Syntheses of polystyrenes and polyisoprenes with hydroxy and mercapto end groups by reactions of the living polymers with haloalkanes containing silyl ether and silyl thioether functions. Macromol. Chem. Phys. 1996, 197, 3135-3148.
    261. Trollss, M.; Hawker, C. J.; Hedrick, J. L.; Carrot, G.; Hilborn, J., A Mild and Versatile Synthesis for the Preparation of Thiol-Functionalized Polymers. Macromolecules 1998, 31, 5960-5963.
    262. Carrot, G.; Hilborn, J.; Hedrick, J. L.; Trollss, M., Novel Initiators for Atom Transfer Radical and Ring-Opening Polymerization: A New General Method for the Preparation of Thiol-Functional Polymers. Macromolecules 1999, 32, 5171-5173.
    263. Zhang, D.; Macias, C.; Ortiz, C., Synthesis and Solubility of (Mono-) End-Functionalized Poly(2-hydroxyethyl methacrylate-g-ethylene glycol) Graft Copolymers with Varying Macromolecular Architectures. Macromolecules 2005, 38, 2530-2534.
    264. Hedfors, C.; Oestmark, E.; Malmstroem, E.; Hult, K.; Martinelle, M., Thiol End-Functionalization of Poly(e-caprolactone), Catalyzed by Candida antarctica Lipase B. Macromolecules 2005, 38, 647-649.
    265. Dufresne, M. H.; Gauthier, M. A.; Leroux, J. C., Thiol-Functionalized Polymeric Micelles: From Molecular Recognition to Improved Mucoadhesion. Bioconjugate Chem. 2005, 16, 1027-1033.
    266. Riga, A. T.; Turner, J. F.; O'Connor, A.; Mothe, C. G.; Alexander, K. S., Thermal analysis of model bio-polymers: poly-L-lactic acid and shedded snake skins. Am. Pharm. Rev. 2003, 6, 80, 82, 84-87.
    267. Turner, J. F., II; O'Connor, A.; Riga, A. T., Thermal and optical characterization of poly-L-lactic acid bone cell scaffolds. Proc. NATAS Annu. Conf. Therm. Anal. Appl. 2004, 32nd, 174 09 727/1-174 09 727/8.
    268. Crow, B. B.; Nelson, K. D., Release of bovine serum albumin from a hydrogel-cored biodegradable polymer fiber. Biopolymers 2006, 81, 419-427.
    269. Sangsanoh, P.; Waleetorncheepsawat, S.; Suwantong, O.; Wutticharoenmongkol, P.; Weeranantanapan, O.; Chuenjitbuntaworn, B.; Cheepsunthorn, P.; Pavasant, P.; Supaphol, P., In Vitro Biocompatibility of Schwann Cells on Surfaces of Biocompatible Polymeric Electrospun Fibrous and Solution-Cast Film Scaffolds. Biomacromolecules2007, 8, 1587-1594.
    270. Aldana, J.; Wang, Y. A.; Peng, X., Photochemical Instability of CdSe Nanocrystals Coated by Hydrophilic Thiols. J. Am. Chem. Soc. 2001, 123, 8844-8850.
    271. Nederberg, F.; Connor, E. F.; Moeller, M.; Glauser, T.; Hedrick, J. L., New paradigms for organic catalysts: The first organocatalytic living polymerization. Angew. Chem., Int. Ed. 2001, 40, 2712-2715.
    272. Deng, Z.; Cao, L.; Tang, F.; Zou, B., A New Route to Zinc-Blende CdSe Nanocrystals:Mechanism and Synthesis. J. Phys. Chem. B 2005, 109, 16671-16675.
    273. Li, Y.; Li, Q.; Li, F.; Zhang, H.; Jia, L.; Yu, J.; Fang, Q.; Cao, A., Amphiphilic Poly(L-lactide)-b-dendritic Poly(L-lysine)s Synthesized with A Metal-Free Catalyst and New Dendron Initiators: Chemical Preparation and Characterization. In 2006; Vol. 7, pp 224-231.
    274. Li, Y.; Cui, L.; Li, Q.; Jia, L.; Xu, Y.; Fang, Q.; Cao, A., Novel Symmetric Amphiphilic Dendritic Poly(L-lysine)-b-Poly(L-lactide)-b-Dendritic Poly(L-lysine) with High Plasmid DNA Binding Affinity as a Biodegradable Gene Carrier. In 2007; Vol. 8, pp 1409-1416.
    275. Qu, L.; Peng, X., Control of Photoluminescence Properties of CdSe Nanocrystals in Growth. J. Am. Chem. Soc. 2002, 124, 2049-2055.
    276. Murray, C. B.; Norris, D. J.; Bawendi, M. G., Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706-15.
    277. Shiang, J. J.; Kadavanich, A. V.; Grubbs, R. K.; Alivisatos, A. P., Symmetry of Annealed Wurtzite CdSe Nanocrystals: Assignment to the C3v Point Group. J. Phys. Chem. 1995, 99, 17417-22.
    278. Hodes, G.; Albu-Yaron, A.; Decker, F.; Motisuke, P., Three-dimensional quantum-size effect in chemically deposited cadmium selenide films. Phys. Rev. B: Condens. Matter 1987, 36, 4215-21.
    279. Zhisheng, M.; Hongfang, Z., Structure of Crystalline Polymers by X-Ray Diffraction. Science Press: Beijing, 2003; p 229.
    280. Yu William, W.; Chang, E.; Falkner Joshua, C.; Zhang, J.; Al-Somali Ali, M.; Sayes Christie, M.; Johns, J.; Drezek, R.; Colvin Vicki, L., Forming biocompatible and nonaggregated nanocrystals in water using amphiphilic polymers. J Am Chem Soc 2007, 129, 2871-9.
    281. Wang, M.; Oh, J. K.; Dykstra, T. E.; Lou, X.; Scholes, G. D.; Winnik, M. A., Surface Modification of CdSe and CdSe/ZnS Semiconductor Nanocrystals with Poly(N,N-dimethylaminoethyl methacrylate). Macromolecules 2006, 39, 3664-3672.
    282. Biju, V.; Kanemoto, R.; Matsumoto, Y.; Ishii, S.; Nakanishi, S.; Itoh, T.; Baba, Y.; Ishikawa, M., Photoinduced Photoluminescence Variations of CdSe Quantum Dots in Polymer Solutions. J. Phys. Chem. C 2007, 111, 7924-7932.
    283. Kuno, M.; Lee, J. K.; Dabbousi, B. O.; Mikulec, F. V.; Bawendi, M. G., The band edge luminescence of surface modified CdSe nanocrystallites: Probing the luminescing state. J. Chem. Phys. 1997, 106, 9869-9882.
    284. Parak, W. J.; Boudreau, R.; Le Gros, M.; Gerion, D.; Zanchet, D.; Micheel, C. M.; Williams, S. C.; Alivisatos, A. P.; Larabell, C., Cell motility and metastatic potential studies based on quantum dot imaging of phagokinetic tracks. Adv. Mater. 2002, 14, 882-885.
    285. Jaiswal, J. K.; Mattoussi, H.; Mauro, J. M.; Simon, S. M., Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotechnol. 2003, 21, 47-51.
    286. Derfus, A. M.; Chan, W. C. W.; Bhatia, S. N., Probing the Cytotoxicity of Semiconductor Quantum Dots. Nano Lett. 2004, 4, 11-18.
    287. Hoshino, A.; Fujioka, K.; Oku, T.; Suga, M.; Sasaki, Y. F.; Ohta, T.; Yasuhara, M.; Suzuki, K.; Yamamoto, K., Physicochemical Properties and Cellular Toxicity of Nanocrystal Quantum Dots Depend on Their Surface Modification. Nano Lett. 2004, 4, 2163-2169.
    288. Lovric, J.; Bazzi Hassan, S.; Cuie, Y.; Fortin Genevieve, R. A.; Winnik Francoise, M.; Maysinger, D., Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. J Mol Med 2005, 83, 377-85.
    289. Guo, G.; Liu, W.; Liang, J.; He, Z.; Xu, H.; Yang, X., Probing the cytotoxicity of CdSe quantum dots with surface modification. Mater. Lett. 2007, 61, 1641-1644.
    290. Ryman-Rasmussen, J. P.; Riviere, J. E.; Monteiro-Riviere, N. A., Surface CoatingsDetermine Cytotoxicity and Irritation Potential of Quantum Dot Nanoparticles in Epidermal Keratinocytes. J. Invest. Dermatol. 2007, 127, 143-153.
    291. Chang, E.; Thekkek, N.; Yu, W. W.; Colvin, V. L.; Drezek, R., Evaluation of quantum dot cytotoxicity based on intracellular uptake. Small 2006, 2, 1412-1417.
    292. Hinsberg, W.; Houle, F. A.; Lee, S. W.; Ito, H.; Kanazawa, K., Characterization of Reactive Dissolution and Swelling of Polymer Films Using a Quartz Crystal Microbalance and Visible and Infrared Reflectance Spectroscopy. Macromolecules 2005, 38, 1882-1898.
    293. Brochu, S.; Prud'homme, R. E.; Barakat, I.; Jerome, R., Stereocomplexation and Morphology of Polylactides. Macromolecules 1995, 28, 5230-9.
    294. Schmidt, S. C.; Hillmyer, M. A., Polylactide stereocomplex crystallites as nucleating agents for isotactic polylactide. J. Polym. Sci., Part B: Polym. Phys. 2001, 39, 300-313.
    295. Hideto, T., Poly(lactide) Stereocomplexes: Formation, Structure, Properties, Degradation, and Applications. Macromolecular Bioscience 2005, 5, 569-597.
    296. Duan, Y.; Liu, J.; Sato, H.; Zhang, J.; Tsuji, H.; Ozaki, Y.; Yan, S., Molecular Weight Dependence of the Poly(L-lactide)/Poly(D-lactide) Stereocomplex at the Air-Water Interface. Biomacromolecules 2006, 7, 2728-2735.
    297. Kister, G.; Cassanas, G.; Vert, M., Effects of morphology, conformation and configuration on the IR and Raman spectra of various poly(lactic acid)s. Polymer 1998, 39, 267-273.
    298. Zhang, J.; Sato, H.; Tsuji, H.; Noda, I.; Ozaki, Y., Differences in the CH3...OC interactions among poly(L-lactide), poly(L-lactide)/poly(D-lactide) stereocomplex, and poly(3-hydroxybutyrate) studied by infrared spectroscopy. Journal of Molecular Structure 2005, 735-736, 249-257.
    299. Zhang, J.; Tashiro, K.; Tsuji, H.; Domb, A. J., Investigation of Phase Transitional Behavior of Poly(L-lactide)/Poly(D-lactide) Blend Used to Prepare the Highly-Oriented Stereocomplex. Macromolecules 2007, 40, 1049-1054.
    300. Ba, C.; Yang, J.; Hao, Q.; Liu, X.; Cao, A., Syntheses and physical characterization of new aliphatic triblock poly(L-lactide-b-butylene succinate-b-L-lactide)s bearing soft and hard biodegradable building blocks. Biomacromolecules 2003, 4, 1827-1834.
    301. Tsuji, H.; Hyon, S. H.; Ikada, Y., Stereocomplex formation between enantiomeric poly(lactic acid)s. 4. Differential scanning calorimetric studies on precipitates from mixed solutions of poly(D-lactic acid) and poly(L-lactic acid). Macromolecules 1991, 24, 5657-5662.
    302. Tsuji, H., Poly(lactide) stereocomplexes: Formation, structure, properties, degradation, and applications. Macromol. Biosci. 2005, 5, 569-597.
    303. Tsuji, H.; Hyon, S. H.; Ikada, Y., Stereocomplex formation between enantiomeric poly(lactic acids). 5. Calorimetric and morphological studies on the stereocomplex formed in acetonitrile solution. Macromolecules 1992, 25, 2940-2946.
    304. Horie, K.; Yamada, S.; Machida, S.; Takahashi, S.; Isono, Y.; Kawaguchi, H., Dansyl fluorescence and local structure of dansyl-labeled core-shell and core-hair type microspheres in solution. Macromol. Chem. Phys. 2003, 204, 131-138.
    305. Wang, X.; Ma, Q.; Li, B.; Li, Y.; Su, X., The preparation of CdTe nanoparticles and CdTe nanoparticle-labelled microspheres for biological applications. Luminescence 2006, 22, 1-8.
    306. Ma, Q.; Song, T.-Y.; Wang, X.-Y.; Li, Y.-B.; Shi, Y.-H.; Su, X.-G., Quantum dots as fluorescent labels for use in microsphere-based fluoroimmunoassays. Spectrosc. Lett. 2007, 40, 113-127.
    307. Muller, A. J.; Balsamo, V.; Arnal, M. L., Nucleation and crystallization in diblock and triblock copolymers. Adv. Polym. Sci. 2005, 190, 1-63
    308. Chiang, Y.-W.; Ho, R.-M.; Ko, B.-T.; Lin, C.-C., Springlike nanohelical structures in chiral block copolymers. Angew Chem Int Ed Engl 2005, 44, 7969-72.
    309. Ho, R.-M.; Chen, C.-K.; Chiang, Y.-W.; Ko, B.-T.; Lin, C.-C., Tubular nanostructuresfrom degradable core-shell cylinder microstructures in chiral diblock copolymers. Adv. Mater. 2006, 18, 2355-2358.
    310. Chao, C.-C.; Chen, C.-K.; Chiang, Y.-W.; Ho, R.-M., Banded Spherulites in PS-PLLA Chiral Block Copolymers. Macromolecules (Washington, DC, U. S.) 2008, 41, 3949-3956.
    311. Sauer, B. B.; Kampert, W. G.; Blanchard, E. N.; Threefoot, S. A.; Hsiao, B. S., Temperature modulated DSC studies of melting and recrystallization in polymers exhibiting multiple endotherms. Polymer 1999, 41, 1099-1108.
    312. Gunaratne, L. M. W. K.; Shanks, R. A., Thermal memory of poly(3-hydroxybutyrate) using temperature-modulated differential scanning calorimetry. J. Polym. Sci., Part B: Polym. Phys. 2005, 44, 70-78.
    313. Shieh, Y.-T.; Liu, G.-L., Temperature-modulated differential scanning calorimetry studies on the origin of double melting peaks in isothermally melt-crystallized poly(L-lactic acid). J. Polym. Sci., Part B: Polym. Phys. 2007, 45, 466-474.
    314. Khanna, Y. P.; Kuhn, W. P., Measurement of crystalline index in nylons by DSC: complexities and recommendations. J. Polym. Sci., Part B: Polym. Phys. 1997, 35, 2219-2231.
    315. Kim, Y. S.; Snively, C. M.; Liu, Y.; Rabolt, J. F.; Chase, D. B., Real-Time Imaging of Crystallization in Polylactide Enantiomeric Monolayers at the Air-Water Interface. Langmuir 2008, 24, 10791-10796.
    316. Fukushima, K.; Kimura, Y., An efficient solid-state polycondensation method for synthesizing stereocomplexed poly(lactic acid)s with high molecular weight. J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 3714-3722.
    317. Fujita, M.; Sawayanagi, T.; Abe, H.; Tanaka, T.; Iwata, T.; Ito, K.; Fujisawa, T.; Maeda, M., Stereocomplex rormation through reorganization of poly(L-lactic acid) and poly(D-lactic acid) crystals. Macromolecules 2008, 41, 2852-2858.
    318. Fukushima, K.; Chang, Y.-H.; Kimura, Y., Enhanced stereocomplex formation of poly(L-lactic acid) and poly(D-lactic acid) in the presence of stereoblock poly(lactic acid). Macromol. Biosci. 2007, 7, 829-835.
    319. Tsuji, H.; Takai, H.; Saha, S. K., Isothermal and non-isothermal crystallization behavior of poly(L-lactic acid): Effects of stereocomplex as nucleating agent. Polymer 2006, 47, 3826-3837.
    320. Zhang, J.; Sato, H.; Tsuji, H.; Noda, I.; Ozaki, Y., Infrared Spectroscopic Study of CH3...O=C Interaction during Poly(L-lactide)/Poly(D-lactide) Stereocomplex Formation. Macromolecules 2005, 38, 1822-1828.
    321. Hiemstra, C.; Zhong, Z.; Li, L.; Dijkstra Pieter, J.; Feijen, J., In-situ formation of biodegradable hydrogels by stereocomplexation of PEG-(PLLA)8 and PEG-(PDLA)8 star block copolymers. Biomacromolecules 2006, 7, 2790-5.
    322. Salmeron Sanchez, M.; Gomez Ribelles, J. L.; Hernandez Sanchez, F.; Mano, J. F., On the kinetics of melting and crystallization of poly(L-lactic acid) by TMDSC. Thermochim. Acta 2005, 430, 201-210.
    323. Shieh, Y.-T.; Liu, G.-L., Effects of carbon nanotubes on crystallization and melting behavior of poly(L-lactide) via DSC and TMDSC studies. J. Polym. Sci., Part B: Polym. Phys. 2007, 45, 1870-1881.
    324. Miyata, T.; Masuko, T., Crystallization behavior of poly(L-lactide). Polymer 1998, 39, 5515-5521.
    325. Avrami, M., Kinetics of phase change. I. General theory. J. Chem. Phys. 1939, 7, 1103-12.
    326. Avrami, M., Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei. J. Chem. Phys. 1940, 8, 212-24.
    327. Arvanitoyannis, I.; Nakayama, A.; Psomiadou, E.; Kawasaki, N.; Yamamoto, N., Synthesis and degradability of a novel aliphatic polyester based on L-lactide and sorbitol: 3. Polymer 1996, 37, 651-60.
    328. Hoffman, J. D.; Weeks, J. J., Melting process and equilibrium melting temperature of poly(chlorotrifluoroethylene). J. Research Natl. Bur. Standards 1962, 66A, 13-28.
    329. Liu, H.; Yang, G.; He, A.; Wu, M., Isothermal and nonisothermal crystallization kinetics of a semicrystalline copolyterephthalamide based on poly(decamethylene terephthalamide). J. Appl. Polym. Sci. 2004, 94, 819-826.
    330. Ziabicki, A., Theoretical analysis of oriented and nonisothermal crystallization. II. Extension of the Kolmogoroff-Avrami-Evans theory onto processes with variable rates and mechanisms. Colloid Polym. Sci. 1974, 252, 433-47.
    331. Jeziorny, A., Parameters characterizing the kinetics of the nonisothermal crystallization of poly(ethylene terephthalate) determined by d.s.c. Polymer 1978, 19, 1142-4.
    332. Ozawa, T., Kinetics of nonisothermal crystallization. Polymer 1971, 12, 150-8.
    333. Chuah, K. P.; Gan, S. N.; Chee, K. K., Determination of Avrami exponent by differential scanning calorimetry for non-isothermal crystallization of polymers. Polymer 1998, 40, 253-259.
    334. Caze, C.; Devaux, E.; Crespy, A.; Cavort, J. P., A new method to determine the Avrami exponent by DSC studies of non-isothermal crystallization from the molten state. Polymer 1997, 38, 497-502.
    335. Eder, M.; Wlochowicz, A., Kinetics of non-isothermal crystallization of polyethylene and polypropylene. Polymer 1983, 24, 1593-5.
    336. Fischer, E. W.; Sterzel, H. J.; Wegner, G., Investigation of the structure of solution grown crystals of lactide copolymers by means of chemicals reactions. Kolloid-Z. Z. Polym. 1973, 251, 980-90.
    337. Herrera, R.; Franco, L.; Rodriguez-Galan, A.; Puiggali, J., Characterization and degradation behavior of poly(butylene adipate-co-terephthalate)s. J. Polym. Sci., Part A: Polym. Chem. 2002, 40, 4141-4157.
    338. Peters, R. D.; Yang, X. M.; Kim, T. K.; Nealey, P. F., Wetting Behavior of Block Copolymers on Self-Assembled Films of Alkylchlorosiloxanes: Effect of Grafting Density. Langmuir 2000, 16, 9620-9626.
    339. Niemz, A.; Bandyopadhyay, K.; Tan, E.; Cha, K.; Baker, S. M., Fabrication of Nanoporous Templates from Diblock Copolymer Thin Films on Alkylchlorosilane-Neutralized Surfaces. Langmuir 2006, 22, 11092-11096.
    340. Wu, S., Interfacial energetics and polymer adhesion. Amer. Chem. Soc., Div. Org. Coatings Plast. Chem., Pap. 1971, 31, 27-38.
    341. Wu, S.; Brzozowski, K. J., Surface free energy and polarity of organic pigments. J. Colloid Interface Sci. 1971, 37, 686-90.
    342. Yin, T. P.; Wu, S., Compression mechanics of polymer monolayers. J. Polym. Sci., Part C 1971, No. 34, 265-71.
    343. Murphy, W. L.; Mooney, D. J., Bioinspired Growth of Crystalline Carbonate Apatite on Biodegradable Polymer Substrata. J. Am. Chem. Soc. 2002, 124, 1910-1917.
    344. Irvine, D. J.; Ruzette, A.-V. G.; Mayes, A. M.; Griffith, L. G., Nanoscale Clustering of RGD Peptides at Surfaces Using Comb Polymers. 2. Surface Segregation of Comb Polymers in Polylactide. Biomacromolecules 2001, 2, 545-556.
    345. Ho, R.-M.; Tseng, W.-H.; Fan, H.-W.; Chiang, Y.-W.; Lin, C.-C.; Ko, B.-T.; Huang, B.-H., Solvent-induced microdomain orientation in polystyrene-b-poly(-lactide) diblock copolymer thin films for nanopatterning. Polymer 2005, 46, 9362-9377.
    346. Yeh, S.-W.; Wei, K.-H.; Sun, Y.-S.; Jeng, U. S.; Liang, K. S., Morphological transformation of PS-b-PEO diblock copolymer by selectively dispersed colloidal CdS quantum dots. Macromolecules 2003, 36, 7903-7907.
    347. Knoll, A.; Magerle, R.; Krausch, G., Phase behavior in thin films of cylinder-forming ABA block copolymers: Experiments. J. Chem. Phys. 2004, 120, 1105-1116.
    348. F.Green, P.; Limary, R., Block copolymer thin films:pattern formation and phase behavior. Adv. Col. & Int.Sci. 2001, 94, 53-81.
    349. Scott, R. L.; Magat, M., Thermodynamics of high-polymer solutions. III. Swelling ofcross-linked rubber. J. Polym. Sci. 1949, 4, 555-71.
    350. Flory, P. J., Thermodynamics of high-polymer solutions. J. Chem. Phys. 1941, 9, 660-1.
    351. Flory, P. J., Thermodynamics of high-polymer solutions. J. Chem. Phys. 1942, 10, 51-61.
    352. Horvat, A.; Sevink, G. J. A.; Zvelindovsky, A. V.; Krekhov, A.; Tsarkova, L., Specific Features of Defect Structure and Dynamics in the Cylinder Phase of Block Copolymers. ACS Nano 2008, 2, 1143-1152.
    353. Kim, J.-H.; Rahman, M. S.; Lee, J.-S.; Park, J.-W., Self-Organization of an Amphiphilic Rod-Coil-Rod Block Copolymer into Liquid Crystalline, Substrate-Supported Monolayers and Bilayers. Macromolecules 2008, 41, 3181-3189.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700