非金属与稀土共掺杂高可见光活性二氧化钛的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人口数量的增加和经济的快速发展,资源成为全球日益关注的问题,尤其是能源和水成为人类社会发展所不可短缺的二大资源。半导体二氧化钛除了可用于光解水制氢作为获得能源的一种方法外,其在高级氧化技术方面也被广泛用于污染物降解,净化水质和空气等。但是,TiO2的禁带宽度较大,只有当波长小于387 nm的紫外光激发时,才能产生电子和空穴,并且光生载流子极易复合。因此开发具有可见光响应的二氧化钛光催化剂是当前光催化领域研究的重要任务。
     针对以上二氧化钛在实际应用中存在的问题,本论文通过共掺杂的方法对二氧化钛进行改性研究以提高其在可见光区域的光催化活性,主要工作分为以下五个部分。
     1.采用硫酸钛为钛源,氨水作为沉淀剂的同时作为氮源,制备了钐、氮共掺杂的纳米TiO2光催化剂。通过XRD、TEM、XPS BET、FTIR等方法对催化剂进行了表征,并在可见光下考察了催化剂对水杨酸的降解率。UV-vis表征结果表明N-TiO2在可见光区域有很好的吸收,XPS结果表明N物种以间隙掺杂的形式存在,形成了Ti-O-N键和O-Ti-N键。钐的掺杂可以控制晶粒的增长,同时又可以抑制晶相的转变,并且钐的加入促进了催化剂对目标污染物的吸附,有利于光生载流子快速向目标污染物转移,所以Sm/N-TiO2显示出比纯TiO2和N-TiO2更高的光催化活性。在本研究中,1.5Sm/N-TiO2在400℃下煅烧2h后显示出最高的光催化活性。这归因于催化剂对可见光的良好吸收,合适的晶粒大小和高的比表面积,对目标污染物的良好的预吸附以及电子和空穴的有效分离。
     2.采用沉淀-胶溶法制备了铕、氮共掺杂的TiO2光催化剂。通过XRD、XPS、UV-vis、TEM等表征方法对Eu/N-TiO2进行表征。样品以锐钛矿为主,同时有少量板钛矿相存在。由于氮和铕的协同作用,改性催化剂的可见光活性得到了很大程度的提高。当铕的含量达到1%时,催化活性最高,在可见光下照射5h后,对50 mg/L的水杨酸溶液的降解率达到88%。等温吸附实验证明铕的掺杂大大提高了吸附速率常数以及最大吸附量,铕是催化剂的吸附活性位点,同时由于铕的价电子可变性,其也是光生电子的浅势捕获陷阱,从而有效地抑制了电子和空穴的复合。通过加入不同的探针分子证明在本催化反应过程中,首先是水杨酸吸附在催化剂表面,然后在可见光的照射下产生光生电子和空穴,空穴进一步产生羟基自由基,与表面吸附的水杨酸反应。
     3.采用原位酯化法,以三乙醇胺为氮源,制备了铽、氮共掺杂的二氧化钛光催化剂。以20 mg/L的二号橙作为目标污染物,对所制得的催化剂在可见光下的催化活性进行了评价。在制备过程中,以少量的浓硫酸作为酯化反应催化剂,大大增加了催化剂表面的酸性,提高了催化剂对目标污染物的吸附,有利于AO7的降解。氮的掺杂拓展了催化剂在可见光区域的吸收,铽的加入有效地控制了晶粒的大小,在铽的掺杂量为1.0%时,其对AO7的降解率最高,5 h内其脱色率为100%。并且在可见光作用10 h后,AO7的萘环和苯环全部被开环降解。
     4.采用二次水解法在没有模板剂的条件下以硫酸钛为钛源,先制备了具有介孔结构的二氧化钛,然后通过浸渍煅烧法得到了钐掺杂的二氧化钛,最后在一定浓度的葡萄糖溶液中180℃水热处理后250℃煅烧2h,得到了钐、碳共掺杂的二氧化钛。采用XRD,TEM, UV- vis, XPS, N2吸附-脱附和Raman等方法对样品进行了表征。以20 mg/L的苯酚为目标降解物,当钐的浸渍量为0.5%时,其光催化活性最高,5h内对苯酚的降解率达到95%。钐的加入抑制了二氧化钛纳米粒子的烧结,保证了较小且均匀的晶粒尺寸,碳以间隙和取代掺杂的形式进入了TiO2的晶格,在二氧化钛的能带结构中形成了新的掺杂能级,降低了禁带宽度,促进了对可见光的利用,增加了光生电子和空穴的产率。Sm和C的协同作用大大提高了催化剂的可见光活性。
     5.采用蒸发自组装法以钛酸四丁酯为钛源,正丁醇为溶剂,三聚氰胺为氮源,制备得到了不同镱含量的Yb,N共掺杂的有序介孔TiO2。采用XRD, TEM, UV- vis, XPS和N2吸附-脱附等方法对样品进行了表征。经350℃煅烧处理后,掺杂量为3%的Yb,N共掺杂的二氧化钛具有最高的比表面积(219 m2g-1),同时具有有序的二维六方相的介孔结构。光催化活性显示经10h的可见光照射后,3.0Yb/N-TiO2对20 mg/L的苯酚溶液的降解率为75%,而经4 h可见光照射后,10 mg/L罗丹明B溶液可被该催化剂彻底矿化。氮的掺杂有效地拓展了其在可见光区域的吸收,而镱的掺杂一方面稳定了其介孔结构,另一方面又有效地抑制了电子和空穴的复合,延长了光生载流子的寿命。
With the increase in human population, resources are becoming the problem concerned to all the people. Water and energy are the two indispensable resources of the development of human society. As a type of semiconductor photocatalyst, TiO2 can be used in hydrogen production by photosplitting of water, which is a new method to produce energy. Because of the advantages of non-toxic and low cost, TiO2 can be used for water treatment and air purification by advanced oxidization process. But the problem with TiO2 is that, because of wide band gap, TiO2 can only be excited by the UV light of wavelength below 387 nm, and the photogenerated electrons and holes are easy to recombine. So it is important to synthesize high efficient visible-light-responsive TiO2 for the photocatalytic reaction.
     In order to counter the problems of TiO2 for the practical application, co-doping is used in the present research to modify TiO2 which enhances its photoactivity in visible light region of solar spectrum. The main work is composed of five parts:
     1. TiO2 co-doped with samarium and nitrogen was synthesized by co-precipitation method with titanium sulfate as titanium precursor and ammonium hydroxide as precipitating agent and nitrogen precursor. The samples were characterized by XRD, TEM, XPS, BET and FTIR. The photocatalytic activities of the samples were evaluated by degradation of salicylic acid under visible light irradiation. UV-Vis spectra showed that N-TiO2 had strong absorption in the visible light region. XPS results showed that nitrogen was incorporated into TiO2 matrix in the form of interstitial doping model existing in the bond of Ti-O-N and O-Ti-N. The doping of samarium inhibited the growth of crystallite size and the transformation from anatase to rutile phase. Meanwhile, the addition of samarium was beneficial for the adsorption of the target contaminant and the transfer of the photogenerated carriers. Therefore, Sm/N-TiO2 presented much higher photocatalytic activity than N-TiO2 and pure TiO2 under visible light irradiation. In our research work, the optimal dosage of samarium was 1.5% for the highest photocatalytic degradation and the sample calcined at 400℃showed the best photoactivity. This could be explained by better absorption in visible region, the appropriate crystallite size, high surface area, stronger pre-adsorption of target contaminant and more efficient separation of electrons and holes.
     2. TiO2 co-doped with europium and nitrogen was synthesized by precipitation and peptization method and characterized by XRD, XPS, UV-vis spectra and TEM. The results showed the samples were composed mainly of anatase with a little brookite. The great enhancement in photocatalytic activity was attributed to the synergistic effect of nitrogen and europium.1.0Eu/N-TiO2 showed the highest activity and 88% salicylic acid was degraded after 5 h visible light irradiation. The adsorption isotherms illustrated that europium doping was beneficial for the adsorption of salicylic acid and increased the adsorption rate constant and maximum adsorption amount. Meanwhile, for the varied valence, Eu is the shallow trap of electrons and suppresses the recombination of electrons and holes efficiently. The probable degradation mechanism of salicylic acid was investigated by the addition of NaF, Na2S2O3 and K2S2O8. It was verified that salicylic acid was first adsorbed on the surface of the catalysts, followed by the degradation from the hydroxyl radicals generated by the holes (hvb+).
     3. Terbium and nitrogen co-doped TiO2 was synthesized by in situ esterification and trolamine was used as the nitrogen precursor. The photocatalytic activity was evaluated by the degradation of 20 mg/L AO7. The usage of sulphuric acid as the catalyst for esterification increased the acidity of the surface of the catalyst which enhanced the adsorption of the contaminat. The doping of Nitrogen extended the absorption range to the visible region. The addition of Tb restrained the growth of the crystallite and further enhanced the adsorption of the contaminant. When the dosage of Tb was 1%,1.OTb/N-TiO2 showed the highest photocatalytic activity. After 5 h irradiation under visible light,100% AO7 was decolorized. After 10 h irradiation, the ring of benzene and naphthalin was degraded.
     4. Mesoporous TiO2 was synthesized by hydrolysis of titanium sulfate for two times free of template. Sm was loaded on the mesoporous TiO2 by impregation in the solution containing certain amount of Sm(NO3)3. Then the samples were hydrothermally treated at 180℃in glucose solution. Sm, C co-doped TiO2 was obtained after washing, filtering and calcined at 250℃for 2 h.0.5Sm/C-TiO2 showed the highest activity under the irradiation of visible light. After 5 h irradiation, the degradation of 20 mg/L phenol is about 95%. The addition of samarium restrained the coaggregation of the TiO2 nanoparticles and ensured the small and homogeneous crystallite size. Carbon is incorporated into TiO2 matrix in the form of interstitial and substitutional and new band was formed in the band of TiO2. The synergistic effects of samarium and carbon enhanced the absorption of visible light, improved the separation of photogenerated holes and electrons and thus increased the visible light photocatalytic activity obviously.
     5. Well-ordered mesoporous TiO2 co-doped with nitrogen and ytterbium was successfully synthesized by an evaporation-induced self-assembly (EISA) method. TBOT was used as the titanium precursor, n-Butanol was used as solvent and melainine was used as nitrogen precursor. The as-prepared and calcined mesoporous TiO2 materials were characterized by XRD, TEM, UV-vis absorbance spectroscopy, XPS and N2 adsorption/desorption measurements. After calcination at 350℃, the 3.0Yb/N-TiO2 had the highest surface area (219 m2g-1) and retained 2D hexagonal ordered mesoporous structures. In the presence of 3.0Yb/N-TiO2,75% of 20 mg/L phenol solution was degraded after 10 h visible light irradiation and 10 mg/L rhodamine B (RhB) was degraded completely after 4 h. The significant enhancement in the photocatalytic activity of the 3.0Yb/N-TiO2 is attributed to the synergistic effect of N and Yb. The N dopant extended the absorption to the visible region and the Yb dopant was beneficial for stabilizing the mesoporous structure and restraining the recombination of photogenerated holes and electrons.
引文
[1]Fujishima A., Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature,1972,238(5358):37-38.
    [2]Frank S. N., Bard A. J. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders. J. Phys. Chem.1977,81(15):1484-1488.
    [3]Frank S. N., Bard A. J. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder. J. Am. Chem. Soc.1977,99(1):303-304.
    [4]Wang R., Hashimoto K., Fujishima A., Chikuni M., Kojima E., Kitamura A., Shimohigoshi M., Watanabe T. Light-induced amphiphilic surfaces. Nature.1997, 388:431-432.
    [5]Shifu C., Wei Z., Sujuan Z., Wei L. Preparation, characterization and photocatalytic activity of N-containing ZnO powder. Chem. Eng. J.2009,148(2-3):263-269.
    [6]Gaya U. I., Abdullah A. H., Zainal Z., Hussein M. Z. Photocatalytic treatment of 4-chlorophenol in aqueous ZnO suspensions:Intermediates, influence of dosage and inorganic anions. J. Hazard. Mater.2009,168(1):57-63.
    [7]Sathish M., Viswanathan B., Viswanath R. P. Alternate synthetic strategy for the preparation of CdS nanoparticles and its exploitation for water splitting. Int. J. Hydrogen Energy.2006,31 (7):891-898.
    [8]Kanade K. G., Baeg J.-O., Mulik U. P., Amalnerkar D. P., Kale B. B. Nano-CdS by polymer-inorganic solid-state reaction:Visible light pristine photocatalyst for hydrogen generation. Mater. Res. Bull.2006,41(12):2219-2225.
    [9]Li C., Yuan J., Han B., Shangguan W. Synthesis and photochemical performance of morphology-controlled CdS photocatalysts for hydrogen evolution under visible light. Int. J. Hydrogen Energy.36(7):4271-4279.
    [10]Lin C. F., Wu C. H., Onn Z. N. Degradation of 4-chlorophenol in TiO2, WO3, SnO2, TiO2/WO3 and TiO2/Sn02 systems. J. Hazard. Mater.2008,154(1-3):1033-1039.
    [11]Gondal M. A., Hameed A., Yamani Z. H. Hydrogen generation by laser transformation of methanol using n-type WO3 semiconductor catalyst. J. Mol. Catal. A:Chem.2004, 222(1-2):259-264.
    [12]Sayama K., Hayashi H., Arai T., Yanagida M., Gunji T., Sugihara H. Highly active WO3 semiconductor photocatalyst prepared from amorphous peroxo-tungstic acid for the degradation of various organic compounds. Appl. Catal. B:Environ. 2010,94(1-2):150-157.
    [13]Bandara J., Ranasinghe R. A. S. S. The effect of MgO coating on photocatalytic activity of SnO2 for the degradation of chlorophenol and textile colorants; the correlation between the photocatalytic activity and the negative shift of flatband potential of SnO2. Appl. Catal. A:2007,319:58-63.
    [14]Wang Q.Q., Lin B.Z., Xu B. H., Li X. L., Chen Z. J., Pian X. T. Preparation and photocatalytic properties of mesoporous SnO2-hexaniobate layered nanocomposite. Micropor. Mesopor. Mater.130(1-3):344-351.
    [15]Dvininov E., Ignat M., Barvinschi P., Smithers M. A., Popovici E. New SnO2/MgAl-layered double hydroxide composites as photocatalysts for cationic dyes bleaching. J. Hazard. Mater.2010,177(1-3):150-158.
    [16]Gratzel M. Photoelectrochemical solar cells. Nature.2001,414:338-344.
    [17]Gaya U. I., Abdullah A. H. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide:A review of fundamentals, progress and problems. J Photochem Photobio C:Photochem Rev,2008,9(1):1-12.
    [18]Matthews R. W. Kinetics of photocatalytic oxidation of organic solutes over titanium dioxide. J.Catal.1988, 111(2):264-272.
    [19]Matthews R. W. Purification of water with near--u.v. illuminated suspensions of titanium dioxide. Water Res.1990,24(5):653-660.
    [20]Matthews R. W., McEvoy S. R. Destruction of phenol in water with sun, sand, and photocatalysis. Solar Energy,1992,49(6):507-513.
    [21]Ishibashi K. i., Fujishima A., Watanabe T., Hashimoto K. Quantum yields of active oxidative species formed on TiO2 photocatalyst. J Photochem Photobio A:Chem,2000, 134(1-2):139-142.
    [22]Ni M., Leung M. K. H., Leung D. Y. C., Sumathy K. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew. Sust. Energ. Rev.2007,11(3):401-425.
    [23]Alenzi N., Liao W. S., Cremer P. S., Sanchez-Torres V., Wood T. K., Ehlig-Economides C., Cheng Z. Photoelectrochemical hydrogen production from water/methanol decomposition using Ag/TiO2 nanocomposite thin films. Int. J.Hydrogen Energy,2010, 35(21):11768-11775.
    [24]Teh C. M., Mohamed A. R. Roles of titanium dioxide and ion-doped titanium dioxide on photocatalytic degradation of organic pollutants (phenolic compounds and dyes) in aqueous solutions:A review. J. Alloys Compd.2010.509(5):1648-1660.
    [25]Qamar M., Muneer M., Bahnemann D. Heterogeneous photocatalysed degradation of two selected pesticide derivatives, triclopyr and daminozid in aqueous suspensions of titanium dioxide. J. Environ. Manage.2006,80(2):99-106.
    [26]Qamar M., Muneer M. Comparative photocatalytic study of two selected pesticide derivatives, indole-3-acetic acid and indole-3-butyric acid in aqueous suspensions of titanium dioxide. J. Hazard. Mater.2005,120(1-3):219-227.
    [27]Muneer M., Qamar M., Saquib M., Bahnemann D. W. Heterogeneous photocatalysed reaction of three selected pesticide derivatives, propham, propachlor and tebuthiuron in aqueous suspensions of titanium dioxide. Chemosphere,2005,61(4):457-468.
    [28]Devipriya S., Yesodharan S. Photocatalytic degradation of pesticide contaminants in water. Sol. Energy Mater.Sol.Cells,2005,86(3):309-348.
    [29]Bizani E., Fytianos K., Poulios I., Tsiridis V. Photocatalytic decolorization and degradation of dye solutions and wastewaters in the presence of titanium dioxide. J. Hazard. Mater.2006,136(1):85-94.
    [30]Pekakis P. A., Xekoukoulotakis N. P., Mantzavinos D. Treatment of textile dyehouse wastewater by TiO2 photocatalysis. Water Res.2006,40(6):1276-1286.
    [31]Han F., Kambala V. S. R., Srinivasan M., Rajarathnam D., Naidu R. Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment:A review. Appl. Catal. A:General,2009,359(1-2):25-40.
    [32]Kaneco S., Li N., Itoh K.-k., Katsumata H., Suzuki T., Ohta K. Titanium dioxide mediated solar photocatalytic degradation of thiram in aqueous solution:Kinetics and mineralization. Chem. Eng. J.2009,148(1):50-56.
    [33]Horvath O., Bodnar E., Hegyi J. Photoassisted oxidative degradation of surfactants and simultaneous reduction of metals in titanium dioxide dispersions. Colloids Surf. A:2005, 265(1-3):135-140.
    [34]Dou B., Dupont V., Pan W., Chen B. Removal of aqueous toxic Hg(Ⅱ) by synthesized TiO2 nanoparticles and TiO2/montmorillonite. Chem.Eng. J.2010,166(2):631-638.
    [35]Byrne J. A., Eggins B. R., Byers W., Brown N. M. D. Photoelectrochemical cell for the combined photocatalytic oxidation of organic pollutants and the recovery of metals from waste waters. Appl. Catal. B:Environ.1999,20(2):L85-L89.
    [36]Angelidis T. N., Koutlemani M., Poulios I. Kinetic study of the photocatalytic recovery of Pt from aqueous solution by TiO2, in a closed-loop reactor. Appl. Catal. B:Environ. 1998,16(4):347-357.
    [37]古政荣,陈爱平,戴智铭,古宏晨,陶国忠.活性炭-纳米二氧化钛复合光催化空气净化网的研制.华东理工大学学报,2000,26(04):367-371.
    [38]Jo W. K., Kim J. T. Application of visible-light photocatalysis with nitrogen-doped or unmodified titanium dioxide for control of indoor-level volatile organic compounds. J. Hazard. Mater.2009,164(1):360-366.
    [39]Wei C., Lin W. Y., Zainal Z., Williams N. E., Zhu K., Kruzic A. P., Smith R. L Rajeshwar K. Bactericidal activity of TiO2 photocatalyst in aqueous media:toward a solar-assisted water disinfection system. Environ. Sci. Technol.1994,28(5):934-938.
    [40]Matsunaga T., Okochi M. TiO2-mediated photochemical disinfection of Escherichia coli using optical fibers. Environ. Sci. Technol.1995,29(2):501-505.
    [41]黄文梅.与生物分子结合的TiO2能杀死癌细胞.现代材料动态.2010,(6):14-15
    [42]Sunada K., Kikuchi Y., Hashimoto K., Fujishima A. Bactericidal and detoxification effects of TiO2 thin film photocatalysts. Environ. Sci. Technol.1998,32(5):726-728.
    [43]DeLoach J., Scarel G., Aita C. Correlation between titania film structure and near ultraviolet optical absorption. J. Appl.Phys.1999,85:2377.
    [44]Mills A., Elliott N., Parkin I. P., O'Neill S. A., Clark R. Novel TiO2 CVD films for semiconductor photocatalysis. J. Photochem. Photobiol. A:Chem.,2002, 151(1-3):171-179.
    [45]Gohin M., Allain E., Chemin N., Maurin I., Gacoin T., Boilot J.-P. Sol-gel nanoparticulate mesoporous films with enhanced self-cleaning properties. J Photochem Photobio A:Chem.2010,216(2-3):142-148.
    [46]Negishi N., lyoda T., Hashimoto K., Fujishima A. Preparation of transparent TiO2 thin film photocatalyst and its photocatalytic activity. Chem. Lett.1995,24(9):841-842.
    [47]Bokhimi X., Morales A., Aguilar M., Toledo-Antonio J. A., Pedraza F. Local order in titania polymorphs. Int. J. Hydrogen Energy,2001,26(12):1279-1287.
    [48]Sopyan I., Murasawa S., Hashimoto K., Fujishima A. Highly efficient TiO2 film photocatalyst degradation of gaseous acetaldehyde. Chem. Lett.1994,23(4):723-726.
    [49]Bickley R. I., Gonzalez-Carreno T., Lees J. S., Palmisano L., Tilley R. J. D. A structural investigation of titanium dioxide photocatalysts. J. Solid State Chem.1991, 92(1):178-190.
    [50]Zhang Z., Wang C. C., Zakaria R., Ying J. Y. Role of particle size in nanocrystalline TiO2-based photocatalysts. J. Phys. Chem. B,1998,102(52):10871-10878.
    [51]Furube A., Asahi T., Masuhara H., Yamashita H., Anpo M. Charge carrier dynamics of standard TiO2 catalysts revealed by femtosecond diffuse reflectance spectroscopy. J. Phys. Chem. B,1999,103(16):3120-3127.
    [52]Salvador P., Garcia Gonzalez M., Munoz F. Catalytic role of lattice defects in the photoassisted oxidation of water at (001) n-titanium (Ⅳ) oxide rutile. J Phys Chem. 1992,96(25):10349-10353.
    [53]Heller A., Degani Y., Johnson D., Gallagher P. Controlled suppression or enhancement of the photoactivity of titanium dioxide (rutile) pigment. J Phys Chem.1987, 91(23):5987-5991.
    [54]岳林海,水淼,徐铸德.二氧化钛微晶结构和光催化性能关联性研究.化学学报,1999,57(11):1219-1225.
    [55]Kamat P. V., Fox M. A. Photosensitization of TiO2 colloids by Erythrosin B in acetonitrile. Chem. Phys. Lett.1983,102(4):379-384.
    [56]Patrick B., Kamat P. V. Photoelectrochemistry in semiconductor particulate systems.17. Photosensitization of large-bandgap semiconductors:charge injection from triplet excited thionine into zinc oxide colloids. J Phys Chem.1992,96(3):1423-1428.
    [57]Yang M., Thompson D. W., Meyer G. J. Charge-Transfer Studies of Iron Cyano Compounds Bound to Nanocrystalline TiO2 Surfaces. Inorg. Chem.2002, 41(5):1254-1262.
    [58]Kamat P. V. Photochemistry on nonreactive and reactive (semiconductor) surfaces. Chem. Rev.1993,93(1):267-300.
    [59]Yu J. C., Xie Y, Tang H. Y, Zhang L., Chan H. C., Zhao J. Visible light-assisted bactericidal effect of metalphthalocyanine-sensitized titanium dioxide films. J. Photochem. Photobiol. A:Chem.2003,156(1-3):235-241.
    [60]Iliev V. Phthalocyanine-modified titania--catalyst for photooxidation of phenols by irradiation with visible light. J. Photochem. Photobiol. A:Chem.2002, 151(1-3):195-199.
    [61]Mele G., Ciccarella G., Vasapollo G., Garcia-Lopez E., Palmisano L., Schiavello M. Photocatalytic degradation of 4-nitrophenol in aqueous suspension by using polycrystalline TiO2 samples impregnated with Cu(Ⅱ)-phthalocyanine. Appl. Catal. B: Environ.2002,38(4):309-319.
    [62]Wu Y, Liu H., Zhang J., Chen F. Enhanced photocatalytic activity of nitrogen-doped titania by deposited with gold. J. Phys. Chem. C,2009,113(33):14689-14695.
    [63]崔文权,冯良荣,徐成华,吕绍洁,邱发礼.TiO2薄膜光催化气相甲醇制氢.催化学报,2003,24(12):937-941.
    [64]Sukharev V., Kershaw R. Concerning the role of oxygen in photocatalytic decomposition of salicylic acid in water. J. Photochem. Photobiol. A:Chem.1996, 98(3):165-169.
    [65]Doong R. a., Chang P. Y., Huang C. H. Microstructural and photocatalytic properties of sol-gel-derived vanadium-doped mesoporous titanium dioxide nanoparticles. J. Non-Crystalline Solids,2009,355(45-47):2302-2308.
    [66]Wu J. C. S., Chen C. H. A visible-light response vanadium-doped titania nanocatalyst by sol-gel method. J. Photochem. Photobiol. A:Chem.2004,163(3):509-515.
    [67]Alessandri I., Comini E., Bontempi E., Faglia G., Depero L. E., Sberveglieri G. Cr-inserted TiO2 thin films for chemical gas sensors. Sens. Actuators B:Chem.2007, 128(1:)312-319.
    [68]Zhu J., Deng Z., Chen F., Zhang J., Chen H., Anpo M., Huang J., Zhang L Hydrothermal doping method for preparation of Cr3+-TiO2 photocatalysts with concentration gradient distribution of Cr3+. Appl. Catal. B:Environ.2006, 62(3-4):329-335.
    [69]Wang J., Uma S., Klabunde K. J. Visible light photocatalysis in transition metal incorporated titania-silica aerogels. Appl. Catal. B:Environ.2004,48(2):151-154.
    [70]Li J. X., Xu J. H., Dai W. L., Li H. X., Fan K. N. Direct hydro-alcohol thermal synthesis of special core-shell structured Fe-doped titania microspheres with extended visible light response and enhanced photoactivity. Appl. Catal. B, Environ.2009, 85(3-4):162-170.
    [71]Parna R., Joost U., Nommiste E., Kaambre T., Kikas A., Kuusik I., Hirsimaki M., Kink I., Kisand V. Effect of cobalt doping and annealing on properties of titania thin films prepared by sol-gel process. Appl. Surf. Sci.2011,257(15):6897-6907.
    [72]Yoshinaga M., Yamamoto K., Sato N., Aoki K., Morikawa T., Muramatsu A. Remarkably enhanced photocatalytic activity by nickel nanoparticle deposition on sulfur-doped titanium dioxide thin film. Appl. Catal. B:Environ.2009,87(3-4):239-244.
    [73]Choi W., Termin A., Hoffmann M. R. The Role of Metal Ion Dopants in Quantum-Sized TiO2:Correlation between Photoreactivity and Charge Carrier Recombination Dynamics. J. Phys. Chem.1994,98(51):13669-13679.
    [74]余锡宾,王桂华,罗衍庆,陈秀红,朱建.TiO2微粒的掺杂改性与催化活性.上海师范大学学报(自然科学版),2000,29(01):75-82.
    [75]Tian B., Li C., Gu F., Jiang H., Hu Y., Zhang J. Flame sprayed V-doped TiO2 nanoparticles with enhanced photocatalytic activity under visible light irradiation. Chem. Eng.J.2009,151(1-3):220-227.
    [76]Zhu J., Zheng W., He B., Zhang J., Anpo M. Characterization of Fe-TiO2 photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water. J. Mol. Catal. A:Chem.2004, 216(1):35-43.
    [77]杨秋景,徐自力,谢超,薛宝永,杜尧国,张家骅.铕掺杂对纳米TiO2的光催化活性的影响.高等学校化学学报,2004,25(09):1711-1714.
    [78]屈宜春,井立强,林景升,付宏刚.Eu2O3修饰对纳米TiO2热稳定性及光催化活性的影响.分子催化,2009,23(04):357-361.
    [79]张华星,张玉红,徐永熙,王彦广.铽(Ⅲ)掺杂TiO2纳米材料相转移和光催化性质研究.化学学报,2003,61(11):1813-1818,1696.
    [80]张海禄.稀土掺杂改性TiO2微晶结构及光催化性能.环境科学与技术,2005,28(1):14-15,43
    [81]Shi J. W, Zheng J.T.. Wu P. Preparation, characterization and photocatalytic activities of holmium-doped titanium dioxide nanoparticles. J. Hazard.Mater.2009,161 (I):416-422.
    [82]Xu A. W., Gao Y., Liu H. Q. The Preparation, Characterization, and their Photocatalytic Activities of Rare-Earth-Doped TiO2 Nanoparticles. J.Catal.2002,207(2):151-157.
    [83]梁金生,金宗哲,王静.稀土/纳米TiO2的表面电子结构.中国稀土学报,2002,20(01):74-76.
    [84]Bahtat A., Bouazaoui M., Bahtat M., Garapon C., Jacquier B., Mugnier J. Up-conversion fluorescence spectroscopy in Er3+:TiO2 planar waveguides prepared by a sol-gel process. Journal of Non-Crystalline Solids,1996,202(1-2):16-22.
    [85]Xie Y., Yuan C. Visible-light responsive cerium ion modified titania sol and nanocrystallites for X-3B dye photodegradation. Appl. Catal. B:Environ.2003, 46(2):251-259.
    [86]Xie Y., Yuan C. Photocatalysis of neodymium ion modified TiO2 sol under visible light irradiation. Appl. Surf. Sci.2004,221 (1-4):17-24.
    [87]Li F. B., Li X. Z., Hou M. F. Photocatalytic degradation of 2-mercaptobenzothiazole in aqueous La3+-TiO2 suspension for odor control. Appl. Catal. B:Environ.2004, 48(3):185-194.
    [88]Ranjit K. T., Willner I., Bossmann S. H., Braun A. M. Lanthanide oxide doped titanium dioxide photocatalysts:effective photocatalysts for the enhanced degradation of salicylic acid and t-cinnamic acid. J. Catal.2001,204(2):305-313.
    [89]R.Asahi, Morikawa T., Ohwaki T., Aoki K., Taga Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science.2001,293:269-271.
    [90]Umebayashi T., Yamaki T., Itoh H., Asai K. Band gap narrowing of titanium dioxide by sulfur doping. In:Appl. Phys. Lett.2002,81(3):454-456.
    [91]Umebayashi T., Yamaki T., Yamamoto S., Miyashita A., Tanaka S., Sumita T., Asai K. Sulfur-doping of rutile-titanium dioxide by ion implantation:Photocurrent spectroscopy and first-principles band calculation studies. J. Appl. Phys.2003,93(9):5156-5160.
    [92]Liu S., Chen X. A visible light response TiO2 photocatalyst realized by cationic S-doping and its application for phenol degradation. J.Hazard. Mater.2008, 152(1):48-55.
    [93]Ho W., Yu J. C, Lee S. Low-temperature hydrothermal synthesis of S-doped TiO2 with visible light photocatalytic activity. J. Solid State Chem.2006,179(4):1171-1176.
    [94]Cheng H., Ma J., Zhao Z., Qi L. Hydrothermal preparation of uniform nanosize rutile and anatase particles. Chem. Mater.1995,7(4):663-671.
    [95]吴遵义.C-TiO2的制备及其对三氯乙酸的光催化降解.石油化工,2006,35(05):488-492.
    [96]Ren W., Ai Z., Jia F., Zhang L., Fan X., Zou Z. Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2. Appl. Catal. B:Environ.2007,69(3-4):138-144.
    [97]Wang S. H., Chen T. K., Rao K. K., Wong M. S. Nanocolumnar titania thin films uniquely incorporated with carbon for visible light photocatalysis. Appl. Catal. B: Environ.2007,76(3-4):328-334.
    [98]Khan S. U. M., Al-Shahry M., Ingler Jr W. B. Efficient photochemical water splitting by a chemically modified n-TiO2. Science.2002,297(5590):2243-2245.
    [99]叶勤,吴奎,唐振方.碳掺杂锐钛矿结构二氧化钛(TiO(2-x)Cx)可见光光催化薄膜的制备及表征.人工晶体学报.2006,35(06):1257-1261.
    [100]李青坤,王彪,王强,王锐.碳掺杂二氧化钛光催化性能的第一性原理研究.黑龙江大学自然科学学报.2007,24(04)455-457,462.
    [101]Zaleska A., Grabowska E., Sobczak J. W., Gazda M., Hupka J. Photocatalytic activity of boron-modified TiO2 under visible light:The effect of boron content, calcination temperature and TiO2 matrix. Appl. Catal. B:Environ.2009,89(3-4):469-475.
    [102]Grabowska E., Zaleska A., Sobczak J. W., Gazda M., Hupka J. Boron-doped TiO2: characteristics and photoactivity under visible light. Procedia Chemistry.2009, 1(2):1553-1559.
    [103]Zaleska A., Sobczak J. W., Grabowska E., Hupka J. Preparation and photocatalytic activity of boron-modified TiO2 under UV and visible light. Appl. Catal. B: Environ.2008,78(1-2):92-100.
    [104]于爱敏,武光军,严晶晶,郑春明,章福祥,杨雅莉,关乃佳.水热法合成可见光响应的B掺杂TiO2及其光催化活性.催化学报.2009,30(02)137-141.
    [105]Zhao W., Ma W., Chen C., Zhao J., Shuai Z. Efficient degradation of toxic organic pollutants with NiO3/TiO2-xBx under visible irradiation. J. Am. Chem. Soc.2004, 126(15):4782-4783.
    [106]Sato S. Photocatalytic activity of NOx-doped TiO2 in the visible light region. Chem. Phys. Lett.1986,123(1-2):126-128.
    [107]Chen S. Z., Zhang P. Y., Zhuang D. M., Zhu W. P. Investigation of nitrogen doped TiO2 photocatalytic films prepared by reactive magnetron sputtering. Catal.Commu. 2004,5(11):677-680.
    [108]Hong Y. C., Bang C. U., Shin D. H., Uhm H. S. Band gap narrowing of TiO2 by nitrogen doping in atmospheric microwave plasma. Chem. Phys.Lett.2005, 413(4-6):454-457.
    [109]Mi L., Xu P., Wang P.-N. Experimental study on the bandgap narrowings of TiO2 films calcined under N2 or NH3 atmosphere. Appl. Surf. Sci.2008,255(5):2574-2580.
    [110]Joung S. K., Amemiya T., Murabayashi M., Itoh K. Relation between photocatalytic activity and preparation conditions for nitrogen-doped visible light-driven TiO2 photocatalysts. Appl. Catal. A.2006,312:20-26.
    [111]王金淑,邢朋飞,李莉莉,周美玲.机械化学法N掺杂纳米Ti02的制备与表征.北京工业大学学报.2006,32(07):633-637.
    [112]殷澍Maskazu. K.,张其武,李锐星,唐清,Fumio Saito, Tsugio Sato, Mechanochemical synthesis of visible-light induced photocatalyst with nitrogen and carbon doping过程工程学报.2006,6(03):477-481.
    [113]Burda C., Lou Y., Chen X., Samia A. C. S., Stout J., Gole J. L. Enhanced nitrogen doping in TiO2 nanoparticles. Nano Lett.2003,3(8):1049-1051.
    [114]Di Valentin C., Finazzi E., Pacchioni G., Selloni A., Livraghi S., Paganini M. C., Giamello E. N-doped TiO2:Theory and experiment. Chem. Phys.2007, 339(1-3):44-56.
    [115]Peng F., Cai L., Yu H., Wang H., Yang J. Synthesis and characterization of substitutional and interstitial nitrogen-doped titanium dioxides with visible light photocatalytic activity. J.Solid State Chem.2008,181(1):130-136.
    [116]Li D., Huang H., Chen X., Chen Z., Li W., Ye D., Fu X. New synthesis of excellent visible-light TiO2-xNx photocatalyst using a very simple method. J.Solid State Chem. 2007,180(9):2630-2634.
    [117]Di Valentin C., Pacchioni G., Selloni A., Livraghi S., Giamello E. Characterization of paramagnetic species in N-doped TiO2 powders by EPR spectroscopy and DFT calculations. J. Phys. Chem. B.2005,109(23):11414-11419.
    [118]Nakamura R., Tanaka T., Nakato Y. Mechanism for visible light responses in anodic photocurrents at N-doped TiO2 film electrodes. J. Phys. Chem. B.2004, 108(30):10617-10620.
    [119]Sakatani Y., Nunoshige J., Ando H., Okusako K., Koike H., Takata T., Kondo J. N., Hara M., Domen K. Photocatalytic decomposition of acetaldehyde under visible light irradiation over La3+and N Co-doped TiO2. Chem.Lett.2003,32(12):1156-1157.
    [120]Wei H.Y, Youshi Wu Y.S, Lun N, Zhao F. Preparation and photocatalysis of TiO2 nanoparticles co-doped with nitrogen and lanthanum. J. Mater. Sci. 2004,39(4):1305-1308.
    [121]Shen X. Z., Liu Z. C., Xie S. M., Guo J. Degradation of nitrobenzene using titania photocatalyst co-doped with nitrogen and cerium under visible light illumination. J.Hazard.Mater.2009,162(2-3):1193-1198.
    [122]Huang D. G., Liao S. J., Zhou W. B., Quan S. Q., Liu L., He Z. J., Wan J. B. Synthesis of samarium and nitrogen co-doped TiO2 by modified hydrothermal method and its photocatalytic performance for the degradation of 4-chlorophenol. J.Phys. Chem. Solids.2009,70(5):853-859.
    [123]孙红旗,程友萍,金万勤,徐南平.镧、碳共掺杂TiO2的制备及其可见光催化性能.化工学报.2006,57(07):1570-1574.
    [124]Ranjit K. T., Willner I., Bossmann S. H., Braun A. M. Lanthanide oxide-doped titanium dioxide photocatalysts:novel photocatalysts for the enhanced degradation of p-chlorophenoxyacetic acid. Environ. Sci. Technol.2001,35(7):1544-1549.
    [125]Spurr R. A., Myers H. Quantitative analysis of anatase-rutile mixtures with an X-Ray diffractometer. Anal. Chem.1957,29(5):760-762.
    [126]Ding X., Liu X. Correlation between anatase-to-rutile transformation and grain growth in nanocrystalline titania powders. J. Mater. Res.1998,13(9):2556-2559.
    [127]Irie H., Watanabe Y., Hashimoto K. Nitrogen-Concentration dependence on photocatalytic activity of TiO2-xNx powders. J. Phys. Chem. B,2003, 107(23):5483-5486.
    [128]Vyacheslav N, Kuznetsov, Serpone N. Visible light absorption by various titanium dioxide specimens. J. Phys. Chem. B,2006,110(50):25203-25209.
    [129]Serpone N. Is the band gap of pristine TiO2 Narrowed by anion and cation doping of titanium dioxide in second-generation photocatalysts. J. Phys. Chem. B,2006, 110(48):24287-24293.
    [130]Tauc J. Absorption edge and internal electric fields in amorphous semiconductors. Mater.Res.Bull,1970(5):721-729.
    [131]Madhusudan R. K., CV G R., Manorama S. Preparation, characterization, and spectral studies on nanocrystalline anatase TiO2. J.Solid State Chem.2001,158(2):180-186.
    [132]Kumar P. M., Badrinarayanan S., Sastry M. Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy:correlation to presence of surface states. Thin Solid Films.2000,358(1-2):122-130.
    [133]Wang J., Zhu W., Zhang Y., Liu S. An efficient two-step technique for nitrogen-doped titanium dioxide synthesizing:visible-light-induced photodecomposition of methylene blue. J. Phys. Chem. C.2006,111(2):1010-1014.
    [134]Sathish M., Viswanathan B., Viswanath R., Gopinath C. Synthesis, characterization, electronic structure, and photocatalytic activity of nitrogen-doped TiO2 nanocatalyst. Chem. Mater.2005,17(25):6349-6353.
    [135]Liang C., Li F., Liu C., Lu J., Wang X. The enhancement of adsorption and photocatalytic activity of rare earth ions doped TiO2 for the degradation of Orange I. Dyes and Pigments.2008,76(2):477-484.
    [136]魏绍东,王玉倩.以硫酸氧钛为原料制备纳米二氧化钛.无机盐工业.2006,38(02):6-9.
    [137]Liu T. x., Li F. b., Li X. z. Effects of peptizing conditions on nanometer properties and photocatalytic activity of TiO2 hydrosols prepared by H2TiO3. J.Hazard. Mater.2008, 155(1-2):90-99.
    [138]张云,赵浪,尹光福,周大利,许秀娟.正钛酸胶溶法制纳米TiO2薄膜及性能表征.无机化学学报.2004,20(08):991-995.
    [139]王晓慧,王子忱,李熙,张丽华,肖良质.胶溶法合成TiO2超微粒子.材料科学进展.1992(06):533-537.
    [140]Chen Y., Cai W. M., Yu Y. N., Cui D., Sun X. J. Preparation and fluorescence properties of TiO2:Eu nano-materials. J. Rare Earths.2003,21(1):26-30.
    [141]Zaleta-Alejandre E., Zapata-Torres M., Garcia-Hipolito M., Aguilar-Frutis M., Alarcon-Flores G., Guzman-Mendoza J., Falcony C. Structural and luminescent properties of europium doped TiO2 thick films synthesized by the ultrasonic spray pyrolysis technique. J.Phy. D-Appl. Phys.2009,42(095102):1-7.
    [142]Zhang Y. H., Zhang H. X., Xu Y. X., Wang Y. G. Europium doped nanocrystalline titanium dioxide:preparation, phase transformation and photocatalytic properties. J.Mater. Chem.2003,13(9):2261-2265.
    [143]李金环,康万利,闫文华,郭伊荇,高洪峰,刘忠和.Eu3+掺杂TiO2纳米晶的制备及光催化降解部分水解聚丙烯酰胺.物理化学学报.2008,24(06):1030-1034.
    [144]Xu J. J., Ao Y. H., Fu D. G., Yuan C. W. A simple route for the preparation of Eu, N-codoped TiO2 nanoparticles with enhanced visible light-induced photocatalytic activity. J.Colloid Interface Sci.2008,328(2):447-451.
    [145]Ishibashi K., Fujishima A., Watanabe T., Hashimoto K. Quantum yields of active oxidative species formed on TiO2 photocatalyst. J.Photochem. Photobiol.A:Chem. 2000,134(1-2):139-142.
    [146]Fadley C. S., Shirley D. A. Multiplet Splitting of Metal-Atom Electron Binding Energies. Phys. Rev. A.1970,2(4):1109.
    [147]高濂,郑姗,张青红.纳米氧化钛光催化材料及应用.2002:87.
    [148]Kim J., Wilhelm O., Pratsinis S. E. Packaging of Sol-Gel-made porous nanostructured titania particles by spray drying. J. Am. Cera. Soc.2001, 84(12):2802-2808.
    [149]Liu W., Chen A. P., Lin J. P., Dai Z. M., Qiu W., Zhu M. Q., Usuda S. Preparation of controllable crystalline nano-TiO2 by homogeneous hydrolysis. Chem. Lett.2004, 33(4):390-391.
    [150]Larbot A., Alary J., Guizard C., Cot L., Gillot J. Hydrolysis of zirconium n-propoxide study by gas chromatography. J. non-crystalline solids.1988,104(2-3):161-163.
    [151]Ivanda M., Music S., Popovic S., Gotic M. XRD, Raman and FT-IR spectroscopic observations of nanosized TiO2 synthesized by the sol-gel method based on an esterification reaction. J. mol. Struct.1999,480:645-649.
    [152]Wu J. C. S., Tseng I. H., Chang W. C. Synthesis of titania-supported copper nanoparticles via refined alkoxide sol-gel process. J. Nanopart. Res.2001, 3(2):113-118.
    [153]Tseng I. Effects of sol-gel procedures on the photocatalysis of Cu/TiO2 in CO2 photoreduction. J.Catal.2004,221(2):432-440.
    [154]Tseng I. H., Chang W. C., Wu J. C. S. Photoreduction of CO2 using sol-gel derived titania and titania-supported copper catalysts. Appl. Catal. B:Environ.2002, 37(1):37-48.
    [155]Zhu J., Zhang J., Chen F., Anpo M. Preparation of high photocatalytic activity TiO2 with a bicrystalline phase containing anatase and TiO2 (B). Mater. Lett.2005, 59(27):3378-3381.
    [156]王怡中,符雁,汤鸿霄.甲基橙溶液多相光催化降解研究.环境科学.1998,19(01):1-4.
    [157]Rengaraj S., Li X., Tanner P. A., Pan Z., Pang G. Photocatalytic degradation of methylparathion--an endocrine disruptor by Bi3+-doped TiO2. J. Mol. Catal. A:Chem. 2006,247(1-2):36-43.
    [158]Dai H. X., Ng C. F., Au C. T. SrCl2-Promoted REOx(RE=Ce, Pr, Tb) Catalysts for the selective oxidation of ethane:a study on performance and defect structures for ethene formation. J. Catal.2001,199(2):177-192.
    [159]Feng W., Nansheng D., Helin H. Degradation mechanism of azo dye C. I. reactive red 2 by iron powder reduction and photooxidation in aqueous solutions. Chemosphere. 2000,41(8):1233-1238.
    [160]IUPAC manual of symbols and minology. Pure. Appl. Chem.1972,31:578-638.
    [161]Bach U., Lupo D., Comte P., Moser J., Weiss rtel F., Salbeck J., Spreitzer H., Gr tzel M. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature.1998,395(6702):583-585.
    [162]范晓星,于涛,邹志刚.介孔TiO2的材料合成及其在光催化领域的应用.功能材料.2006,37(1):6-9.
    [163]Yu J. C., Zhang L., Yu J. Rapid synthesis of mesoporous TiO2 with high photocatalytic activity by ultrasound-induced agglomeration. New J. Chem.2002,26(4):416-420.
    [164]Parida K. M., Naik B. Synthesis of mesoporous TiO2-xNx spheres by template free homogeneous co-precipitation method and their photo-catalytic activity under visible light illumination. J.Colloid Interface Sci.2009,333(1):269-276.
    [165]沈俊,田从学,张昭.介孔二氧化钛的非有机模板剂法合成.催化学报. 2006,27(11):949-951.
    [166]陈垚翰,李国亮,张昭.表面接枝法合成Si掺杂介孔SO42-/TiO2.化学反应工程与工艺.2008,24(06):481-487.
    [167]Irie H., Watanabe Y., Hashimoto K. Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst. Chem. Lett.2003,32(8):772-773.
    [168]Shen M., Wu Z., Huang H., Du Y, Zou Z., Yang P. Carbon-doped anatase TiO2 obtained from TiC for photocatalysis under visible light irradiation. Mater. Lett.2006, 60(5):693-697.
    [169]Gu D., Lu Y, Yang B. Facile preparation of micro-mesoporous carbon-doped TiO2 photocatalysts with anatase crystalline walls under template-free condition. Chem. Commun.2008(21):2453-2455.
    [170]An G, Ma W., Sun Z., Liu Z., Han B., Miao S., Miao Z., Ding K. Preparation of titania/carbon nanotube composites using supercritical ethanol and their photocatalytic activity for phenol degradation under visible light irradiation. Carbon.2007, 45(9):1795-1801.
    [171]Lettmann C., Hildenbrand K., Kisch H., Macyk W., Maier W. F. Visible light photodegradation of 4-chlorophenol with a coke-containing titanium dioxide photocatalyst. Appl. Catal. B:Environ.2001,32(4):215-227.
    [172]Cong Y., Chen F., Zhang J., Anpo M. Carbon and nitrogen-codoped TiO2 with high visible light photocatalytic activity. Chem. Lett.2006,35(7):800-801.
    [173]仇雁翎,陈玲,马俊华,赵建夫.光催化氧化苯酚中间产物的分析与降解途径探讨.四川环境.2005,24(04):5-8.
    [174]Ren W. J., Ai Z. H., Jia F. L., Zhang L. Z., Fan X. X., Zou Z. G. Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2. Appl. Catal. B-Environ.2007,69(3-4):138-144.
    [175]Sakthivel S., Kisch H. Daylight photocatalysis by carbon-modified titanium dioxide.. Angew. Chem. Int. Ed.2003,42(40):4908-4911.
    [176]Park Y, Kim W., Park H., Tachikawa T., Majima T., Choi W. Carbon-doped TiO2 photocatalyst synthesized without using an external carbon precursor and the visible light activity. Appl. Catal. B:Environ.2009,91(1-2):355-361
    [177]Su Y., Yu J., Lin J. Vapor-thermal preparation of highly crystallized TiO2 powder and its photocatalytic activity. J. Solid State Chem.2007,180(7):2080-2087.
    [178]Dong F., Wang H., Wu Z. One-Step"Green" synthetic approach for mesoporous C-doped titanium dioxide with efficient visible light photocatalytic activity. J. Phys.Chem. C.2009,113(38):16717-16723.
    [179]Bhattacharyya K., Varma S., Tripathi A. K., Bharadwaj S. R., Tyagi A. K. Effect of vanadia doping and its oxidation state on the photocatalytic activity of TiO2 for gas-phase oxidation of ethene. J. Phys. Chem. C.2008,112(48):19102-19112.
    [180]Kresge C. T., Leonowicz M. E., Roth W. J., Vartuli J. C., Beck J. S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature.1992,359(6397):710-712.
    [181]Antonelli D. M., Ying J. Y. Synthesis of hexagonally packed mesoporous TiO2 by a modified sol-gel method. Angew. Chem. Int. Ed.1995,34(18):2014-2017.
    [182]Yang P., Zhao D., Margolese D. I., Chmelka B. F., Stucky G. D. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature,1998, 396(6707):152-155.
    [183]Yang P., Deng T., Zhao D., Feng P., Pine D., Chmelka B. F., Whitesides G. M., Stucky G. D. Hierarchically ordered oxides. Science.1998,282(5397):2244-2246.
    [184]Cassiers K., Linssen T., Mathieu M., Bai Y. Q., Zhu H. Y., Cool P., Vansant E. F. Surfactant-directed synthesis of mesoporous titania with nanocrystalline anatase walls and remarkable thermal stability. J. Phys. Chem. B.2004,108(12):3713-3721.
    [185]Frindell K. L., Bartl M. H., Popitsch A., Stucky G. D. Sensitized Luminescence of trivalent europium by three-dimensionally arranged anatase nanocrystals in mesostructured titania thin films. Angew. Chem.2002,114(6):1001-1004..
    [186]Frindell K. L., Bartl M. H., Robinson M. R., Bazan G. C., Popitsch A., Stucky G. D. Visible and near-IR luminescence via energy transfer in rare earth doped mesoporous titania thin films with nanocrystalline walls. J. Solid State Chem.2003,172(1):81-88.
    [187]Pal M., Pal U., Gonzalez R. S., Mora E. S., Santiago P. Synthesis and photocatalytic activity of Yb doped TiO2 nanoparticles under visible light. J.Nano Res.2009, 5:193-200.
    [188]Mitoraj D., Kisch H. The nature of nitrogen-modified titanium dioxide photocatalysts active in visible light. Angew. Chem. Int. Ed.2008,47(51):9975-9978.
    [189]Leroy C., Cardinal T., Jubera V., Treguer-Delapierre M., Backov R., Boissiere C., Grosso D., Sanchez C., Viana B., Pelle F. Sol-gel technique for the generation of europium-doped mesoporous and dense thin films:A luminescent study. J. Lumin. 2009,129(12):1641-1645.
    [190]Sibu C. P., Kumar S. R., Mukundan P., Warrier K. G. K. Structural modifications and associated properties of lanthanum oxide doped sol-gel nanosized titanium oxide. Chem. Mater.2002,14(7):2876-2881.
    [191]Dean J.A. Lange's handbook of Chemistry.1999(15 ed.).
    [192]Peng T., Zhao D., Dai K., Shi W., Hirao K. Synthesis of titanium dioxide nanoparticles with mesoporous anatase wall and high photocatalytic activity. J. Phys. Chem. B.2005, 109(11):4947-4952.
    [193]Elder S. H., Gao Y., Li X., Liu J., McCready D. E., Windisch C. F. Zirconia-Stabilized 25A TiO2 anatase crystallites in a mesoporous structure. Chem. Mater.1998, 10(10):3140-3145.
    [194]Watner C D, Riggs W M, E D. L. Handbook of X-Ray Photoelectron Spectroscopy, 1979,98.
    [195]Shao G. S., Zhang X. J., Yuan Z. Y. Preparation and photocatalytic activity of hierarchically mesoporous-macroporous TiO2-xNx. Appl. Catal. B:Environ.2008, 82(3-4):208-218.
    [196]Shiraishi Y., Saito N., Hirai T. Adsorption-driven photocatalytic activity of mesoporous titanium dioxide. J. Am. Chem.Soc.2005,127(37):12820-12822.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700