钛基薄膜的制备及其光电催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光催化技术作为一种高效、清洁的高级氧化技术是近年来备受瞩目的一种水体污染物处理技术。在众多可用于光催化反应催化剂的半导体中,TiO_2纳米材料由于其无毒、催化活性高、化学性能稳定、价格低廉等优点成为最具工业化应用前景的光催化剂材料之一。然而,现在普遍研究的TiO_2悬浮体系存在催化剂分离困难、后处理费用高、难于回收使用等问题,限制了TiO_2光催化剂在工业上的应用。构建TiO_2膜作为催化剂的非均相降解体系则能有效的解决这些问题。但是,TiO_2的带隙能决定其仅能接受紫外光激发,对太阳光利用率低;并且,TiO_2固化成膜后存在比表面积小、薄膜容易脱落等缺点,严重影响钛基薄膜材料的光催化效率。如何提高钛基薄膜材料的可见光诱导的光催化效率以及探索一种简单的制备性能稳定的钛基薄膜的方法,仍是现在研究者亟待解决的问题。
     本文以提高钛基薄膜光催化效率为目的,一方面通过制备具有可见光响应的非金属掺杂的TiO_2颗粒,并采用简单的涂覆法制备了非金属掺杂的TiO_2薄膜电极,扩展钛基薄膜对可见光的响应;另一方面优化成膜工艺,如成膜过程中引入TiO_2纳米晶体制备不同粒径的微纳复合薄膜来促进光在薄膜内部的散射提高光利用效率,或者引入造孔剂增加薄膜比表面积;同时,构建光电催化反应体系和双染料协同敏化反应体系,通过提供适宜的外部环境,促进钛基薄膜的催化反应效率。围绕上述的内容,本论文主要开展了以下几个方面的工作:
     第一,通过溶胶-凝胶法制备包覆了碘单质的孔穴结构TiO_2微米颗粒(I_2-NVS TiO_2颗粒)。将I_2-NVS TiO_2颗粒与水热法制备的TiO_2纳米晶体混合构建了I_2-NVS TiO_2微米颗粒/TiO_2纳米晶微纳复合薄膜(I_2-TiO_2薄膜)。并创新性的将这种薄膜材料应用于光催化降解体系。为了增加薄膜的比表面积、薄膜与玻璃基底的粘附力,聚乙二醇(PEG)被引入到薄膜中做粘附剂和造孔剂。实验结果表明:制备的I_2-TiO_2薄膜光催化效率明显提高。可通过以下两方面解释这种性能的提高:一方面,包覆于薄膜中的碘能够被可见光激发并对TiO_2进行敏化,从而有效窄化了TiO_2的禁带宽度,使其能够被可见光激发,提高对太阳光的利用率;另一方面,不同粒径的颗粒使光在薄膜中发生了漫反射,延长光线传输路径,从而提高了TiO_2薄膜的光利用效率,进而提高光催化活性。
     第二,通过对孔穴结构TiO_2颗粒制备方法进行改进,创新性的制备了包覆了碳的TiO_2微米颗粒(C-NVS TiO_2颗粒)。采用上面介绍的方法构建了C-NVS TiO_2微米颗粒/TiO_2纳米晶体微纳复合薄膜(C-TiO_2薄膜),并将其应用在光催化降解领域。EDS、XPS、SEM、紫外-可见漫反射光谱等检测手段被用来对薄膜的构成、表面价态和形貌等性质进行表征。结果表明:碳元素并没有掺杂进TiO_2颗粒的晶格中,而是以胶囊结构的形式被包裹在TiO_2颗粒的孔穴中;C-TiO_2薄膜的光吸收带明显红移,具有可见光催化活性;引入碳之后,薄膜可见光诱导的光催化降解效率明显提高。
     第三,创新性的将I_2-TiO_2薄膜和C-TiO_2薄膜应用于光电催化降解体系中,并对薄膜光电转换效率、阻抗、带隙能等光电性能进行分析。结果表明:I_2-TiO_2薄膜和C-TiO_2薄膜在400-600nm的范围内光响应能力与纯TiO_2薄膜相比明显提高;引入非金属掺杂元素之后的薄膜拥有更低的电子传输阻力、更高的光响应能力和更负的导带电位,从而拥有更高的光电催化效率。
     第四,通过对TiO_2纳米晶制备过程的改进制备了碘掺杂的TiO_2纳米晶,构建了碘掺杂的TiO_2纳米晶薄膜(I-TiO_2薄膜),并将薄膜首次应用于双染料协同敏化反应体系中。结果表明,在罗丹明B/荧光素钠双元染料协同敏化下,I-TiO_2薄膜对罗丹明B的降解效率是单染料体系的8倍;在罗丹明B/茜素红双元染料协同敏化下,I-TiO_2纳晶薄膜对罗丹明B的降解效率是单染料体系的5倍。另外,我们对双染料协同降解反应机理也进行了讨论。这样一个融合了碘掺杂薄膜扩展的可见光响应能力、薄膜可循环使用以及双染料协同效应三重优势的反应体系为钛基薄膜的可见光催化处理废水的发展指明了一个新的研究方向。
Photocatalysis has many merits in the terms of the removal ofharmful organic compounds, wastewater treatment and cleanup of pollutedair. This technology has been dramatically growing over the last decades.In recent years, TiO_2as an efficient photocatalysis has gained muchattention for its advantages of nontoxicity, photostability, andbiocompatibility as a highly efficient and promising photocatalyst.Generally, the degradation of organic pollutants is carried out insuspensions mediated by powder TiO_2. But in practical applications, thephotoactive flm is more viable due to its easy separation recovery andsimple post-treatment process. As for photoactive coating layer, largesurface area, sufficient mechanical/thermal stability and good adhesion to the substrates are the basic requirements.
     In this paper, we devote to search new methods to enhance theefficiency for photocatalytic reaction as well as to fabricate visible-lightresponse TiO_2films based on visible-light induced nanovoid-structuredTiO_2materials or iodine-doped TiO_2nanocrystals of the degradation ofpollutants. The main results and conclusions are summarized as follows:
     1) A visible-light response iodine-encapulated TiO_2film (I_2-TiO_2film)was prepared by packing the (I_2)n-encapsulated nanovoid-structured TiO_2particles and TiO_2nanocrystals (TNCs) via a doctor-blade method. Thevisible-reduced photocatalytic efficiency of the as prepared I_2-TiO_2filmwas measured by monitoring the decomposition of rhodamine B (RhB)Alizarin Red S (AR), fluorescein sodium (Flu) and2,4-dichlorophenol(2,4-DCP). The results showed that the degradation rate of the I_2-TiO_2filmwas significantly higher than pure TiO_2film. The improved photocatalyticperformance can be attributed to the present of (I_2)nencapsulated in TiO_2and work as photosensitizer to enlarge the spectral response and enhancethe visible-light utilization. Furthermore, the microparticles(I_2-TiO_2)/nanocrystals (TNCs) mixed structure, in which the I_2-TiO_2miroparticle worked as light scatterers, could be recognized as anotherfactor leading to an improved of light utilization of the film.
     2) A corbon-encapulated TiO_2film (C-TiO_2film) was prepared bypacing the corbon-encapulated TiO_2particles synthesized via sol-gel route using glucose as carbon source. The as-prepared films were characterizedby SEM, XRD, and diffuse reflectance spectra. With the analysis of EDSand XPS measurements we deduced that the carbon was encapsulated inthe nanocavities of TiO_2particles rather than doped in the lattice of it. Thedegradation efficiency of RhB, AR, Flu, and2,4-DCP under visible-lightirradiation was investigated. Compared with pure TiO_2film, the C-TiO_2film showed a higher photoreaction activity, which can be explained bythe banding shift causing by carbon modifying.
     3) The visible-light absorbing I_2-TiO_2and C-TiO_2film electrodeswere fabricated and studied as film electrodes for theirphotoelectrochemical and photoelectrocatalytic (PEC) properties. Thephotoelectrochemical property was evaluated by the incidentphoto-to-current conversion efficiency, electrochemical impedancespectroscopy and Mott-Schottky analysis data. The results showed thatI_2-TiO_2and C-TiO_2films exhibited stronger absorption in the400-550nmrange, lower electron transfer resistance and more negative fat bandpotentials comparing with pure TiO_2film. At a bias potential of0.5V, thevisible-light-induced PEC degradation ratios of RhB and tetracycline onI_2-TiO_2film or C-TiO_2film electrodes were significantly higher that onpure TiO_2electrode.
     4) An iodine-doped TiO_2nanocrystals film (I-TiO_2film) wasprepared and used as photocatalysis in Flu-sensitiezed and eosin Y (EO)-sensitized degradation of RhB under visible-light illumination. Thedegradation results showed that when Flu or EO was introduced to theI-TiO_2film/RhB system, the degradation ratio of RhB was significantlyenhanced, with an eight-fold or five-fold improvement compared with thatin the I-TiO_2film/RhB system free of sensitizer. In this degradationsystem the advantages of I-doping, inherent film characteristic andsynergistic degradation effect of binary dyes have been simultaneouslyachieved. This study could provide a feasible industrial route to designinghigh-performance visible light photocatalyst system.
引文
[1] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature,1972,238:37–38
    [2] Carey J H, Lawrence J, Tosine H M. Photodechlorination of PCB's in the presence oftitanium dioxide in aqueous suspension [J]. Bull. Environ. Contam. Toxicol.,1976,16:697–701
    [3] Frank S N, Bard A J. Heterogeneous photocatalytic oxidation of cyanide ion in aqueoussolutions at titanium dioxide powder [J]. J. Am. Chem. Soc.,1977,99:303–304
    [4] Li J Y, Chen C C, Zhao J C, Zhu H Y, Orthman J. Photodegradation of dye pollutants onTiO2nanoparticles dispersed in silicate under UV-Vis irradiation [J]. Appl. Catal. B:Environ.,2002,37:331–338
    [5] Samiolo L, Valigi M, Gazzoli D, Amadelli R. Photo–electro catalytic oxidation of aromaticalcohols on visible light-absorbing nitrogen-doped TiO2[J]. Electrochimica Acta,2010,55:7788–7795
    [6] Liu G M, Li M Z, Zhao J C. Photooxidation pathway of sulforhodamine–B. dependence onthe adsorption mode on TiO2exposed to visible light radiation [J]. Environ. Sci. Technol.,2000,34:3982–3990
    [7] Wu L, Yu J C, Wang X C, Zhang L Z, Yu J G. Characterization of mesoporousnanocrystalline TiO2photocatalysts synthesized via a sol–solvothermal process at a lowtemperature [J]. J. Solid State Chem.,2005,178:321–328
    [8] Fu H B, Zhang L W, Zhang S C, Zhu Y S. Electron spin resonance spin-trapping detectionof radical intermediates in N–doped TiO2-assisted photodegradation of4–Chlorophenol [J].J. Phys. Chem. B2006,110:3061–3065
    [9]叶盛英,贺明书,岑超平,宋贤良. TiO2纳米粒子气固相光催化降解乙烯初探[J].农业工程学报,2005,05:166–169
    [10]余晓鹏,何代平,蔡铎昌,刘建军. Cr(VI)–苯酚共存污染体系中的光催化反应研究[J].四川理工学院学报(自然科学版),2006,19:97–101
    [11] Rossetti R, Beck S M, Brus L E. Direct observation of charge-transfer reactions acrosssemiconductor: aqueous solution interfaces using transient Raman spectroscopy [J] J. Am.Chem. Soe.,1984,106:980–984
    [12] Zhao X, Qu J H, Liu H J, Hu C. Photoelectrocatalytic degradation of triazine–containingazo dyes at γ–Bi2MoO6film electrode under visible light irradiation [J]. Environ. Sci.Technol.,2007,41:6802–6807
    [13] Zheng Y H, Chen C Q, Zhan Y Y, Lin X Y, Zheng Q, Wei K M, Zhu J F. Photocatalyticactivity of Ag/ZnO heterostructure nanocatalyst: correlation between structure andproperty [J]. Phys. Chem. C,2008,112:10773–10777
    [14] Luo T, Ai Z H, Zhang L Z. Fe@Fe2O3Core Shell nanowires as iron reagent.4.Sono Fenton degradation of pentachlorophenol and the mechanism analysis [J]. J. Phys.Chem. C,2008,112:8675–868
    [15] Arai T, Horiguchi M, Yanagida M, Gunji T, Sugihara H, Sayama K. Reaction mechanismand activity of WO3–catalyzed photodegradation of organic substances promoted by a CuOCo catalyst [J]. J. Phys. Chem. C,2009,113:6602–6609
    [16] Liu Z F, Jin Z G, Li W, Qiu J J. Preparation of ZnO porous thin films by sol–gel methodusing PEG template [J]. Mater. Lett.,2005,59,3620–3625
    [17] Yu H B, Chen S, Quan X, Zhao H M, Zhang Y B. Fabrication of a TiO2–BDDheterojunction and its application as a photocatalyst for the simultaneous oxidation of anazo dye and reduction of Cr (VI)[J]. Environ. Sci. Technol.,2008,42:3791–3796
    [18] Wu G S, Nishikawa T, Ohtani B, Chen A C. Synthesis and characterization ofcarbon–doped TiO2nanostructures with enhanced visible light response [J]. Chem. Mater.,2007,19:4530–4537
    [19] Veres á, Rica T, Janovák T, D m k M, Buzás N, Z llmer V, Seemann T, Richardt A,Dékány I. Silver and gold modified plasmonic TiO2hybrid films for photocatalyticdecomposition of ethanol under visible light [J]. Catalysis Today,2012,181:156–162
    [20] Jang S J, Kim M S, Kim B W. Photodegradation of DDT with the photodeposited ferric ionon the TiO2film [J]. Water Research,2005,39:2178–2188
    [21] Gan W Y, Zhao H J, Rose A. Photoelectrocatalytic activity of mesoporous TiO2Thin filmelectrodes [J]. Appl. Catal. A: General,2009,354:8–16
    [22] Lu N, Quan X, Li J Y, Chen S, Yu H T, Chen G H. Fabrication of Boron–doped TiO2nanotube array electrode and investigation of its photoelectrochemical capability [J]. J.Phys. Chem. C,2007,111:11836–11842
    [23] Zhao X, Zhu Y F. Synergetic degradation of Rhodamine B at a porous ZnWO4filmelectrode by combined electro–oxidation and photocatalysis [J]. Environ. Sci. Technol.,2006,40:3367–3372
    [24]支正良,汪信.环境中有机污染物的半导体光催化降解研究进展[J].环境污染与防治,1998,20:42–44
    [25] Turchi C S, Ollis D F. Photocatalytic degradation of organic water contaminants:mechanisms involving hydroxyl radical attack [J]. J. Catal.,1990,122:178–192
    [26] Hagfeldt A, Gratzel M. Light-induced redox reactions in nanocrystalline systems [J].Chem. Rev.,1995,95:49–68
    [27] Bao D H, Yao X. Band-gap energies of sol-gel-derived SrTiO3thin films [J]. Appl. Phys.Lett.,2001,79:3767–3769
    [28]邓南圣,吴峰.环境光化学[M].北京:化学工业出版社,2003
    [29] Linsebigler A L, Lu G G, Yates J T. Photocatalysis on TiO2surface: principle, mechanismsand selected results [J]. J. Am. Chem. Soc.,1995,95:725–758
    [30] Serpone N. Is the band gap of pristine TiO2narrowed by anion-and cation-doping oftitanium dioxide in second-generation photocatalysts?[J] J. Phys. Chem. B,2006,110:24287–24293
    [31] Tanaka K, Capule M F, Hisanaga T. Effect of cytstallinity of TiO2on tits photocatalyticaction Chem. Phys. Lett.,1991,187,73–76
    [32] Kandiel T A, Dillert R, Feldhoff A, Bahnemann D W. Direct synthesis of photocatalyticallyaactive rutile TiO2nanorods partly decorated with anatase nanoparticles [J]. J. Phys. Chem.C,2010,114:4909–4915
    [33]沈伟韧,赵文宽,贺飞,方佑龄. TiO2光催化反应及其在废水处理中的应用[J].化学进展,1998,4,349–361
    [34] Li D, Haneda H, Hishita S, Ohashi N. Visible–light–driven nitrogen–doped TiO2photocatalysts: effect of nitrogen precursors on their photocatalysis for decomposition ofgas-phase organic pollutants [J]. Mater. Sci. Eng.,2005,117,67–75
    [35]孙奉玉,吴鸣,李文钊,二氧化钛表面光学特性与光催化活性的关系[J].催化学报,1998,19:121–124
    [36] Zhu C M, Wang L Y, Kibg K R. Photoeatalytic degradationof AZO dyes by supportedTiO2+UV in aqueous solution [J]. Chemosphere,2000,41:303–309
    [37]樊彩梅,孙彦平.苯酚的TiO2薄膜光电催化降解及反应产物的分布[J].太原理工大学学报.2000,31:525–527
    [38]冷文华,张昭,成少安,张鉴清,曹楚南.光电催化降解苯胺的研究–单槽与双槽光反应器对比[J].环境科学学报,2002,22:40–44
    [39] Wu G S, Wang J P, Thomas D F, Chen A C. Synthesis of F–doped flower–like TiO2nanostructures with high photoelectrochemical activity [J]. Langmuir,2008,24:3503–3509
    [40]李红,赵高凌,赵李川,韩高荣.热处理对溶解-凝胶法制备Ag/TiO2膜的影响[J].稀有金属材料与工程,2008,2:181–184
    [41]徐灵戈,黎甜楷,王淑琴,徐维并.溶胶凝胶法制备掺杂二氧化钦薄膜及其光电性能研究[J].感光科学与光化学,1995,13:154–159
    [42]彭人勇,吕新莲.锐钛矿型TiO2溶胶的低温制备及其光催化活性评价[J].湿法冶金,2006,1:22–25
    [43] Zheng Y Z, Tao X, Hou Q, Wang D T, Zhou W L, Chen J F. Iodine-doped ZnOnanocrystalline aggregates for improved dye-sensitized solar cells [J]. Chem. Mater.,2011,23:3–5
    [44] Hou Q, Zheng Y Z, Chen J F, Zhou W L, Deng J, Tao X.Visible-light-activatediodine-doped titanium dioxide nanocrystals for dye-sensitized solar cells [J]. J. Mater.Chem.,2011,21:3877–3883
    [45]罗瑾,周静,祖延兵,林仲华.电沉积二氧化钦纳米微粒膜的光电化学性能和表面形貌研究[J].高等化学学报,1998,19:1484–1487
    [46]钱延龙,陈新滋.金属有机化学与催化[M].北京:化学工业出版社,1997
    [47]江宏富. TiO2的掺杂改性光催化研究[D].合肥:中国科学技术大学,2006
    [48] Ileperuma O A, Tennakone K, Dissanayake D D P. Photocatalyticbehavior of metal dopedtitanium dioxide: studies on the photochemical synthesis of ammonia on Mg/TiO2catalystsysterms [J]. Appl. Catal.,1990,62:1–5
    [49]鄂磊,徐明霞,雅菁,辛颖,张春青.贵金属修饰TiO(2-x)Nx [J].稀有金属材料与工程,2008, S1:138–141
    [50]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M].北京:化学工业出版社,2002,8:14–18
    [51] Sun W T, Yu Y, Pan H Y, Gao X G, Chen Q, Peng L M. CdS quantum dots sensitized TiO2nanotube-array photoelectrodes [J]. J. Am. Chem. Soc.,2008,130,1124–1125
    [52] Uekawa N, Kurashima Y, Kakegawa K, Sasaki Y. Preparation and nonstoichiometricpropertiy of wide compositional Fe(III)-doped TiO2(anatase)[J]. J. Mater. Res.,2000,15,967–973
    [53]王卫伟,张志焜.过渡金属离子掺杂纳米TiO2的机理和光吸收特性[J].金属无机化工,2003,24:102–104
    [54]马琦,胡富苗,张保柱,张志强,张智敏. Ag修饰改性TiO2薄膜的制备,表征及日光催化性能研究[J].化工科技,2005,13:23–25
    [55]陈丽琼,李荣先.掺银纳米TiO2内墙涂料的制备及性能研究[J].新型建筑材料,2007,6:60-62
    [56] Hernnann J M, Tahiri H, Ait-Ichou Y, Lassaletta G, González–Elipec A R, Fernández A.Characterization and photocatalytic activity in aqueous medium of TiO2and Ag–TiO2coating on quartz [J]. Appl. Catal. B: Envirion.,1997,13:219–228
    [57] Karvien S, Hirva P, Pakkanen T A. Ab initio quantum chemical studies of cluster modelsfor doped anatase and rutile TiO2[J]. J. Mol. Structure: Theochem.,2003,626:271–277
    [58] Choi W, Termin A, Hoffmann M T. The role of metal ion dopants in quantm–sized TiO2:correlation between photoreactivity and charge carrier recombination dynamics [J]. J.Phys. Chem.,1994,98:13669–13679
    [59] Anpo M, Ichihashi Y, Takeuchi M, Yamashita H. Design of unique titanium oxidephotocatalysts by an advanced metal ion–implantation method and phtocatalytic reactionsunder visible light irradiation[J]. Res. Chem. Inermediat,1998,42:143–149
    [60] Hoffmann M R, Martin S T, Choi E Y, et al. Environmental applications of semiconductorphotocatalysis [J]. Apple. Catal. A: General,2007,325:1–14
    [61]蔡河山,刘国光,吕文英,余林,张慧芳.稀土元素掺杂改性纳米TiO2光催化性能[J].稀有金属,2006,30:390–394
    [62]冯良荣,吕绍洁,邱发礼.稀土元素掺杂对纳米TiO2光催化剂性能的影响[J].复旦学报(自然科学版),2003,42:413–417
    [63] Sato S., Photocatalytic activity of NCv doped TiO2in the visible light region [J]. Chem.Phys. Lett.,1986,123:126–128
    [64] Asahi R, Morikawa T, Ohwaki T, Taga Y. Visible–light photocatalysis in nitrogen–dopedtitanium oxides [J]. Science,2001,293:269–271
    [65]田蒙奎,上官文峰,王世杰,欧阳自远.可见光响应光解水制氢的半导体光催化剂[J].化学进展,2007,19:680–688
    [66] Sun H Q, Wang S, Ang H M, TadéM O, Li Q. Halogen element modified titanium dioxidefor visible light photocatalysis [J]. Chem. Eng. J.,2010,162:437–447
    [67] Su W Y, zhang Y F, Li Z H, Wu L, Wang X X, Li J Q, Fu X Z. Multivalency iodine dopedTiO2: preparation, characterization, theoretical studies, and visible-light photocatalysis [J].Langmuir,2008,24:3422–3428
    [68] Hong X T, Wang Z P, Cai W M, Lu F, Zhang J, Yang Y Z, Ma N, Liu Y J.Visibl–-light–activated nanoparticle photocatalyst of iodine–doped titanium dioxide [J].Chem. Mater.,2005,17:1548–1552
    [69] Wang D T, Li X, Chen J F, Tao X. Enhanced visible-light photoelectrocatalytic degradationof organic contaminants at iodine–doped titanium dioxide film electrode [J]. Ind. Eng.Chem. Res.,2012,51:218–224
    [70] Li X, Wang D T, Chen J F, Tao X. Enhanced photosensitized degradation of organicpollutants under visible radiation by (I2)n–encapsulated TiO2films [J]. Ind. Eng. Chem.Res.,2012,51:1110–1117
    [71] Penìuela G A, BarceloèD. Photosensitized degradation of organic pollutants in water:processes andanalytical applications [J]. Trends Anal. Chem.,1998,17:605–612
    [72]张彭义,余刚,蒋展鹏.半导体光催化剂及其改性技术进展[J].环境科学进展,1997,5:1–10
    [73] Vinodgopal K, Stafford U, Gray K A, Kamat P V, Electrochemically assistedphotocatalysis.2. The role of oxygen and reaction intermediates in the degradation of4-chlorophenol on immobilized TiO2particulate films [J]. J. Phys. Chem.,1994,98:6797–6803
    [74] Kim D H, Anderson M A, Photoelectrocatalytic degradation of formic acid using a poroustitanium dioxide thin–film electrode [J]. Environ Sci Technol,1994,28:479–483
    [75] Georgieva J, Valova E, Armyanov S, Philippidis N, Poulios I, Sotiropoulos S.Bi–component semiconductor oxide photoanodes for the photoelectrocatalytic oxidation oforganic solutes and vapours: A short review with emphasis to TiO(2)–WO(3) photoanodes[J]. J. Hazard. Mater.,2012.211:30–46
    [76] Zhang X F, Zhang Y B, Quan X, Chen S, Prepareation of Ag doped BiVO4film and itsenhanced photoelectrocatalytic (PEC) ability of phenol degradation under visible light [J].J. Hazard. Mater.,2009,167:911–914
    [77] Hou Y, Li X Y, Zhao Q D, Quan X, Chen G H. Elecrochemically assisted photocatalyticdegradation of4–chlorophenol by ZnFe2O4–modified TiO2nanotube array electrode undervisible light irradiation [J]. Environ. Sci. Technol.,2010,44:5098–5103
    [78]豆俊峰,邹振扬,牟其伍.提高二氧化钛光催化活性的研究进展[J].四川环境,2000,19:9–11
    [79]郭春丽.纳米材料在空气净化中的应用[J].陶瓷,2007,3:13–15
    [80]肖新颜,陈焕钦,万彩霞.光催化空气净化及抗菌材料的研究与应用[J].化学研究与应用,2002,14:507–510
    [81]张泽江,张硕生,冯良荣,邱发礼.纳米材料在环境保护中的应用与发展[J].四川环境,2004,23:1–5
    [82]赵洁,邱克辉,董宏伟. TiO2光催化降解与环保应用研究进展[J].中国非金属矿工业导刊,2005,56:50–55
    [83]刘湘娜.半导体中的光化学过程[M].南京:南京大学出版社,1992
    [84] Hanzu L, Djeizian T, Knauth P. Electroical and point defect properties of TiO2nanotubesfabricated by electrochemical anodization [J]. J. Phy. Chem.,2011,115:5980–5996
    [85]郑红,汤鸿霄,王怡中.有机污染物半导体多相光催化氧化机理及动力学研究进展[J].环境化学进展,1996,4:1–18
    [86] Andrew M, Stephen L H, J. An overview of semiconductor photocatalysis [J]. Photochem.Photobio. A: Chem.,1997,108:1–35
    [87] Mills G, Hoffmannn M R, Photocatalytic degradation of pentachlorophenol on TiO2particles: identification of intermediates and mechanismof reaction [J]. Environ. Sci.Technol.,1993,27:1681–1689
    [88] Zhuang J D, Dai W X, Tian Q F, Li Z H, Xie L Y, Wang J X, Liu L, Shi X H, Wang D H.Photocatalytic degradation of RhB over TiO2bilayer films: effect of defects and theirlocation [J]. Langmuir,2010,26:9686–9694
    [89] Wang Q, Chen C C, Zhao D, Ma W H, Zhao J C. Change of adsorption modes of dyes onfluorinated TiO2and its effect on photocatalytic degradation of dyes under visibleirradiation [J]. Langmuir,2008,24:7338–7345
    [90] Mao Y, Schoneich C, Asmus K D, Identification of organic-acids and other intermediatesin oxidative-degradation of chlorinated ethanes on TiO2surfaces enroute tomineralization-a combined photocatalytic and radiation chemical study [J]. J. Phys. Chem.,1991,95:10080–10089
    [91] Mandelbaum P A, Regazzoni A E, Blesa M A, Bimes S A. Photoelectro-oxidation ofalcohols on titanium dioxide thin film electrodes [J]. J. Phys. Chem. B,1999,103:5505–5511
    [92] Carraway E R, Hoffman A J, Hoffmann M R. Potocatalytic production of H2O2and organicperoxides on quantum-sized semiconductor colloids [J]. Environ. Sci. Technol.,1994,28:776–785
    [93] Chen X B. Synthesis and inviestigation of novel nanomaterials for improvedphotocatalysis. Submitted in partial fulfillment of the requirements for the degree of doctorof philosophy, Case Western Reserve Univirsity.2005
    [94] Sun Y F, Pignatello J J. Evidence for a surface dual hole-radical mechanism in the TiO2photocatalytic oxidation of2,4-D [J]. Environ. Sci. Technol.,1995,29:2065–2072
    [95] Li J Y, Chen C C, Zhao J C, Zhu H Y, Orthman J. Photodegradation of dye pollutants onTiO2nanoparticles dispersed in silicate under UV-Vis irradiation [J]. Appl. Catal. B:Environ.,2002,37:331–338
    [96] Chen C C, Li X Z, Ma W H, Zhao J C. Effect of transition metal ions on the TiO2-assistedphotodegradation of dyes under visible irradiation: a probe for the interfacial electrontransfer process and reaction mechanism [J]. J. Phys. Chem. B,2002,106:318–324
    [1] Wang J, Tafen N D, Lewis J P, Hong Z L, Manivannan A, Zhi M J, Li M, Wu N Q. Origin ofphotocatalytic activity of nitrogen-doped TiO2nanobelts [J]. J. Am. Chem. Soc.,2009,131:12290–12297
    [2] Hoffmann. M R, Lu G, Yates J T, Choi W, Bahnemann D W. Environmental applications ofsemiconductor photocatalysis [J]. Chem. Rev.,1995,95,735–758
    [3] Wu Y M, Xing M Y, Zhang J L. Gel-hydrothermal synthesis of carbon and boron co-dopedTiO2and evaluating its photocatalytic activity [J]. J. Hazard. Mater.,2011,192:368–373
    [4] Livraghi S, Paganini MC, Giamello E, Selloni A, Valentin C D, Pacchioni G. Origin ofphotoactivity of nitrogen-doped titanium dioxide under visible light [J]. J. Am. Chem. Soc.,2006,128:15666–15671
    [5] Choi W Y, Termin A, Hoffmann M R. The role of metal ion dopants in quantum-sized TiO2:correlation between photoreactivity and charge carrier recombination dynamics [J]. J. Phys.Chem.,1994,98:13669–13679
    [6] In S, Orlov A, Berg R, Garcia F, Jimenez SP, Tikhov M S, Wright D S, Lambert R M.Efective visible light–activated B–doped and B,N–codoped TiO2photocatalysts [J]. J. Am.Chem. Soc.,2007,129:13790–13791
    [7] Xiong Z G, Zhang L L, Ma J Z, Zhao X S. Photocatalytic degradation of dyes overgraphene–gold nanocomposites under visible light irradiation [J]. Chem. Commun.,2010,46:6099–6101
    [8] Zhang W, Lei L C, Zhang J L, Chen Q X, Bao J G, Fang B. A novel CdS/S-TiO2nanotubesphotocatalyst with high visible light activity [J]. Sep. Purif. Technol.,2009,66,417–421
    [9] Qin G, Sun Z, Wu Q, Lin L, Liang M, Xue S. Dye–sensitized TiO2flm with bifunctionalizedzones for photocatalytic degradation of4-cholophenol [J]. J. Hazard. Mater.,2011,192:599–604
    [10] Xu P, Lu J, Xu T, Gao S, Huang B, Dai Y. I2-hydroso-seeded growth of(I2)n-C-codopedmeso/nanoporous TiO2for visible light-driven photocatalysis[J]. J. Phys.Chem.,2010,144:9510–9517
    [11] Vilacüa G, Barathieu K, Jousseaume B, Toupance T. New perylene-substitutedorganotrialkynyltin compounds for the photosensitization of titanium dioxide [J].Organometallics,2003,22:4584–4592
    [12] Fan F R F, Bard A. Spectral sensitization of the heterogeneous photocatalytic oxidation ofhydroquinone in aqueous solutions at phthalocyanine-coated TiO2powders [J]. J. Am. Chem.Soc.,1979,101:6139–6140
    [13] Chowdhury P, Moreira J, Gomma H, Ray A K. Visible-solar-light-driven photocatalyticdegradation of phenol with dye-sensitized TiO2: parametric and kinetic study [J]. Ind. Eng.Chem. Res.,2012,51:1523–1532
    [14] Hu C, Hu X X, Wang L S, Qu J H, Wang A M. Visible-light-induced photocatalyticdegradation of azo dyes in aqueous AgI/TiO2dispersion [J].Environ. Sci. Technol.,2006,40:7903–7907
    [15] Usseglio S, Damin A, Scarano D, Bordiga S, Zcchina A, Lamberti C.(I2)nEncapsulationinside TiO2: A way to tune photoactivity in the visible region [J]. J. Am. Chem. Soc.,2007,129:2822–2828
    [16] Gr tzel M. Solar energy conversion by dye-sensitized photovoltaic cells [J]. Inorg. Chem.,2005,44:6841–6851
    [17] Ito S, Zakeeruddin S M, Baker H. R, Liska P, Charvet R, Comte P, Nazeeruddin M K, PechyP, Takata M, Miura H, Uchida S, Gr tzel M. High-efficiency organic-dye-sensitized solarcells controlled by nanocrystalline-TiO2electrode thickness [J]. Adv. Mater.,2006,18:1202–1205
    [18] Halaoui L I, Abrams N M, Mallouk T E. Increasing the conversion efficiency ofdye-sensitized TiO2photoelectrochemical cells by coupling to photonic crystals [J]. J. Phys.Chem. B,2005,109:6334–6342
    [19] Yang S C, Yang D J, Kim J K, Hong J M, Kim H G, Kim Il D, Lee H J. Hollow TiO2hemispheres obtained by colloidal templating for application in dye-sensitized solar cells [J].Adv. Mater.,2008,20:1059–1064
    [20] Hore S, Nitz P, Vetter C, Prahl C, Niggemann M, Kern R. Scattering spherical voids innanocrystalline TiO2–enhancement of efficiency in dye-sensitized solar cells [J]. Chem.Commun.,2005,21:2011–2013
    [21] Xu H, Tao X, Wang D T, Zheng Y Z, Chen J F. Enhaced efficiency in dye–sensitized solarcells based on TiO2nanocrystal/nanotube double–layered films [J]. Electrochem. Acta,2010,55,2280–2285
    [22] Joung S K, Amemiya T, Murabayashi M, Itoh K. Mechanistic studies of the photocatalyticoxidation of trichloroethylene with visibleligh-driven N-doped TiO2photocatalysts [J].Chem. Eur. J.,2006,12:5526–5534
    [23] Tojo S, Tachikawa T, Fujitsuka M, Majima T. Iodine-doped TiO2photocatalysts: correlationbetween band structure and mechanism [J]. J. Phys. Chem. C,2008,12:14948–14954
    [24] Erdem B, Hunsicker T A, Simmons G W, Sudo E D, Dimonie V L, El-Aasser M S. XPS andFTIR surface characterization of TiO2particles used in polymer encapsulation [J].Langgmuir,2001,17:2664–2669
    [25] Kissel K R, Hartman K B, Vander Heide P A, Wilson L J. Preparation of I2@SWNTs:synthesis and spectroscopic characterization of I2-loaded SWNTs [J]. J. Phys Chem. B,2006,110:17425–17429
    [26] Ma Y, Fu J W, Tao X, Li X, Chen J F. Low temperature synthesis of iodin–doped TiO2nanocrystallites with enhanced visible-induced photocatalytic activity. Appl. Surf. Sci.,2011,257:5046–5051.
    [27] Shen L, Bao N, Zheng Y, Gupta A, An T, Yanagisawa K. Hydrothermal splitting of titanatefibers to single-crystalline TiO2nanostructures with controllable crystalline phase,morphology, microstructure, and photocatalytic activity [J]. J. Phys. Chem. C,2008,112:8809–8818
    [28] Stoimenov P K, Zaikovski V, Klabunde K J. Novel halogen and interhalogen adducts ofnanoscale magnesium oxide [J]. J. Am. Chem. Soc.,2003,125:12907–12913
    [29] Hong X T, Wang Z P, Cai W M, Lu F, Zhang J, Yang Y Z, Ma N, Liu Y J.Visible-light-activated nanoparticle photocatalyst of iodine-doped titanium dioxide [J].Chem. Mater.,2005,17:1548–1552
    [30] Li G S, Zhang D Q, Yu J C. A new visible-light photocatalyst: CdS quantum dots embeddedmesoporous TiO2[J]. Environ. Sci. Technol.2009,43:7079–7085
    [31] Yamabi S, Imai H. Crystal phase control for titanium dioxide films by direct deposition inaqueous solutions [J]. Chem. Mater.,2002,14:609-614
    [32] Liu G, Sun C, Yan X, Cheng L, Chen Z, Wang X, Wang L, Smith S C, Lu G, Cheng H. Iodinedoped anatase TiO2photocatalyst with ultra-long visible light response: correlation betweengeometric/electronic structures and mechanisms [J]. J. Mater. Chem,2009,19:2822–2829
    [33] Huzayyin A, Boggs S, Ramprasad R. Computational quantum mechanics-based study ofconduction in iodine doped polyethylene. Annual report conference on electrical insulationand dielectric phenomena2009
    [34] Bao D H, Yao X. Band-gap energies of sol–gel–derived SrTiO3thin films [J]. Appl. Phys.Lett.,2001,79:3767–3769
    [35] Irie H, Watanabe Y, Hashimoto K. Nitrogen–concentration dependence on photocatalyticactivity of TiO2-xNxPowders [J]. J. Phys. Chem. B,2003,107:5483–5486
    [36] Cao Y Q, He T, Chen Y M, Cao Y. Fabrication of rutile TiO2–Sn/anatase TiO2-Nheterostructure and its application in visible–light photocatalysis [J]. J. Phys. Chem. C,2010,114:3627–3633
    [37] Thompson T L, Yates J T. Surface science studies of the photoactivation of TiO2–newphotochemical processes [J]. Chem. Rev.,2006,106,4428–4453
    [38]张勇,唐超群,戴君.锐钛矿TiO2及其掺杂Fe所导致的红移现象研究:赝势计算和紫外光谱实验[J].物理学报,2005,54:323–327
    [39] Chen F, Zhao J C, Hidaka H. Highly selective deethylation of rhodamine B: Adsorption andphotooxidation pathways of the dye on the TiO2/SiO2composite photocatalyst [J]. Inter. J.Photoenerg.,2003,5:209–217
    [40] Dong W Y, Lee C W, Lu X C, Sun Y J, Hua W M. Zhuang G H, Zhang S C, Chen J M, HouH Q, Zhao DY. Synchronous role of coupled adsorption and photocatalytic oxidation onordered mesoporous anatase TiO2–SiO2nanocomposites generating excellent degradationactivity of RhB dye [J]. Appl. Catal. B,2010,95:197–207
    [41] Li W J, Li D Z, Meng S, Chen W, Fu X Z, Shao Y. Novel approach to enhancephotosensitized degradation of rhodamine B under visible light irradiation by theZnxCd1-xS/TiO2nanocomposites [J]. Environ. Sci. Technol.,2011,45:2987–2993
    [42] Guo B, Liu Z L, Hong L, Jiang H X. Sol gel derived photocatalytic porous TiO2thin films[J]. Surf. Coat. Technol.,2005,198:24–29
    [43] Kim S, Choi W. Visible–light–induced photocatalyticdegradation of4–chlorophenol andphenolic compounds in aqueous suspension of pure titania: demonstrating the existence of asurface-complex-mediated path [J]. J. Phys. Chem. B,2005,109:5143–5149
    [44] Hu X L, Li G S, Yu J C. Design, fabrication, and modification of nanostructuredsemiconductor materials for environmental and energy applications [J]. Langmuir,2010,26:3031–3039
    [45] Sun Q, Xu Y M, Sensitization of TiO2with aluminum phthalocyanine: factors influencing theefficiency for chlorophenol degradation in water under visible light [J]. J. Phys. Chem. C,2009,113:12387-12394
    [46] Liu H B, Wu Y M, Zhang J. L. A new approach toward carbon-modified vanadium-dopedtitanium dioxide photocatalysts [J]. Appl. Mater. Interfaces,2011,3:1757-1764
    [1] Sakthivel S, Kisch H. Daylight photocatalysis by carbon-modifed titanium dioxide,Angew. Chem. Int. Ed.,2003,42:4908–4911
    [2] Lettman, C, Hidenbrand K, Kisch H, Macyk W F. Visible light photodegradation of4-chlorophenol with a cokecontaining titanium dioxide photocatalyst [J].Appl. Catal.B,2001,32:215–227
    [3] Lin X X, Rong F, Ji X, Fu D G. Carbon-doped mesoporous TiO2film and its photocatalyticactivity [J]. Microporous Mesoporous Mater.,2011,142:276-281
    [4] Zhang X, Sun Y, Cui X, Jiang Z. Carbon-incorporated TiO2microspheres: facile flameassisted hydrolysis of tetrabutyl orthotitanate and photocatalytic hydrogen production [J].Int. J. Hydrogen Energy,2012,37:1356-1365
    [5] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Visible-light photocatalysis innitrogen-doped titanium oxides [J]. Science,2001,293:269-271
    [6] Khan S U M, Al-Shahry M, Inler W B. Efficient photochemical water splitting by achemically modified n-TiO2[J]. Science,2002,297:2243-2245
    [7] Choi Y, Umebayashi T, Yoshikawa M J. Fabrication and characterization of C-dopedanatase TiO2photocatalysts [J]. Mater. Sci.,2004,39,1837-1839
    [8] Berger T, Sterrer M, Diwald O, Knoezinger E, Panayotov D. Light-Induced ChargeSeparation in Anatase TiO2Particles [J]. J. Phys. Chem. B.,2005,109:6061-6068
    [9] Dong F, Guo S, Wang H Q, Li X F, Wu Z B. Enhancement of the visible lightphotocatalytic Activity of C-doped TiO2nanomaterials prepared by a green syntheticapproach [J]. J. Phys. Chem. C,2011,115:13285–13292
    [10] Cao Y Q, He T, Chen Y M, Cao Y A. Fabrication of rutile TiO2Sn/Anatase TiO2Nheterostructure and its application in visible-light photocatalysis [J]. J. Phys. Chem. C,2010,114:3627–3633
    [11] Joung S K, Amemiya T, Murabayashi M, Itoh K. Mechanistic studies of the photocatalyticoxidation of trichloroethylene with visible-light-driven N-doped TiO2photocatalysts [J].Chem. Eur. J.,2006,12:5526-5534
    [12] Tojo S, Tachikawa T, Fujitsuka M, Majima T. Iodine-doped TiO2photocatalysts:correlation between band structure and mechanism [J]. J. Phys. Chem. C,2008,12:14948-14954
    [13] Erdem B, Hunsicker T A, Simmons G W, Sudo E D, Dimonie V L, El-Aasser M S. XPSand FTIR surface characterization of TiO2particles used in polymer encapsulation [J].Langgmuir,2001,17,2664–2669
    [14] Jensen H, Soloviev A, Li Z S Sogaard E G. XPS and FTIR investigation of the surfaceproperties of different prepared titania nono-powders [J]. Appl. Surf. Sci.,2005,246:239-249
    [15] P. H. Wang, T. Zhou, R. Wang, T. T. Lim, Carbon-sensitized and nitrogen-doped TiO2forphotocatalytic degradation of sulfanilamide under visible-light irradiation [J]. Water Res.,2011,45:5015-5026
    [1] Zhang D F, Zeng F B. Visible light-activated cadmium-doped ZnO nanostructuredphotocatalyst for the treatment of methylene blue dye [J]. J. Mater. Sci.,2012,47:2155–2161
    [2] Geriseher H, Heller A. The role of oxygen in photooxidation of organic molecules onsemiconductor particles [J]. J. Phys. Chem.,1991,95:5261–5267
    [3] Zhao B X, Li X Z, Wang P. Degradation of2,4–dichlorophenol with a novelTiO2/Ti–Fe–graphite felt photoelectrocatalytic oxidation process [J]. J. Environ. Sci.,2007,19:1020–1024
    [4] Vinodgopal K, Bedja I, Kamat P V. Photolectrochemical behavior of AnO2/TiO2compositesystems and its role in photocatalytic degradation of a textile azo dye [J]. Chem. Mater.,1996,8:2180–2187
    [5] Kesselman J M, Lewis N S, Hoffmann M R. Photoelectrochemical degradation of4–chlorocatechol TiO2electrodes: comparison between sorption and photoreactivity [J].Environ. Sci. Technol.,1997,31:2298–2302
    [6] Gong J Y, Yang C Z, Pu W H, Zhang J D, Liquid phase deposition of tungsten doped TiO2flms for visible light photoelectrocatalytic degradation of dodecyl-benzenesulfonate [J].Chem. Eng. J.,2011,67:190–197
    [7] Pastrana-Martínez L M, Faria J L, Do a–Rodríguez J M, Fernández–Rodríguez C, Silv AM T. Degradation of diphenhydramine pharmaceutical in aqueous solutions by using twohighly active TiO2photocatalysts: Operating parameters and photocatalytic mechanism [J].Appl. Catal. B,2012,113:221–227
    [8] Zhao X, Zhu Y F. Synergetic degradation of Rhodamine B at a porous ZnWO4filmelectrode by combined electro-oxidation and photocatalysis [J]. Environ. Sci. Technol.,2006,40:3367–3372
    [9] Ku Y, Chiu P C, Chou Y C. Decomposition of aniline in aqueous solution by UV/TiO2process with applying bias potential [J]. J. Hazard. Mater.,2010,1893:16–21
    [10] Livraghi S, Paganini M C, Giamello E, Selloni A, Valentin C D, Pacchioni G. Origin ofphotoactivity of nitrogen–doped titanium dioxide under visible light [J]. J. Am. Chem.Soc.,2006,128:15666–15671
    [11] In S, Orlov A, Berg R, Garcia F, Pedrosa–Jimenez S, Tikhov M S, Wright D S, Lambert RM. Effective visible light–activated B-doped and B,N–codoped TiO2Photocatalysts [J]. J.Am. Chem. Soc.,2007,129:13790–-13791
    [12] Hou Q, Zheng Y Z, Chen J F, Zhou W L, Deng J, Tao X. Visible–light–responseiodine–doped titanium dioxide nanocrystalsfor dye–sensitized solar cells [J]. J. Mater.Chem.,2011,21:3877–3883
    [13] Li Q, Xie R C, Li Y W, Mintz E A, Shang J K. Enhanced visible–light–inducedphotocatalytic disinfection of E. coli by carbon-sensitized nitrogen–doped titanium oxide[J]. Environ. Sci. Technol.,2007,41:5050-5056
    [14] Chen X B, Burda C. The electronic origin of the visible–light absorption properties of C-,N–and S–doped TiO2nanomaterials [J]. J. Am. Chem. Soc.,2008,130:5018–5019
    [15] Zhang L W, Baumanis C, Kandiel T, Bahnemann D. Bi2WO6inverse opals: facilefabrication and efficient visible-light-driven photocatalytic and photoelectrochemicalwater–splitting activity [J]. Small,7:2714–2720
    [16] Mani A, Huisman A, Goossens A, Schoonman J. Mott Schottky Analysis and ImpedanceSpectroscopy of TiO2/6T and ZnO/6T devices [J]. J. Phys. Chem. B,2008,112:10086–10091
    [17] Sakthivel S,Janczarek M, Kiseh H. Visible light activity and photoelectrochemicalproperties of nitrogen doped TiO2[J]. Chem.Phys. Chem.,2004,108:19384-19387
    [18] Kim K K, Kim H S, Hwang D K, Lim J H, Park S J. Realizatin of p–type ZnO thin filmsvia phosphorus doping and thermal activation of the dopant [J]. Appl. Phys. Lett.,2003,83:63–66
    [19] Li Q H, Liang Y X, Wang Q,.Oxygen sensing characteristics of individual ZnO nanowiretransistors [J].Appl. Phys. Lett.,2004,85:6389–6392
    [20] Lindgren T, Lu J, Hoel A, Granqvist C. G, Torres G R, Lindquist S E. Photoelectrochemicalstudy of sputtered nitrogen-doped titanium dioxide thin films in aqueous electrolyte [J].Solar Energy Mater. Solar Cells,2004,84:145–157
    [21] Li W J, Li D Z, Zhang W J, Hu Y, He Y H, Fu X Z, Microwave synthesis of ZnxCd1-xSnanorods and their photocatalyticactivity under visible light [J]. J. Phys. Chem. C,2010,114:2154–2159
    [22] Wang D T, Li X, Chen J F, Tao X. Enhanced visible–light photoelectrocatalyticdegradation of organic contaminants at iodine-doped titanium dioxide film electrode [J].Ind. Eng. Chem. Res.,2012,51:218–224
    [23] Xu L, Steinmiller E M P, Skrabalak S E. Achieving synergy with a potential photocatalyticZ-scheme: synthesis and evalution of nitrogen-doped TiO2/SnO2composites [J]. J. Phys.Chem. C,2012,116:871–877
    [1] O’ Regan B, Gr tzel M. A low-cost, high-efficiency solar cell based on dye-sensitizedcolloidal TiO2films [J]. Nature,1991,353:737–740
    [2] Desilvestro J, Gr tzel M, Kaven L, Moser J, Augustynski J. Highly efficient sensitizationof titanium dioxide [J]. J. Am. Chem. Soc.,1985,107:2988–2990
    [3] Liu Z F, Jin Z G, Li W, Qiu J J. Preparation of ZnO porous thin films by sol–gel methodusing PEG template [J]. Mater. Lett.,2005,59:3620–3625
    [4] Bouras P, Stathatos E, Lianos P, Tsakiroglou C. Photodegradation of Basic Blue by highlyefficient nanocrystalline titania films [J]. Appl. Catal. B2004,51:275–281
    [5] He Z Q, Xu X, Song S, Xie L, Tu J J, Chen J M, Yan B. A visible-light-driven titaniumdioxide photocatalyst codoped with lanthanum and iodine: an application in thedegradation of oxalic acid [J]. J. Phys. Chem. C,2008,112:16431–16437
    [6] Song S, Tu J J, He Z Q, Hong F Y, Liu W P, Chen J M. Visible light–driven iodine–dopedtitanium dioxide nanotubes prepared by hydrothermal process and post–calcination [J].Appl. Catal. A,2010,378:169–174
    [7] Liu G, Chen Z G, Dong C L, et al. Visible light photocatalyst: iodine–doped mesoporoustitania with a bicrystalline framework [J]. J. Phys. Chem. B,2006,110:20823–20828
    [8] Long M C, Cai W M, Wang Z P, Liu G Z. Correlation of electronic structures and crystalstructures with photocatalytic properties of undoped, N–doped and I–doped TiO2[J].Chem. Phys. Lett.,2006,420:71-76
    [9] Li Y Y, Wang J S, Yao H C, Dang L Y, Li Z J. Efficient decomposition of organiccompounds and reaction mechanism with BiOI photocatalyst under visible light irradiation[J]. J. Mol. Catal. A: Chem.,2011,334:116–122
    [10] Zheng Y Z, Tao X, Hou Q, Wang D T, Zhou W L, Chen J F. Visible-light-responseiodine-doped titanium dioxide nanocrystals for dye–sensitized solar cells [J]. Chem.Mater.2011,23:3–5
    [11] Dong F, Wang H Q, Sen G, Wu Z B, Lee S C. Enhanced visible light photocatalytic activityof novel Pt/C–doped TiO2/PtCl4three–component nanojunction system for degradation oftoluene in air [J]. J. Hazard. Mater.,2011,187:509–516
    [12] Kim S, Choi W. Visible light active platinum–ion–doped TiO2photocatalyst [J]. J. Phys.Chem. B,2005,109:5143–5149
    [13] Tojo S, Tachikawa T, Fujitsuka M, Majima T. Iodine-doped TiO2photocatalysts:correlation between band structure and mechanism [J]. J. Phys. Chem. C,2008,12:14948–1495
    [14] G tz M, Hess S, Beste G, Skerra A, Michel-Beyerle M E. Ultrafast electron transfer in thecomplex between fluorescein and a cognate engineered lipocalin protein, a so–calledanticalin [J]. Biochemistry,2002,41:4156–4164
    [15] Wu T X, Liu G M, Zhao J C, Photodegradation of sulforhodamine-B dye in platinizedtitania dispersions under visible light irradiation: influence of platinum as a functionalco-catalyst [J]. J. Phys. Chem. B,1998,102:5845–5851
    [16] Jiang D, Xu Y, Wu D, Sun Y H. Visible-light responsive dye-modified TiO2photocatalyst[J]. J. Solid State Chem.,2008,181:593–602
    [17] Li Y Z, Zhang H, Hu X L, Zhao X J, Han M. Efficient visible–light–induced photocatalyticactivity of a3D–ordered titania hybrid photocatalyst with a core/shell structure ofdye–containing polymer/titania [J]. J. Phys. Chem. C,2008,112:14973–17979
    [18] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Visible–light photocatalysis innitrogen-doped titanium oxides [J]. Science,2001,293:269–271

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700