纳米结构二氧化钛的可控制备和光催化及光电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二氧化钛(TiO2)纳米材料具有成本低廉、无毒无害、应用广泛等优势,在光催化和太阳能电池等领域已经受到了越来越多的关注。同时,纳米材料的维度和尺寸已成为材料制备和应用领域的关键因素。由TiO2纳米结构单元有序排列组成的结构具有特殊的拓扑结构和维度尺寸,因而在光催化和太阳能电池等领域极有可能带来新的优越性能。本论文在对相应领域进行文献普查的基础上,针对传统纳米粉末光催化剂容易团聚和纳米颗粒多晶薄膜光电转换效率受限的问题,展开三维二氧化钛纳米结构和二氧化钛纳米棒阵列薄膜的制备机理研究。用溶剂热法制备得到了不同微观结构的三维TiO2纳米结构和TiO2纳米棒阵列薄膜,在TiO2纳米棒阵列薄膜上沉积CdS纳米颗粒,并对样品的光催化和光电化学性能进行了研究。本文的主要研究结果如下:
     通过改变溶剂极性,在无需添加表面活性剂或其他添加剂的条件下,经过一步溶剂热法合成不同微观结构二氧化钛组装而成的三维纳米结构。在非极性溶剂中,金红石相TiO2纳米棒自组装形成三维蒲公英状二氧化钛结构,在低极性或者极性溶剂中,也就是两亲性溶剂中,锐钛矿相TiO2纳米粒子自组装形成微米球,以纯水为溶剂时,形成TiO2的块状团聚物。给出了不同溶剂中TiO2纳米结构的生长机理。
     揭示了在非极性溶剂体系中,酸性介质、反应温度和反应物浓度对TiO2纳米结构的微观结构、光学性质和光催化活性有着显著影响。以盐酸为酸性介质制备的样品为棒状金红石型TiO2组成的三维蒲公英状结构,以硝酸或醋酸为酸性介质得到的样品均为锐钛矿型TiO2纳米粒子组成的三维球形结构。纳米棒尖端具有锥形结构的TiO2比顶端为平面的纳米棒、纳米棒碎片或纳米颗粒球形结构具有更低的反射率、更高的光吸收强度和更好的光催化活性。阐述了三维TiO2纳米结构在不同生长条件下的生长机理。
     对TiO2纳米棒阵列薄膜的研究表明,纳米棒的几何形貌,特别是尖端结构是决定TiO2薄膜光电极光电化学性能的关键因素。采用溶剂热法在非极性溶剂中制备二氧化钛纳米棒阵列薄膜,通过控制反应物中的钛源浓度来调节纳米棒的几何形貌。具有锥形尖端形貌的二氧化钛单晶纳米棒阵列薄膜具有梯度折射率和内部散射效应,能够获得更低的反射率、更高的光捕获效率、更快的电荷-载流子分离和传输、更好的亲水性和后续的量子点组装。在TiO2纳米棒表面沉积CdS纳米颗粒进行敏化。具有锥形尖端结构的TiO2薄膜光电极经CdS量子点敏化后具有很好的光电化学性能,光电流密度为5.13 mA/cm2,是相应的未敏化样品的25.6倍,IPCE最大值约为22%,出现在400-500 nm的可见光区。
Titanium dioxide (TiC2) nano-materials has attracted considerable attention due to its low-cost, nontoxicity and widespread applications. Meanwhile, dimensionality and size of the materials have been regarded as critical factors in the areas of material preparation and application. TiO2 ordered nanostructures has caused great interest and is expected to have potential applications in photocatalysts and solar cells due to its unique topological structure and dimensionality. Traditional nanometer-scale powders are likely to aggregate. The conversion efficiency of polycrystalline films is limited. In this work, three-dimensional (3D) TiO2 nanostructures with various microstructures and TiO2 nanorod array films have been successfully synthesized via a surfactant-free and single-step solvothermal route. CdS nanoparticles were deposited on the TiO2 nanorod array films. Growth mechanisms of the TiO2 nanostructures and films were discussed. The photocatalytic and photoelectrochemical properties of the samples were investigated. The main results are as follows.
     Three-dimensional TiO2 nanostructures with various microstructures have been successfully synthesized by altering the solvent via a surfactant-free and single-step solvothermal route.3D dandelion-like TiO2 structures self-assembled of nanorods were synthesized in non-polar solvent based on water-nonpolar solvent interface. Microspheres composed of nanoparticles are obtained using low polar or polar solvent, which are also amphiphilic solvents. Only bulky aggregated TiO2 nanoparticles were obtained when pure water is used as the solvent due to the fast hydrolysis of titanium precursor. Mechanisms of the self-assembly of 3D TiO2 structures indifferent solvents were proposed.
     Acid media, reaction temperatures and reactant concentrations have highly impact on the microstructure, optical properties and photocatalytic activity of the 3D TiO2 nanostructures.3D dandelion-like microspheres assembled of radial rutile nanorods are obtained in the sample prepared with HC1. For the products derived from either HNO3 or HAc,3D spheres composed of anatase nanoparticles are present.3D dandelion-like structures with tapered tips showed lower reflectance, more efficient light harvesting, higher surface area and consequently higher photocatalytic activity compared with those with flat tops and fragment of nanorod sectors. The growth mechanism of the 3D dandelion-like nanostructures under various preparation conditions was discussed.
     The results indicated that the rod geometries, especially the tip morphologies, of the TiO2 nanorod array films were found to be crucial to photoelectrochemical performance of the film electrodes. TiO2 nanorod array film electrodes with different rod geometries were fabricated via solvothermal route. By controlling the solution growth conditions, the rod geometries, especially tip structures, of TiO2 were tuned. The vertical aligned hierarchical nanorod array s possessed conically shaped tip geometry, which was favorable for film electrode due to the reduced reflectance, enhanced light harvesting, fast charge carrier separation and transfer, suppression of carrier recombination, sufficient electrolyte penetration and subsequent efficient quantum dot assembly. CdS quantum dots were deposited on the TiO2 nanorod array films. CdS quantum dots sensitized TiO2 film electrode with tapered tips exhibited an enhanced photoelectrochemical performance, a photocurrent intensity of 5.13 mA/cm2 at a potential of 0 V versus saturated calomel electrode and IPCE of 22%in the visible light region from 400 to 500 nm.
引文
[1]A. Fujishima, K. Honda. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature,1972,238(5358):37-38.
    [2]D.Q. Zhang, G.S. Li, F. Wang, J.C. Yu. Green Synthesis of a Self-assembled Rutile Mesocrystalline Photocatalyst. Crystengcomm,2010,12(6):1759-1763.
    [3]X.B. Chen, L. Liu, P.Y. Yu, S.S. Mao. Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals. Science,2011,331(6018):746-750.
    [4]G.H. Tian, Y.J. Chen, W. Zhou, K. Pan, C.G. Tian, X.R. Huang, H.G. Fu.3D Hierarchical Flower-like TiO2 Nanostructure:Morphology Control and Its Photocatalytic Property. Crystengcomm,2011,13(8):2994-3000.
    [5]W. Wu, X.H. Xiao, S.F. Zhang, F. Ren, C.Z. Jiang. Facile Method to Synthesize Magnetic Iron Oxides/TiO2 Hybrid Nanoparticles and Their Photodegradation Application of Methylene blue. Nanoscale Res. Lett.,2011,6.
    [6]X. Chen, S.S. Mao. Titanium Dioxide Nanomaterials:Synthesis, Properties, Modifications, and Applications. Chem. Rev.,2007,107(7):2891-2959.
    [7]R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga. Visible-light Photocatalysis in Nitrogen-doped Titanium Oxides. Science,2001,293(5528):269-271.
    [8]H. Li, G.L. Zhao, G.R. Han, B. Song. Hydrophilicity and Photocatalysis of Ti1-xVxO2 Films Prepared by Sol-gel Method. Surf. Coat. Technol.,2007,201(18):7615-7618.
    [9]F. Di Fonzo, C.S. Casari, V. Russo, M.F. Brunella, A.L. Bassi, C.E. Bottani. Hierarchically Organized Nanostructured TiO2 for Photocatalysis Applications. Nanotechnology,2009,20(1): 015604.
    [10]N. Serpone, D. Lawless, R. Khairutdinov. Size Effects on the Photophysical Properties of Colloidal Anatase TiO2 Particles-Size Quantization or Direct Transitions in This Indirect Semiconductor. J. Phys. Chem.,1995,99(45):16646-16654.
    [11]Z.B. Zhang, C.C. Wang, R. Zakaria, J.Y. Ying. Role of Particle Size in Nanocrystalline TiO2-based Photocatalysts. J. Phys. Chem. B,1998,102(52):10871-10878.
    [12]K. Rajeshwar, N.R. de Tacconi, C.R. Chenthamarakshan. Semiconductor-based Composite Materials:Preparation, Properties, and Performance. Chem. Mater.,2001,13(9):2765-2782.
    [13]A. Di Paola, G. Marci, L. Palmisano, M. Schiavello, K. Uosaki, S. Ikeda, B. Ohtani. Preparation of Polycrystalline TiO2 Photocatalysts Impregnated with Various Transition Metal Ions:Characterization and Photocatalytic Activity for the Degradation of 4-nitrophenol. J. Phys. Chem. B,2002,106(3):637-645.
    [14]D.R. Rolison. Catalytic nanoarchitectures-The Importance of Nothing and the Unimportance of Periodicity. Science,2003,299(5613):1698-1701.
    [15]X.C. Wang, J.C. Yu, C.M. Ho, Y.D. Hou, X.Z. Fu. Photocatalytic Activity of a Hierarchically Macro/mesoporous Titania. Langmuir,2005,21(6):2552-2559.
    [16]B. Oregan, M. Gratzel. A Low-Cost, High-Efficiency Solar-Cell Based on Dye-Sensitized Colloidal TiO2 Films. Nature,1991,353(6346):737-740.
    [17]X.S. Peng, A.C. Chen. Aligned TiO2 Nanorod Arrays Synthesized by Oxidizing Titanium with Acetone. J. Mater. Chem.,2004,14(16):2542-2548.
    [18]H. Wang, Y.S. Bai, H. Zhang, Z.H. Zhang, J.H. Li, L. Guo. CdS Quantum Dots-Sensitized TiO2 Nanorod Array on Transparent Conductive Glass Photoelectrodes. J. Phys. Chem. C. 2010,114(39):16451-16455.
    [19]X.N. Wang, Y.M. Xu, H.J. Zhu, R. Liu, H. Wang, Q.A. Li. Crystalline Te Nanotube and Te Nanorods-on-CdTe Nnanotube Arrays on ITO via a ZnO Nanorod Templating-reaction. Crystengcomm,2011,13(8):2955-2959.
    [20]Y. Huang, X.F. Duan, Q.Q. Wei, CM. Lieber. Directed Assembly of One-dimensional Nanostructures into Functional Networks. Science,2001,291(5504):630-633.
    [21]S.Y. Yang, A.S. Nair, R. Jose, S. Ramakrishna. Electrospun TiO2 Nanorods Assembly Sensitized by CdS Quantum Dots:a Low-cost Photovoltaic Material. Energy Environ. Sci., 2010,3(12):2010-2014.
    [22]i.C. Lee, T.G. Kim, W. Lee, S.H. Han, Y.M. Sung. Growth of CdS Nanorod-coated TiO2 Nanowires on Conductive Glass for Photovoltaic Applications. Cryst Growth Des,2009, 9(10):4519-4523.
    [23]C. Liu, H.P. He, L.W. Sun, Z. Xu, Z.Z. Ye. Identification of About 100-meV Acceptor Level in ZnO Nanostructures by Photoluminescence. Appl. Phys. A,2011,104(2):695-699.
    [24]M. Daranyi, T. Csesznok, A. Kukovecz, Z. Konya, I. Kiricsi, P.M. Ajayan, R. Vajtai. Layer-by-layer Assembly of TiO2 Nanowire/carbon Nanotube Films and Characterization of Their Photocatalytic Activity. Nanotechnology,2011,22(19).
    [25]Y.B. Tang. Z.H. Chen, H.S. Song, C.S. Lee, H.T. Cong, H.M. Cheng, W.J. Zhang, I. Bello, S.T. Lee. Vertically Aligned p-Type Single-Crystalline GaN Nanorod Arrays on n-Type Si for Heterojunction Photovoltaic Cells. Nano. Lett.,2008,8(12):4191-4195.
    [26]杨柯,刘阳,尹虹.纳米二氧化钛的制备技术研究.中国陶瓷,2004,40(4):8-12.
    [27]刘守新,刘鸿.光催化及光电催化基础与应用.北京化学工业出版社材料科学与工程出版中心,2006:44-50.
    [28]高濂,郑珊,张青红等纳米氧化钛光催化材料及其应用.北京:化学工业出版社,2002.
    [29]S.K. Han, T.M. Hwang, Y. Yoon, J.W. Kang. Evidence of Singlet Oxygen and Hydroxyl Radical Formation in Aqueous Goethite Suspension Using Spin-trapping Electron Paramagnetic Resonance (EPR). Chemosphere,2011,84(8):1095-1101.
    [30]T. Sugimoto, X.P. Zhou, A. Muramatsu. Synthesis of Uniform Anatase TiO2 Nanoparticles by Gel-sol Method-1. Solution Chemistry of Ti(OH)(n){(4-n)+1} Complexes. J. Colloid Interf. Sci., 2002,252(2):339-346.
    [31]T. Sugimoto, X.P. Zhou. Synthesis of Uniform Anatase TiO2 Nanoparticles by the Gel-sol Method-2. Adsorption of OH'Ions to Ti(OH)(4) Gel and TiO2 Particles. J. Colloid Interf. Sci.,2002,252(2):347-353.
    [32]J.Y. Wang, X.J. Han, W. Zhang, Z.K. He, C. Wang, R.X. Cai, Z.H. Liu. Controlled Growth of Monocrystalline Rutile Nanoshuttles in Anatase TiO2 Particles under Mild conditions. Crystengcomm,2009,11(4):564-566.
    [33]J.H. Wu, S.C. Hao, J.M. Lin, M.L. Huang, Y.F. Huang, Z. Lan, P.J. Li. Crystal Morphology of Anatase Titania Nanocrystals Used in Dye-sensitized Solar Cells. Cryst. Growth Des.,2008, 8(1):247-252.
    [34]J.Y. Feng, M.C. Yin, Z.Q. Wang, S.C. Yan, L.J. Wan, Z.S. Li, Z.G. Zou. Facile Synthesis of Anatase TiO2 Mesocrystal Sheets with Dominant{001} Facets Based on Topochemical Conversion. Crystengcomm,2010,12(11):3425-3429.
    [35]M. Andersson, L. Osterlund, S. Ljungstrom, A. Palmqvist. Preparation of Nanosize Anatase and Rutile TiO2 by Hydrothermal Treatment of Microemulsions and Their Activity for Photocatalytic Wet Oxidation of Phenol. J. Phys. Chem. B,2002,106(41):10674-10679.
    [36]X.Y. Hu, T. Zhang, Z. Jin, S.Z. Huang, M. Fang, Y.C. Wu, L. Zhang. Single-Crystalline Anatase TiO2 Dous Assembled Micro-Sphere and Their Photocatalytic Activity. Cryst. Growth Des.,2009,9(5):2324-2328.
    [37]Z.G. Xiong, H.Q. Dou, J.H. Pan, J.Z. Ma, C. Xu, X.S. Zhao. Synthesis of Mesoporous Anatase TiO2 with a Combined Template Method and Photocatalysis. Crystengcomm,2010. 12(11):3455-3457.
    [38]H.X. Li, Z.F. Bian, J. Zhu, D.Q. Zhang, G.S. Li, Y.N. Huo, H. Li, Y.F. Lu. Mesoporous Titania Spheres with Tunable Chamber Stucture and Enhanced Photocatalytic Activity. J. Am. Chem. Soc,2007,129(27):8406-+.
    [39]T.Y. Zhao, Z.Y. Liu, K. Nakata, S. Nishimoto, T. Murakami, Y. Zhao, L. Jiang, A. Fujishima. Multichannel TiO2 Hollow Fibers with Enhanced Photocatalytic Activity. J. Mater. Chem., 2010,20(24):5095-5099.
    [40]X.L. Bal, B. Xie, N. Pan, X.P. Wang, H.Q. Wang. Novel Three-dimensional Dandelion-like TiO2 Structure with High Photocatalytic Activity. J. Solid State Chem.,2008,181(3): 450-456.
    [41]J.G. Yu, Q.J. Xiang, J.R. Ran, S. Mann. One-step Hydrothermal Fabrication and Photocatalytic Activity of Surface-Fluorinated TiO2 Hollow Microspheres and Tabular Anatase Single Micro-crystals with High-energy Facets. Crystengcomm,2010,12(3): 872-879.
    [42]G. Liu, X.X. Yan, Z.G. Chen, X.W. Wang, L.Z. Wang, G.Q. Lu, H.M. Cheng. Synthesis of Rutile-anatase Core-shell Structured TiO2 for Photocatalysis. J. Mater. Chem.,2009,19(36): 6590-6596.
    [43]A.D. Yoffe. Low-dimensional Systems:Quantum Size Effects and Electronic Properties of Semiconductor Microcrystallites (Zero-dimensional Systems) and Some Quasi-two-dimensional Systems. Adv. Phys.,2002,51(2):799-890.
    [44]N. Moloto, M.J. Moloto, N.J. Coville, S.S. Ray. Optical and structural characterization of nickel selenide nanoparticles synthesized by simple methods. J Cryst Growth,2009,311(15): 3924-3932.
    [45]C.C. Chen, A.B. Herhold, C.S. Johnson, A.P. Alivisatos. Size Dependence of Structural Metastability in Semiconductor Nanocrystals. Science,1997,276(5311):398-401.
    [46]J.H. Castillo-Ledezma, J.L.S. Salas, A. Lopez-Malo, E.R. Bandala. Effect of pH. Solar Irradiation, and Semiconductor Concentration on the Photocatalytic Disinfection of Escherichia Coli in Water Using Nitrogen-doped TiO2. Eur. Food Res. Technol.,2011,233(5): 825-834.
    [47]D. Monllor-Satoca, W. Choi. Comment on "Photocatalytic Oxidation of Arsenite over TiO2: Is Superoxide the Main Oxidant in Normal Air-Saturated Aqueous Solutions?". Environ. Sci. Technol.,2011,45(22):9816-9817.
    [48]F. Lin, D.G. Wang, Z.X. Jiang, Y. Ma, J. Li, R.G. Li, C. Li. Photocatalytic Oxidation of Thiophene on BiVO4 with Dual Co-catalysts Pt and RuO2 under Visible Light Irradiation Using Molecular Oxygen as Oxidant. Energy Environ. Sci.,2012,5(4):6400-6406.
    [49]S.R. Patil, B.H. Hameed, A.S. Skapin, U.L. Stangar. Alternate Coating and Porosity as Dependent Factors for the Photocatalytic Activity of Sol-gel Derived TiO2 Films. Chem. Eng. J.,2011,174(1):190-198.
    [50]C.X. Huang, K.R. Zhu, M.Y. Qi, Y.L. Zhuang, C. Cheng. Preparation and Photocatalytic Activity of Bicrystal Phase TiO2 Nanotubes Containing TiO2-B and Anatase. J. Phys. Chem. Solids,2012,73(6):757-761.
    [51]V.A.N. de Carvalho, R.A.D. Luz, B.H. Lima, F.N. Crespilho, E.R. Leite, F.L. Souza. Highly Oriented Hematite Nanorods Arrays for Photoelectrochemical Water Splitting. J. Power Sources,2012,205(525-529.
    [52]S. Palmas, A. Da Pozzo, F. Delogu, M. Mascia, A. Vacca, G. Guisbiers. Characterization of TiOi Nanotubes Obtained by Electrochemical Anodization in Organic Electrolytes. J. Power Sources,2012,204(265-272.
    [53]J. Yang, K.Q. Wang, L. Liang, L.G. Feng, Y.W. Zhang, B. Sun, W. Xing. A Hybrid Photoelectrochemical Biofuel Cell Based on the Pphotosensitization of a Chlorophyll Derivative on TiO2 Film. Catal. Commun.,2012,20(76-79.
    [54]Z.H. Zhang, P. Wang. Optimization of Photoelectrochemical Water Splitting Performance on Hierarchical TiO2 Nanotube Arrays. Energy Environ. Sci.,2012,5(4):6506-6512.
    [55]M. Gratzel. Photoelectrochemical Cells. Nature,2001,414(6861):338-344.
    [56]J.E. Boercker, E. Enache-Pommer, E.S. Aydil. Growth Mechanism of Titanium Dioxide Nanowires for Dye-sensitized Solar Cells. Nanotechnology,2008,19(9).
    [57]P. Charoensirithavorn, Y. Ogomi, T. Sagawa, S. Hayase, S. Yoshikawa. A Facile Route to TiO2 Nanotube Arrays for Dye-sensitized Solar Cells. J. Cryst. Growth,2009,311(3): 757-759.
    [58]J. Das, F.S. Freitas, i.R. Evans, A.F. Nogueira, D. Khushalani. A Facile Nonaqueous Route for Fabricating Titania Nanorods and Their Viability in Quasi-solid-state Dye-sensitized Solar Cells. J. Mater. Chem.,2010,20(21):4425-4431.
    [59]L. De Marco, M. Manca, R. Giannuzzi, F. Malara, G. Melcarne, G. Ciccarella, I. Zama, R. Cingolani, G. Gigli. Novel Preparation Method of TiovNanorod-Based Photoelectrodes for Dye-Sensitized Solar Cells with Improved Light-Harvesting Efficiency. J. Phys. Chem. C, 2010,114(9):4228-4236.
    [60]M. Hocevar, M. Berginc, M. Topic, U.O. Krasovec. Sponge-like TiO2 Layers for Dye-sensitized Solar Cells. J. Sol-Gel Sci. Techn.,2010,53(3):647-654.
    [61]X.D. Li, D.W. Zhang, Z. Sun, Y.W. Chen, S.M. Huang. Metal-free Indoline-dye-sensitized TiO2 Nanotube Solar Cells. Microelectron. J.,2009,40(1):108-114.
    [62]S.M. Reda, S.A. El-Sherbieny. Dye-sensitized Nanocrystalline CdS and ZnS Solar Cells with Different Organic Dyes. J. Mater. Res.,2010,25(3):522-528.
    [63]H.J. Tian, L.H. Hu, C.N. Zhang, S.H. Chen, J.A. Sheng, L. Mo, W.Q. Liu, S.Y. Dai. Enhanced Photovoltaic Performance of Dye-sensitized Solar Cells Using a Highly Crystallized Mesoporous TiO2 Electrode Modified by Boron Doping. J. Mater. Chem.,2011,21(3): 863-868.
    [64]S. Uchida, R. Chiba, M. Tomiha, N. Masaki, M. Shirai. Application of Titania Nanotubes to a Dye-sensitized Solar Cell. Electrochemistry,2002,70(6):418-420.
    [65]S. Uchida, R. Chiba, M. Tomiha, N. Masaki, M. Shirai. Hydrothermal Synthesis of Titania Nanotube and Its Application for Dye-sensitized Solar Cell. Nanotechnology in Mesostructured Materials,2003,146:791-794.
    [66]Q.J. Yu, Y.H. Wang, Z.H. Yi, N.N. Zu, J. Zhang, M. Zhang, P. Wang. High-Efficiency Dye-Sensitized Solar Cells:The Influence of Lithium Ions on Exciton Dissociation, Charge Recombination, and Surface States. ACSNano,2010,4(10):6032-6038.
    [67]J.M. Kroon, N.J. Bakker, H.J.P. Smit, P. Liska, K.R. Thampi, P. Wang, S.M. Zakeeruddin. M. Gratzel, A. Hinsch, S. Hore, U. Wurfel, R. Sastrawan, J.R. Durrant, E. Palomares, H. Pettersson, T. Gruszecki, J. Walter, K. Skupien, G.E. Tulloch. Nanocrystalline Dye-sensitized Solar Cells Having Maximum Performance. Prog. Photovoltaics,2007,15(1):1-18.
    [68]S. Ruhle, M. Shalom, A. Zaban. Quantum-Dot-Sensitized Solar Cells. ChemPhysChem,2010, 11(11):2290-2304.
    [69]J.H. Noh, B. Ding, H.S. Han, J.S. Kim, J.H. Park, S.B. Park, H.S. Jung, J.K. Lee, K.S. Hong. Tin Doped Indium Oxide Core-TiO2 Shell Nanowires on Stainless Steel Mesh for Flexible Photoelectrochemical Cells. Appl. Phys. Lett.,2012,100(8).
    [70]M.X. Sun, X.Y. Zhang, J. Li, X.L. Cui, D.L. Sun, Y.H. Lin. Thermal Formation of Silicon-doped TiO2 Thin Films with Enhanced Visible Light Photoelectrochemical Response. Electrochem. Commun.,2012,16(1):26-29.
    [71]M. Xu, P. Da, H. Wu, D. Zhao, G. Zheng. Controlled Sn-doping in TiO2 Nanowire Photoanodes with Enhanced Photoelectrochemical Conversion. Nano. Lett.,2012,12(3): 1503-1508.
    [72]Y.Y. Liu, Y. Li, W.Z. Li, S. Han, C.J. Liu. Photoelectrochemical Properties and Photocatalytic Activity of Nitrogen-doped Nanoporous WO? Photoelectrodes under Visible Light. Appl. Surf. Sci.,2012,258(12):5038-5045.
    [73]D.V. Portan, K. Papaefthymiou, E. Arvanita, G. Jiga, G.C. Papanicolaou. A Combined Statistical and Microscopic Analysis of TiO2 Nanotubes Synthesized under Different Electrochemical Anodizing Conditions. J. Mater. Sci.,2012,47(11):4696-4705.
    [74]B.S. Liu, K. Nakata, S.H. Liu, M. Sakai, T. Ochiai, T. Murakami, K. Takagi, A. Fujishima. Theoretical Kinetic Analysis of Heterogeneous Photocatalysis by TiO2 Nanotube Arrays:the Effects of Nanotube Geometry on Photocatalytic Activity. J. Phys. Chem. C,2012,116(13): 7471-7479.
    [75]A.G. Macedo, L.L. Mattos, E.R. Spada, R.B. Serpa, C.S. Campos, I.R. Grova, L. Ackcelrud, F.T. Reis, M.L. Sartorelli, L.S. Roman. Preparation of Porous Titanium Oxide Films onto Indium Tin Oxide for Application in Organic Photovoltaic Devices. Appl. Surf. Sci.,2012, 258(14):5375-5379.
    [76]F.Y. Zhao, G.S. Tang, J.B. Zhang, Y. Lin. Improved Performance of CdSe Quantum Dot-sensitized TiO2 Thin Film by Surface Treatment with TiCl4. Electrochim. A eta,2012, 62(396-401.
    [77]B.C. Fitzmorris, G.K. Larsen, D.A. Wheeler, Y.P. Zhao, J.Z. Zhang. Ultrafast Charge Transfer Dynamics in Polycrystalline CdSe/TiO2 Nanorods Prepared by Oblique Angle Codeposition. J. Phys. Chem. C,2012,116(8):5033-5041.
    [78]Y.H. Zhang, J. Zhu, X.C. Yu, J.F. Wei, L.H. Hu, S.Y. Dai. The Optical and Electrochemical Properties of CdS/CdSe Co-sensitized TiO2 Solar Cells Prepared by Successive Ionic Layer Adsorption and Reaction Processes. Sol. Energy,2012,86(3):964-971.
    [79]H. Jin, S. Choi, R. Velu, S. Kim, H.J. Lee. Preparation of Multilayered CdSe Quantum Dot Sensitizers by Electrostatic Layer-by-Layer Assembly and a Series of Post-treatments toward Efficient Quantum Dot-Sensitized Mesoporous TiO2 Solar Cells. Langmuir,2012,28(12): 5417-5426.
    [80]R. Narayanan, B.N. Reddy, M. Deepa. Facile Charge Propagation in CdS Quantum Dot Cells. J. Phys. Chem. C,2012,116(12):7189-7199.
    [81]K.K. Manga, J.Z. Wang, M. Lin, J. Zhang, M. Nesladek, V. Nalla, W. Ji, K.P. Loh. High-Performance Broadband Photodetector Using Solution-Processible PbSe-TiO2-Graphene Hybrids. Adv. Mater.,2012,24(13):1697-1702.
    [82]E.H. Kong, Y.J. Chang, Y.C. Park, Y.H. Yoon, H.J. Park, H.M. Jang. Sea Urchin TiO2-nanoparticle Hybrid Composite Photoelectrodes for CdS/CdSe/ZnS Quantum-dot-sensitized Solar Cells. Phys. Chem. Chem. Phys.,2012,14(13):4620-4625.
    [83]Z.S. Yang, H.T. Chang. CdHgTe and CdTe Quantum Dot Solar Cells Displaying an Energy Conversion Efficiency Exceeding 2%. Sol. Energ. Mat. Sol. C,2010,94(12):2046-2051.
    [84]S.L. Cheng, W.Y. Fu, B.Y. Hai, L.N. Zhang, J.W. Ma, H. Zhao, M.L. Sun, L.H. Yang. Photoelectrochemical Performance of Multiple Semiconductors (CdS/CdSe/ZnS) Cosensitized TiO2 Photoelectrodes. J. Phys. Chem. C,2012,116(3):2615-2621.
    [85]D.B. Strasfeld, A. Dorn, D.D. Wanger, M.G. Bawendi. Imaging Schottky Barriers and Ohmic Contacts in PbS Quantum Dot Devices. Nano. Lett.,2012,12(2):569-575.
    [86]L.D. Wang, D.X. Zhao, Z.S. Su, D.Z. Shen. Hybrid Polymer/ZnO Solar Cells Sensitized by PbS Quantum Dots. Nanoscale Res. Lett.,2012,7(1-6.
    [87]A. Zaban, O.I. Micic, B.A. Gregg, A.J. Nozik. Photosensitization of Nanoporous TiO2 Electrodes with InP Quantum Dots. Langmuir,1998,14(12):3153-3156.
    [88]J.M. Nedeljkovic, O.I. Micic, S.P. Ahrenkiel, A. Miedaner, A.J. Nozik. Growth of InP Nanostructures via Reaction of Indium Droplets with Phosphide Ions:Synthesis of InP Quantum Rods and lnP-TiO2 Composites. J. Am. Chem. Soc,2004,126(8):2632-2639.
    [89]J.L. Blackburn, D.C. Selmarten, R.J. Ellingson, M. Jones, O. Micic, A.J. Nozik. Electron and Hole Transfer from Indium Phosphide Quantum Dots. J. Phys. Chem. B,2005,109(7): 2625-2631.
    [90]L.M. Peter, K.G.U. Wijayantha, D.J. Riley, J.P. Waggett. Band-edge Tuning in Self-assembled Layers of Bi2S3 Nanoparticles Used to Photosensitize Nanocrystalline TiO2. J. Phys. Chem. B, 2003,107(33):8378-8381.
    [91]C.E. Patrick, F. Giustino. Structural and Electronic Properties of Semiconductor-Sensitized Solar-Cell Interfaces. Adv. Funct. Mater.,2011,21(24):4663-4667.
    [92]S. Chatterjee. Titania-germanium Nanocomposite for Photo-thermo-electric Application. Nanotechnology,2008,19(26).
    [93]S. Chatterjee. Titania-germanium Nanocomposite as a Photovoltaic Material. Sol. Energy, 2008,82(2):95-99.
    [94]A.J. Nozik. Quantum Dot Solar Cells. Physica E,2002,14(1-2):115-120.
    [95]H. Li, G.L. Zhao, Z.J. Chen, G.R. Han, B. Song. Low Tmperature Synthesis of Visible Light-driven Vanadium Doped Titania Photocatalyst. J. Colloid Interf. Sci.,2010,344(2): 247-250.
    [96]G.L. Zhao, H. Kozuka, H. Lin, T. Yoko. Sol-gel Preparation of Ti1-xVxO2 Solid Solution Film Electrodes with Conspicuous Photoresponse in the Visible Region. Thin Solid Films,1999, 339(1-2):123-128.
    [97]G.L. Zhao, H. Kozuka, H. Lin, M. Takahashi, T. Yoko. Preparation and Photoelectrochemical Properties of Ti1-xVxO2 Solid Solution Thin Film Photoelectrodes with Gradient Bandgap. Thin Solid Films,1999,340(1-2):125-131.
    [98]T.L. Ma, M. Akiyama, E. Abe, I. Imai. High-efficiency Dye-sensitized Solar Cell Based on a Nitrogen-doped Nanostructured Titania Electrode. Nano. Lett.,2005,5(12):2543-2547.
    [99]H. Li, G.L. Zhao, Z.J. Chen, B. Song, G.R. Han. TiO2-Ag Nanocomposites by Low-Temperature Sol-Gel Processing. J. Am. Ceram. Soc,2010,93(2):445-449.
    [100]G.L. Zhao, H. Kozuka, T. Yoko. Effects of the Incorporation of Silver and Gold Nanoparticles on the Photoanodic Properties of Rose Bengal Sensitized TiO2 Film Electrodes Prepared by Sol-Gel Method. Sol. Energ. Mat. Sol. C,1997,46(3):219-231.
    [101]G.L. Zhao, S. Utsumi, H. Kozuka, T. Yoko. Photoelectrochemical Properties of Sol-gel-derived Anatase and Rutile TiO2 Films. J. Mater. Sci.,1998,33(14):3655-3659.
    [102]M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P.D. Yang. Nanowire Dye-sensitized Solar Cells. Nat. Mater.,2005,4(6):455-459.
    [103]P. Hoyer. Formation of a Titanium Dioxide Nanotube array. Langmuir.1996.12(6): 1411-1413.
    [104]Z. Miao, D.S. Xu, J.H. Ouyang, G.L. Guo, X.S. Zhao, Y.Q. Tang. Electrochemically Induced Sol-gel Preparation of Single-crystalline TiO2 Nanowires. Nano. Lett.,2002,2(7):717-720.
    [105]V. Zwilling, M. Aucouturier, E. Darque-Ceretti. Anodic Oxidation of Titanium and TA6V Alloy in Chromic Media. An Electrochemical Approach. Electrochim. Acta,1999,45(6): 921-929.
    [106]王道爱,刘盈,王成伟,周峰.阳极氧化法制备TiO2纳米管阵列膜及其应用.化学进展,2010,22(6):1035-1043.
    [107]D. Gong, C.A. Grimes, O.K. Varghese, W.C. Hu, R.S. Singh, Z. Chen, E.C. Dickey. Titanium Oxide Nanotube Arrays Prepared by Anodic Ooxidation. J. Mater. Res.,2001, 16(12):3331-3334.
    [108]G.K.. Mor, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes. Enhanced Photocleavage of Water Using Titania Nanotube Arrays. Nano. Lett.,2005,5(1):191-195.
    [109]E. Hosono, S. Fujihara, K. Kakiuchi, H. Imai. Growth of Submicrometer-scale Rectangular Parallelepiped Rutile TiO2 Films in Aqueous TiCl.1 Solutions Under Hydrothermal Conditions. J. Am. Chem. Soc,2004,126(25):7790-7791.
    [110]W.B. Hu, L.P. Li, W.M. Tong, G.S. Li, T.J. Yan. Tailoring the Nanoscale Boundary Cavities in Rutile TiO2 Hierarchical Microspheres for Giant Dielectric Performance. J. Mater. Chem., 2010,20(39):8659-8667.
    [111]L. Liu, Y.P. Zhao, H.J. Liu, H.Z. Kou, Y.Q. Wang. Directed Growth of TiO2 Nanorods into Microspheres. Nanotechnology,2006,17(20):5046-5050.
    [112]T.D.N. Phan, H.D. Pham, T.V. Cuong, E.J. Kim, S. Kim, E.W. Shin. A Simple Hydrothermal Preparation of TiO2 Nanomaterials Using Concentrated Hydrochloric Acid. J. Cryst. Growth, 2009,312(1):79-85.
    [113]X.J. Feng, J. Zhai, L. Jiang. The Fabrication and Switchable Superhydrophobicity of TiO2 Nanorod Films. Angew. Chem. Int. Edit.,2005,44(32):5115-5118.
    [114]X.J. Feng, L. Feng, M.H. Jin, J. Zhai, L. Jiang, D.B. Zhu. Reversible Super-Hydrophobicity to Super-Hydrophilicity Transition of Aligned ZnO Nanorod Films. J. Am. Chem. Soc, 2004,126(1):62-63.
    [115]X.J. Feng, K. Shankar, O.K. Varghese, M. Paulose, T.J. Latempa, C.A. Grimes. Vertically Aligned Single Crystal TiO2 Nanowire Arrays Grown Directly on Transparent Conducting Oxide Coated Glass:Synthesis Details and Applications. Nano. Lett.,2008,8(11): 3781-3786.
    [116]B. Liu, E.S. Aydil. Growth of Oriented Single-Crystalline Rutile TiO2 Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells. J. Am. Chem. Soc,2009, 131(11):3985-3990.
    [117]T. Sreethawong, Y. Suzuki, S. Yoshikawa. Photocatalytic Evolution of Hydrogen over Nanocrystalline Mesoporous Titania Prepared by Surfactant-Assisted Templating Sol-Gel Process. Catal. Commun.,2005,6(2):119-124.
    [118]H.B. Li, X.C. Duan, G.C. Liu, X.B. Jia, X.Q. Liu. Morphology Controllable Synthesis of TiO2 by a Facile Hydrothermal Process. Mater. Lett.,2008,62(24):4035-4037.
    [119]J.C. Yu, L.Z. Zhang, J.G. Yu. Direct Sonochemical Preparation and Characterization of Highly Active Mesoporous TiO2 with a Bicrystalline Framework. Chem. Mater.,2002, 14(11):4647-4653.
    [120]H.Z. Zhang, J.F. Banfield. Understanding Polymorphic Phase Transformation Behavior during Growth of Nanocrystalline Aggregates:Insights from TiO2. J. Phys. Chem. B,2000, 104(15):3481-3487.
    [121]O.D. Velev, K. Furusawa, K. Nagayama. Assembly of Latex Particles by Using Emulsion Droplets as Templates.1. Microstructured Hollow Spheres. Langmuir,1996,12(10): 2374-2384.
    [122]L.Z. Zheng, J.H. Li. Self-assembly of Ordered 3D Pd Nanospheres at a Liquid/Liquid Interface. J. Phys. Chem. B,2005,109(3):1108-1112.
    [123]C. Johans, R. Lahtinen, K. Kontturi, D.J. Schiffrin. Nucleation at Liquid Vertical Bar Liquid Interfaces:Electrodeposition without Electrodes. J. Electroanal. Chem.,2000.488(2): 99-109.
    [124]J.G. Li, T. Ishigaki, X.D. Sun. Anatase, Brookite, and Rutile Nanocrystals via Redox Reactions under Mild Hydrothermal Conditions:Phase-selective Synthesis and Physicochemical Properties. J. Phys. Chem. C,2007,111(13):4969-4976.
    [125]C.C. Wang, J.Y. Ying. Sol-gel Synthesis and Hydrothermal Processing of Anatase and Rutile Titania Nanocrystals. Chem. Mater.,1999,11(11):3113-3120.
    [126]R.L. Penn, J.F. Banfield. Morphology Development and Crystal Growth in Nanocrystalline Aggregates under Hydrothermal Conditions:Insights from Titania. Geochim. cosmochim. Acta,1999,63(10):1549-1557.
    [127]X.F. Yang, H. Konishi, H.F. Xu, M.M. Wu. Comparative Sol-hydro(solvo)thermal Synthesis of TiO2 Nanocrystals. Eur. J. Inorg. Chem.,2006,11):2229-2235.
    [128]G.W. Lu, C. Li, G.Q. Shi. Synthesis and Characterization of 3D Dendritic Gold Nanostructures and Their Use as Substrates for Surface-enhanced Raman Scattering. Chem. Mater.,2007,19(14):3433-3440.
    [129]H. Shinto, M. Miyahara, K. Higashitani. Interaction Forces Between Colloidal Particles in Alcohol-water Mixtures Evaluated by Simple Model Simulations. Langmuir,2000,16(7): 3361-3371.
    [130]M.M. Wu, G. Lin, D.H. Chen, G.G. Wang, D. He, S.H. Feng, R.R. Xu. Sol-hydrothermal Synthesis and Hydrothermally Structural Evolution of Nanocrystal Titanium Dioxide. Chem. Mater.,2002,14(5):1974-1980.
    [131]R.L. Penn, J.F. Banfield. Formation of Rutile Nuclei at Anatase{112} Twin Interfaces and the Phase Transformation Mechanism in Nanocrystalline Titania. Am. Mineral.,1999, 84(5-6):871-876.
    [132]Y.Y. Li, J.P. Liu, Z.J. Jia. Morphological Control and Photodegradation Behavior of Rutile TiO2 Prepared by a Low-temperature Process. Mater. Lett.,2006,60(13-14):1753-1757.
    [133]K. Yanagisawa, J. Ovenstone. Crystallization of Anatase from Amorphous Titania Using the Hydrothermal Technique:Effects of Starting Material and Temperature. J. Phys. Chem. B, 1999,103(37):7781-7787.
    [134]Y. Lin, H. Skaff, T. Emrick, A.D. Dinsmore, T.P. Russell. Nanoparticle Assembly and Transport at Liquid-liquid Interfaces. Science,2003,299(5604):226-229.
    [135]J.G. Jia, T. Ohno, M. Matsumura. Efficient Dihydroxylation of Naphthalene on Photoirradiated Rutile TiO2 Powder in Solution Containing Hydrogen Peroxide. Chem. Lett.. 2000,8):908-909.
    [136]T.P. Niesen, M.R. De Guire. Review:Deposition of Ceramic Thin Films at Low Temperatures from Aqueous Solutions. J. Electroceram.,2001,6(3):169-207.
    [137]J.Q. Luo, L. Gao. Large-scale Production of Monodispersed Titania Microspheres by Surfactant-guided Self-assembly. J. Alloys Compd.,2009,487(1-2):763-767.
    [138]L. Kavan, B. Oregan, A. Kay, M. Gratzel. Preparation of TiO2 (Anatase) Films on Electrodes by Anodic Oxidative Hydrolysis of TiC13. J. Electroanal. Chem.,1993,346(1-2): 291-307.
    [139]J.G. Yu, Y.R. Su, B. Cheng. Template-free Fabrication and Enhanced Photocatalytic Activity of Hierarchical Macro-/mesoporous Titania. Adv. Funct. Mater.,2007,17(12):1984-1990.
    [140]H. Chen, W.Y. Fu, H.B. Yang, P. Sun, Y.Y. Zhang, L.R. Wang, W.Y. Zhao, X.M. Zhou, H. Zhao, Q.A. Jing, X.F. Qi, Y.X. Li. Photosensitization of TiO2 Nanorods with CdS Quantum Dots for Photovoltaic Devices. Electrochim. Acta,2010,56(2):919-924.
    [141]D.T.H. Wassell, G. Embery. Adsorption of Bovine Serum Albumin onto Titanium Powder. Biomaterials,1996,17(9):859-864.
    [142]D.R. Baker, P.V. Kamat. Photosensitization of TiO2 Nanostructures with CdS Quantum Dots: Paniculate versus Tubular Support Architectures. Adv. Funct. Mater.,2009,19(5):805-811.
    [143]P.A. Sant, P.V. Kamat. Interparticle Electron Transfer between Size-quantized CdS and TiO2 Semiconductor Nanoclusters. Phys. Chem. Chem. Phys.,2002,4(2):198-203.
    [144]S.L. Diedenhofen, G. Vecchi, R.E. Algra, A. Hartsuiker, O.L. Muskens, G. Immink, E.P.A.M. Bakkers, W.L. Vos, J.G. Rivas. Broad-band and Omnidirectional Antireflection Coatings Based on Semiconductor Nanorods. Adv. Mater.,2009,21(9):973-978.
    [145]L.K. Yeh, K.Y Lai, GJ. Lin, P.H. Fu, H.C. Chang, C.A. Lin, J.H. He. Giant Efficiency Enhancement of GaAs Solar Cells with Graded Antireflection Layers Based on Syringelike ZnO Nanorod Arrays. Adv. Energy Mater.,2011,1 (4):506-510.
    [146]J.J. Wu, G.R. Chen, C.C. Lu, W.T. Wu, J.S. Chen. Performance and Electron Transport Properties of TiO2 Nanocomposite Dye-sensitized Solar Cells. Nanotechnology.2008, 19(10):105702.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700