二氧化钛纳米片的制备及光催化产氢性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境污染与能源危机是当今世界困扰人类的两大难题。出于对化石燃料即将枯竭以及因化石燃料燃烧引发的一系列环境污染问题的担忧使得氢气作为-种新的可替代能源载体吸引了越来越多研究者们的注意。近年来,光催化分解水产氢凭借其清洁、低成本以及环境友好的特点,已经成为一种具有很大发展前景的能够利用太阳能来获取氢气的新途径。与其他半导体光催化材料相比较,Ti02具有很多优点,诸如生物及化学惰性,强氧化力,无毒及不易发生光与化学腐蚀等,因此得到了最为广泛的应用。然而,TiO2光催化分解水产氢的效率受到光生电子与空穴高复合率的限制。而且,锐钛矿相TiO2本身具有较大的带隙能(3.2eV),只能被紫外光(λ<380nm)激发。通常太阳光中紫外光的含量不足5%。因此开发新的光催化剂使其在紫外光和可见光照射下都具备良好的光催化分解水产氢性能具有重大意义。近来,暴露高反应活性(001)晶面的锐钛矿相TiO2单晶纳米片引起了大量研究者的注意。理论与实验研究皆表明表面能更高的(001)晶面比热力学更加稳定的(101)晶面在反应物分子的解离吸附方面有着更高的效率。本论文主要围绕暴露(001)晶面TiO2纳米片的合成、修饰(包括贵金属Pt与/或CdS纳米颗粒沉积),表征和光催化性能等方面开展了一系列工作。我们的主要想法是从暴露(001)晶面TiO2纳米片出发,通过对其进行修饰来提高Ti02在紫外光区与可见光区的光催化产氢活性。本论文的主要内容涉及以下几个方面:
     1)Pt负载暴露(001)晶面TiO2纳米片(Pt/TiO2纳米片)光催化产氢性能研究。催化剂的形貌结构与其光催化活性的高低密切相关。TiO2的(001)晶面比(101)晶面在反应物分子的解离吸附方面表现出更高的效率,水分子在(001)晶面上能够发生化学解离,而在(101)晶面上只能进行物理吸附,由此推断(001)晶面比(101)晶面更有利于产氢。而且,TiO2纳米片的缺陷密度低,使得光生电子与空穴的复合速率也较低,这也对光催化产氢有利。因此,我们希望利用暴露(001)晶面TiO2纳米片的这种特殊结构,来得到较高光催化产氢活性的光催化剂。在第二章中,我们首先通过水热处理钛酸丁酯(Ti(OC4H9)4)-氢氟酸(HF)-水(H2O)混合溶液得到TiO2纳米片,接着采用光化学还原法将Pt纳米颗粒沉积在纳米片表面。研究并讨论了Pt含量对样品在乙醇水溶液中的光催化产氢性能的影响。结果表明Pt的负载量对TiO2纳米片的光催化产氢活性有着显著影响,并且在Pt含量为2wt%活性达到最佳。当Pt含量相同时,在表面氟化与暴露在外的(001)晶面的共同作用下,所有氟化TiO2纳米片比Degussa P-25TiO2和在纯水溶液中制得的TiO2纳米颗粒有着更高的光催化产氢活性。表面氟化TiO2纳米片在太阳能电池、光电器件、传感器、催化、生物工程与纳米技术等领域都具有重大利用价值。
     2) CdS敏化Pt/TiO2纳米片的制备及其增强的可见光光催化产氢活性。TiO2的光催化产氢性能受到TiO2内部光生电子-空穴对快速复合的限制,而且因为带隙能较大使得TiO2只对紫外光有响应。半导体量子点敏化是解决光响应范围窄的方法之一。因此,我们希望结合CdS量子点敏化与暴露(001)晶面TiO2纳米片的这两个优势,制备出具有较高可见光光催化产氢活性的光催化材料。在第三章中,首先通过简单地水热处理Ti(OC4H9)4-HF-H2O的混合溶液制备出Ti02纳米片,接着利用光还原法将Pt纳米颗粒沉积在Ti02纳米片表面,最后利用化学浴沉积法将CdS纳米颗粒沉积在Pt/TiO2纳米片表面。新制样品的紫外光与可见光光催化活性通过在乳酸水溶液中在紫外光与可见光(λ≥420nm)照射下样品的光催化产氢速率来评价。结果表明纯的TiO2纳米片样品不论在紫外光还是可见光的照射下都观察不到光催化产氢活性。在经过CdS纳米颗粒的沉积处理后Pt/TiO2纳米片样品在紫外光与可见光照射下的光催化产氢速率都得到显著增强。TiO2样品的形貌对其可见光光催化产氢活性有着重大影响。在TiO2纳米片,商业P25与TiO2纳米颗粒三种形貌中,CdS敏化的Pt/TiO2纳米片样品展现出最高的可见光光催化产氢活性,这个样品在420nm处的单色光表观量子效率可达到13.9%,超出CdS敏化的Pt负载P25样品的10.3%与Pt负载TiO2纳米颗粒样品的1.21%表观量子效率,这是TiO2纳米片暴露高比例(001)晶面,表面氟化以及高比表面积三个因素共同作用的结果。在以乳酸作为牺牲剂,进行多次重复光催化产氢的循环实验后,CdS敏化的Pt/TiO2纳米片的光催化活性并未表现出任何损失,表明CdS敏化的Pt/TiO2纳米片体系比较稳定。CdS敏化Pt/TiO2纳米片在许多其他领域,比如太阳能电池、光电子与光电器件、传感器、催化、生物医学工程与技术领域等,也都有着重大意义。
     3)离子液体对TiO2光催化性能及机理的影响。为满足产业化要求,TiO2的光催化性能需要进一步提高。TiO2表面的基团种类及数量影响着TiO2的光催化性能。离子液体凭借其诸多优点不但可以用于形貌调控,而且也可以用于表面修饰以改善材料性能。我们预计在光催化反应体系中添加离子液体也会对TiO2的光催化性能造成影响。在第四章中,我们研究了离子液体对TiO2光催化降解活性的影响。具体实验是通过研究在TiO2光催化降解体系中添加室温离子液体1-丁基-3-甲基咪唑四氟硼酸盐前后TiO2光催化降解甲基橙与罗丹明B的速率变化情况来实现。通过设计不同的活性物种捕获实验,我们对TiO2的光催化机理进行了系统研究。结果表明,光生电子是光催化降解甲基橙反应中起主要作用的活性物种,而羟基自由基与光生空穴在罗丹明B的光催化降解过程中扮演着重要角色。1-丁基-3-甲基咪唑四氟硼酸盐的添加会促进TiO2光催化降解甲基橙,因为离子液体有利于光生电子的捕获与传输,抑制光生电子与空穴的复合,而添加离子液体后TiO2光催化降解罗丹明B会受到抑制,这是由于离子液体与罗丹明B在TiO2的表面会产生竞争吸附,从而阻碍罗丹明B与TiO2表面光生空穴、羟基自由基的接触,不利于罗丹明B的光催化降解。离子液体对TiO2的光催化降解活性所带来的双面影响取决于待降解污染物的种类以及特定的光催化反应类型。这个研究为我们理解光催化机理提出了一种新的见解,有助于我们开发设计高性能的光催化材料。
Environmental pollutions and energy crisis are the two problems confronted with the world nowadays. Anxiety about depletion of fossil fuel reserves and pollution resulted from the combustion of fossil fuels make hydrogen an attractive alternative energy source. Recently, photocatalytic water-splitting has become a promising way for a clean, low-cost and environmentally friendly production of hydrogen by using solar energy. In comparison to other semiconductor photocatalysts, TiO2has been widely used because of its biological and chemical inertness, nontoxicity, low cost, availability and long-term stability against photo and chemical corrosion. However, the photocatalytic efficiency of TiO2for water-splitting is limited due to the high recombination rate of photogenerated electron-hole pairs. Furthermore, anatase TiO2is only effective under ultraviolet irradiation (λ<387nm) due to its large band gap (3.2eV). Usually, sunlight contains about4%ultraviolet light only. Therefore, it is highly desirable to develop a photocatalyst with enhanced photocatalytic activity for water splitting under both UV and visible-litht irradiation. Recently, anatase TiO2single-crystalline nanosheets with high percentage of reactive (001) facets have attracted lots of attention. Both theoretical and experimental studies indicate that higher surface energy of (001) facets are more effective for dissociative adsorption of reactant molecules compared with the thermodynamically more stable (101) facets. In this dissertation, valuable explorations have been carried out on the synthesis, modification (including noble metal Pt and/or CdS nanoparticles deposition), characterization and photocatalytic activity of the TiO2nanosheets with exposed (001) facets. Our main ideas are to improve the photocatalytic activity of TiO2for water-splitting under both UV and visible-litht irradiation by using anatase TiO2single-crystalline nanosheets with high percentage of reactive (001) facets as photocatalytst. The main points could be summarized as follows:
     1) Hydrogen production by photocatalytic water splitting over Pt/TiO2nanosheets with exposed (001) facets (Pt/TiO2NS). The photocatalytic activity of TiO2is strongly dependent on its morphology and structure. Compared with (101) facets,(001) facets are more effective for dissociative adsorption of reactant molemules. Furthermore, water molecules can chemically dissociate on the (001) surface but, contrarily, only physically adsorb on the (101) surface. Therefore, it is reasonable to infer that these (001) facets should be much more effective for water splitting than the (101) facets. Moreover, the single-crystalline structure of TiO2nanosheets with a low density of defects can reduce the recombination rate of photogenerated electron-hole pairs on grain boundaries and crystalline defects, thus improve the photocatalytic efficiency. So, we hope that TiO2nanosheets with exposed (001) facets will exhibit high photocatalytic activity for water splitting. In chapter2, Pt/TiO2NS were fabricated by a simple hydrothermal route in a Ti(OC4H9)4-HF-H2O mixed solution, followed by a photochemical reduction deposition of Pt nanoparticles on TiO2nanosheets under xenon lamp irradiation. The effects of Pt loading on the rates of photocatalytic hydrogen production of the as-prepared samples in ethanol aqueous solution were investigated and discussed. The results showed that the photocatalytic hydrogen production rates of TiO2nanosheets from the ethanol aqueous solutions were significantly enhanced by loaded Pt on the TiO2nanosheets, and the latter with a2wt%of deposited Pt exhibited the highest photocatalytic activity. All fluorinated TiO2nanosheets exhibited much higher photocatalytic activity than Degussa P25TiO2and pure TiO2nanoparticles prepared in pure water due to the synergistic effect of surface fluorination and exposed (001) facets. The surface-fluorinated Pt/TiO2NS are of great interest for solar cell, photonic and optoelectronic devices, sensors, catalysis, biomedical engineering and nanotechnology.
     2) Preparation and enhanced visible-light photocatalytic H2-production activity of CdS-sensibized Pt/TiO2NS. The photocatalytic activity of TiO2is limited by the high recombination rate of photogenerated electrons and holes. Moreover, TiO2is only effective under ultraviolet irradiation due to its large band gap. Semiconductor quantum dots sensitization is one of the methods to resolve this problem. So, we hope that the prepared CdS-sensitized Pt/TiO2NS can exhibit high photocatalytic activity for water splitting. In chapter3, CdS-sensitized Pt/TiO2NS were prepared by hydrothermal treatment of a Ti(OC4H9)4-HF-H2O mixed solution followed by photochemical reduction deposition of Pt nanoparticles on TiO2nanosheets and chemical bath deposition of CdS NPs on Pt/TiO2NS, successively. The UV and visible-light driven photocatalytic activity of the as-prepared samples was evaluated by photocatalytic H2production from lactic acid aqueous solution under UV and visible-light (λ>420nm) irradiation. It was shown that no photocatalytic H2-production activity was observed on the pure TiO2nanosheets under UV and/or visible-light irradiation. Deposition of CdS nanoparticles on Pt/TiO2NS caused a significant enhancement of the UV and visible-light photocatalytic H2-production rates. The morphology of TiO2particles had also a significant influence on the visible-light H2-production activity. Among TiO2nanosheets, P25and the nanoparticles studied, the CdS-sensitized Pt/TiO2NS show the highest photocatalytic activity (a13.9%apparent quantum efficiency obtained at420nm), exceeding that of CdS-sensitized Pt/P25by10.3%and that of Pt/NPs by1.21%, which can be attributed to the combined effect of several factors including the presence of exposed (001) facets, surface fluorination and high specific surface area. After many replication experiments of the photocatalytic hydrogen production in the presence of lactic acid, the CdS-sensitized Pt/TiO2NS did not show a great loss in the photocatalytic activity, confirming that the CdS/Pt/TiO2NS system is stable. The as-prepared CdS/Pt/TiO2NS are of great interest in solar cells, catalysis, photonic and optoelectronic devices, sensors, biomedical engineering and nanotechnology.
     3) From the aspect of practice application, the photocatalytic activity of TiO2needs to be further improved. The kinds and number of surface functional groups on the surface of TiO2have effects on the photocatalytic performance of TiO2. Ionic liquids have been widely used to control the morphology and modify the surface of inorganic materials. It is expected that the addition of ionic liquid affects the photocatalytic performance of TiO2. In chapter4, the effects of ionic liquid on the photocatalytic performance of TiO2were investigated by adding a water immiscible room temperature ionic liquid (1-butyl-3-methylimidazolium terafluoroborate) into the photocatalytic reaction of TiO2, and the photocatalysis mechanism of TiO2was also systematically investigated by designing different reactive radicals trapping experiments. The results show that photogenerated electrons are the main reactive species involved in the photocatalytic degradation of methyl organe, while·OH radicals and photogenerated holes play an important role in the photocatalytic degradation of rhodamine B. The addition of ionic liquid can enhance the photocatalytic degradation of methyl organe due to the enhanced separation of photogenerated electron-hole pairs through the trap and transfer of photogenerated electrons by ionic liquid, on the contrary, supress that of rhodamine B because of the competitive adsorption of ionic liquid and rhodamine B, which hinders the access of rhodamine B to the photogenerated holes and·OH radicals on the surface of TiO2. Ionic liquid exhibits ambilateral effects on the photocatalytic performance of TiO2and the effects are related to the kinds of contaminants and the different mechanisms in specific photocatalytic reaction. This report may provide new insight into the understanding of photocatalysis mechanism and the design of novel photocatalytic materials.
引文
[1]王玉晓.可见光下光催化分解水制取氢气的研究[D].天津大学博士学位论文,2009.
    [2]毛宗强.无碳能源:太阳氢[M].北京:化学工业出版社,2010:8-18.
    [3]毛宗强.氢能:21世纪的绿色能源[M].北京:化学工业出版社,2006.
    [4]张全国,尤希凤,张军合.生物制氢技术研究现状及其进展[J].生物质化学工程,2006,40:27-31.
    [5]Fujishima A. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature, 1972,238:37-38.
    [6]胡冬娜.可见光响应型光催化剂的制备及其降解有机污染物的研究[D].北京交通大学硕士学位论文,2007.
    [7]张军.复合金属硫化物光催化剂的制备及其可见光活性研究[D].武汉理工大学博士学位论文,2010.
    [8]马丽丽.可见光响应的纳米Cu2O、CdS的制备及其光催化性质研究[D].华中师范大学博士学位论文,2008.
    [9]Linsebigler A L, Lu G. Q, Yates J. T. Photocatalysis on TiO2 surfaces:principles, mechanisms, and selected results [J]. Chemical Reviews,1995,95:735-758.
    [10]Wang R, Hashimoto K, Fujishima A, et al. Photogeneration of highly amphiphilic TiO2 surfaces [J]. Advanced Materials,1998,10:135-138.
    [11]高濂,郑珊,张青红.纳米氧化钛光催化材料应用[M].北京:化学工业出版社,2002.
    [12]王传义,刘春艳,刘云Au/TiO2复合纳米粒子的表面增强Raman散射效应[J].科学通报,1999,15:7-10.
    [13]Negishi N, Iyoda T, Hashimoto K, et al. Preparation of transparent TiO2 thin film photocatalyst and its photocatalytic activity [J]. Chemistry Letters,1995,9:841-842.
    [14]赵进才,张德莉,黄应平Fenton及Photo-Fenton反应研究进展[J].环境化学,2006,5(5):121-127.
    [15]水淼,徐铸德,岳林海.纳米掺铁二氧化钛的sol-gel法制备与表征(Ⅱ)纳米掺铁二氧化钛的微晶特性与晶体生长[J].无机化学学报,2001,17(01):32-36.
    [16]徐京梅,黎甜楷,徐灵戈.DMF-硫脲体系制备CdS微晶掺杂的SiO2玻璃薄膜[J].功能材料,1993,24(6):504-508.
    [17]苏文悦,付贤智,魏可镁.SO42-表面修饰对TiO2结构及其光催化性能的影响[J].物理化学学报,2001,1:28-31.
    [18]陈恒.可见光响应型改性纳米光催化剂的制备及其光催化活性研究[D].上海交通大学硕十研究生学位论文,2007.
    [19]张利娟.分等级海绵大孔/介孔二氧化钛的水热制备与光催化活性[D].武汉理工大学硕士研究生学位论文,2008.
    [20]施尔畏,夏长泰,王步国,等.水热法的应用与发展[J].无机材料学报,1996,11(1):194-206.
    [21]刘守新,刘鸿.光催化及光电催化基础与应用[M].北京:化学工业出版社,2006.
    [22]刘恢,可见光响应光催化剂及其分解水的研究[D].上海交通大学博士学位论文,2008.
    [23]金振声,李庆霖.关于利用太阳能光解水制氢的研究[J].化学进展,1992,(01):130-138.
    [24]He Y, Zhu Y F, Wu N Z. Synthesis of nanosized NaTaO3 in low temperature and its photocatalytic performance [J]. Journal of Solid State Chemistry,2004,177 (11):3868-3872.
    [25]Miseki Y, Kato H. Kudo A.Water splitting into H2 and O2 over Cs2Nb4O11 photocatalyst [J]. Chemistry Letters,2005,34 (1):54-55.
    [26]Gao L, Zhang Q H. Ta3N5 Nanoparticles with enhanced photocatalytic efficiency under visible light irradiation [J]. Langmuir,2004,20 (22):9821-9827.
    [27]Zou Z G, Li J L, Wu Y. The study of self-propagating high-temperature synthesis of TiC-Al2O3/Fe composites from natural ilmenite [J]. Zurich-Uetikon,2005,280-283: 1103-1106.
    [28]Zou Z G, Ye J H, Sayama K, et al. Photocatalytic hydrogen and oxygen formation under visible light irradiation with M-doped InTaO4 (M= Mn, Fe, Co, Ni and Cu) photocatalysts [J]. Journal of Photochemistry and Photobiology A:Chemistry,2002,148 (1-3):65-69.
    [29]Liotta L F, Carlo G D, Pantaleo G, et al. Co3O4/CeO2 and Co3O4/CeO2-ZrO2 composite catalysts for methane combustion:correlation between morphology reduction properties and catalytic activity [J]. Catalysis Communications,2005,6 (5):329-336.
    [30]Salvador P, Garcia Gonzalez M L, Munoz F. Catalytic role of lattice defects in the photoassisted oxidation of water at (001) n-titanium (IV) oxide rutile [J]. Journal of Physical Chemistry,1992,96:10349-10353.
    [31]Kudo A, Kato H. Tsuji I. Strategies for the development of visible-light-driven photocatalysts for water splitting [J]. Chemistry Letters,2004,33 (12):1534-1539.
    [32]Lehn J M, Sauvage J P, Ziessel R, et al. Photochemical water splitting continuous generation of hydrogen and oxygen by irradiation of aqueous suspensions of metal loaded strontium-titanate[J]. Nouveau Journal De Chimie-New Journal of Chemistry,1980,4 (11): 623-627.
    [33]Zou Z, Ye J H, Sayama K, et al. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst [J]. Nature,2001,414:625-627.
    [34]付鸟有.核-壳结构纳米复合材料的制备及其性能研究[D].吉林大学博士研究生学位论文,2008.
    [35]Salvador P, Garciaconzalez M L, Munoz F. Catalytic role of lattics in the photoassisted oxidation of water at (001) n-TiO2 rutile [J]. Physical Chemistry,1992,96 (25):10349-10353.
    [36]Sauer T, Neto G C, Jose H J, et al. Kinetics of photocatalytic degradation of reactive dyes in a TiO2 slurry reactor [J]. Journal of Photochemistry and Photobiology A:Chemistry,2002, 149(1-3):147-154.
    [37]祖胜男.可见光响应半导体光催化剂的制备及其性能研究[D].浙江大学硕士研究生学位论文,2008.
    [38]Sun L, Bolton J R. Detemination of the quantum yield for the photochemical generation of hydroxyl radicals in TiO2 suspensions [J]. Physical Chemistry,1996,100:4127-4137.
    [39]Wang C Y, Rabani J, Bahnemann D W, et al. Photonic efficiency and quantum yield of formaldehyde formation from methanol in the presence of various TiO2 photocatalysts [J]. Journal of Photochemistry and Photobiology A:Chemistry,2002,148:169-176.
    [40]Kevin E O, Pernas E, Saiers J. The influence of mineralization products on the coagulation of TiO2 photocatalyst [J]. Langumuir,1999,15:2071-2076.
    [41]潘循皙,陈士明,阎小敏,等.顺磁共振法测定气相中·OH自由基的研究[J].环境科学,1999,20(6):30-33.
    [42]Micic O I, Zhang Y, Keith R, et al. Trapped holes on TiO2 colloids studied by electron paramagnetic resonance [J]. Journal of Physical Chemistry,1993,97:7277-7283.
    [43]Gerischer H, Heuer A. The role of oxygen in photoxidation of organic molecules on semiconductor particles [J]. Journal of Physical Chemistry,1991,95:5261-5267.
    [44]Monticone S, Tufeu R, Kanaev A V, et al. Quantum size effect in TiO2 nanoparticles:does it exist? [J]. Applied Surface Science,2000,162:565-570.
    [45]Chen Y M, Jin H Y, Li T J, et al. Study on photoelectric properties of a TiO2 nanoparticle [J]. Journal of Vacuum Science and Technology B,1997,15 (4):1442-1444.
    [46]孙奉玉,吴鸣,李文钊,等.二氧化钛的尺寸与光活性关系[J].催化学报,1998,19(3):229-233.
    [47]Rodney F J, David J C-H. Photochemical production of hydrogen from water and nucleophilic platinum metal complexes [J]. Chemical Communications,1981, (2):58-59.
    [48]Mark H B, Voulgaropoulos A, Meyer C A. Photo-induced electrochemical reduction of water to hydrogen at ruthenium-modified polysulphur nitride electrodes [J]. Chemical Communications,1981,(20):1021-1023.
    [49]Harriman A, Porter G, Richoux M-C. Colloidal platinum catalysts for the reduction of water to hydrogen, photosensitised by reductive quenching of zinc porphyrins [J]. Journal of the Chemical Society, Faraday Transactions 2:Molecular and Chemical Physics,1981,77 (10): 1939-1948.
    [50]Kalyanasundaram K. Photochemistry and sensitized evolution of hydrogen from water using water-soluble cationic porphyrins. Tetrakis (trimethylaminophenyl) porphyrinatozinc and its free base [J]. Journal of the Chemical Society, Faraday Transactions 2:Molecular and Chemical Physics,1983,79 (9):1365-1374.
    [51]Nenadovi6 M T, Mici6 O I, Ad□ic R R. Temperature dependence for the reduction of water to hydrogen by reduced methyl viologen on platinum [J]. Journal of the Chemical Society, Faraday Transactions 1:Physical Chemistry in Condensed Phases,1982,78 (4): 1065-1069.
    [52]Kobayashi J, Kitaguchi K, Tanaka H, et al. Photogeneration of hydrogen from water over an alumina-supported ZnS-CdS catalyst [J]. Journal of the Chemical Society, Faraday Transactions,1987,83 (5):1395-1404.
    [53]Mills A, Douglas P, Russell T. Kinetic study of the reduction of water to hydrogen by reduced methyl viologen mediated by platinised alumina [J]. Journal of the Chemical Society, Faraday Transactions,1990,86 (9):1417-1423.
    [54]Chung K-H, Park D-C. Photocatalytic decomposition of water over cesium-loaded potassium niobate photocatalysts [J]. Journal Molecular Catalysis A:Chemical,1998,129:53-59.
    [55]Licht S, Wang B, Mukerji S, et al. Efficient solar water splitting, exemplified by RuO2-catalyzed AlGaAs/Si photoelectrolysis [J]. Journal of Physical Chemistry B,2000,104 (9):8920-8924.
    [56]Licht S, Wang B, Mukerji S, et al. Over 18% solar energy conversion to generation of hydrogen fuel:theory and experiment for efficient solar water splitting [J]. International Journal of Hydrogen Energy,2001,26:653-659.
    [57]Asahi R, Morikawa T, Ohwaki K, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides [J]. Science,2001,293:269-271.
    [58]Zou Z G, Ye J H., Sayama K, et al. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst [J]. Nature,2001,414:625-627.
    [59]Khan S U M, Mofareh A S, William B. Efficient photochemical water splitting by a chemical modified n-TiO2 [J]. Science,2002,297:2243-2245.
    [60]Abe R, Sayama K, Arakawa H. Efficient hydrogen evolution from aqueous mixture of I- and acetonitrile using a merocyanine dyesensitized Pt/TiO2 photocatalyst under visible light irradiation [J]. Chemical Physics letters,2002,362 (5-6):441-444.
    [61]Lei Z, You W S, Liu M Y, et al. Photocatalytic water reduction under visible light on a novel ZnIn2S4 catalyst synthesized by hydrothermal method [J]. Chemical Communications,2003, (17):2142-2143.
    [62]Nowotny J, Sorrell C C, Sheppard L R, et al. Solar-hydrogen:Environmentally safe fuel for the future [J]. International Journal of Hydrogen Energy,2005,30:521-544.
    [63]Femandez A M, Dheree N, Turner J A, et al. Photoelectrochemical characterization of the Cu(In, Ga)S2 thin film prepared by evaporation [J]. Solar Energy Materials and Solar Cells, 2005,85:251-259.
    [64]毛海舫,田宏健,周庆复,等.共吸附对卟啉、酞菁/二氧化钛复合电极光电特性的影响[J].高等学校化学学报,1997,18:268-272.
    [65]Choi W K, Termin A, Hoffmann MR. The role of metal ion dopants in quantum-sized TiO2: correlation between photo reactivity charge carrier recombination dynamics [J]. Journal of Physical Chemistry,1994,98 (51):13669-13679.
    [66]Yuan Z H, Jia J H, Zhang L D. Influence of co-doping of Zn(Ⅱ)+Fe(Ⅲ) on the photocatalytic activity of TiO2 for phenol degradation [J]. Materials Chemistry and Physics,2002,73: 323-326.
    [67]Karakitsou K E, Verykios X E. Effects of altervalent cation doping of TiO2 on its performance as photocatalyst for water cleavage [J]. Journal of Physical Chemistry,1993,106: 1184-1189.
    [68]余火根.纳米二氧化钛光催化材料的可控制备与光催化活性[D].武汉理工大学博士研究生学位论文,2007.
    [69]Diwald T L, Thompson E G, Goralski S D, et al. The effect of nitrogen ion implantation on the photoactivity of TiO2 rutile single crystals [J]. Journal of Physical Chemistry B,2004.108: 52-57.
    [70]Regan B O, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films [J]. Nature,1991,24:737-740.
    [71]黄文娅,余颖.可见光化的半导体光催化剂[J].化学进展,2005,17:242-246.
    [72]In S, Orlov A, Berg R, et al. Effective visible light-activated B-doped and B, N-codoped TiO2 photocatalysts [J]. Journal of the American Chemical Society,2007,129 (45):13790-13791.
    [73]Hong X, Wang Z, Cai W, et al. Visible-light-activated nanoparticle photocatalyst of iodine-doped titanium dioxide [J]. Chemistry of Materials,2005,17 (6):1548-1552.
    [74]Tojo S, Tachikawa T, Fujitsuka M, et al. Iodine-doped TiO2 photocatalysts:correlation between band structure and mechanism [J]. The Journal of Physical Chemistry C,2008,112 (38):14948-14954.
    [75]Xie Y, Li Y, Zhao X. Low-temperature preparation and visible-light-induced catalytic activity of anatase F-N-codoped TiO2. Journal of Molecular Catalysis A:Chemical,2007,277 (1-2): 119-126.
    [76]Xie Y, Zhao X. The effects of synthesis temperature on the structure and visible-light-induced catalytic activity of F-N-codoped and S-N-codoped titania [J]. Journal of Molecular Catalysis A:Chemical,2008,285 (1):142-149.
    [77]Sakthivel S, Shankar M, Palanichamy M, et al. Enhancement of photocatalytic activity by metal deposition:characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst [J]. Water Research,2004,38 (13):3001-3008.
    [78]Ohno T, Tanigawa F, Fujihara K, et al. Photocatalytic oxidation of water by visible light using ruthenium-doped titanium dioxide powder [J]. Journal of Photochemistry and Photobiology A:Chemistry,1999,127(1-3):107-110.
    [79]Solymosi F, Tombacz 1. Photocatalytic reaction of H2O+CO2 over pure and doped Rh/TiO2 [J]. Catalysis letters,1994,27 (1):61-65.
    [80]Solymosi F, Tombacz I, Koszta J. Effects of variation of electric properties of TiO2 support on hydrogenation of CO and CO2 over Rh catalysts [J]. Journal of Catalysis,1985,95 (2): 578-586.
    [81]Carotta M, Ferroni M, Gnani D, et al. Nanostructured pure and Nb-doped TiO2 as thick film gas sensors for environmental monitoring [J]. Sensors and Actuators B:Chemical,1999,58 (1-3):310-317.
    [82]Kim S, Hwang S J, Choi W. Visible light active platinum-ion-doped TiO2 photocatalyst [J]. The Journal of Physical Chemistry B,2005,109 (51):24260-24267.
    [83]Sreethawong T, Yoshikawa S. Comparative investigation on photocatalytic hydrogen evolution over Cu-, Pd-, and Au-loaded mesoporous TiO2 photocatalysts [J]. Catalysis Communications,2005,6 (10):661-668.
    [84]Bowker M, James D, Stone P, et al. Catalysis at the metal-support interface:exemplified by the photocatalytic reforming of methanol on Pd/TiO2 [J]. Journal of Catalysis,2003,217 (2): 427-433.
    [85]Barakat M, Schaeffer, H, Hayes G, et al. Photocatalytic degradation of 2-chlorophenol by co-doped TiO2 nanoparticles [J]. Applied Catalysis B:Environmental,2005,57 (1):23-30.
    [86]Zou Z, Ye J, Sayama K, et al. Photocatalytic hydrogen and oxygen formation under visible light irradiation with M-doped InTaO4 (M= Mn, Fe, Co, Ni and Cu) photocatalysts [J]. Journal of Photochemistry and Photobiology A:Chemistry,2002,148 (1-3):65-69.
    [87]Kudo A, Sekizawa M. Photocatalytic H2 evolution under visible light irradiation on Ni-doped ZnS photocatalyst [J]. Chemical Communications,2000, (15):1371-1372.
    [88]Jing D, Zhang Y, Guo L, et al. Study on the synthesis of Ni doped mesoporous TiO2 and its photocatalytic activity for hydrogen evolution in aqueous methanol solution [J]. Chemical Physics Letters,2005,415 (1):74-78.
    [89]Ikeda S, Tanaka A, Shinohara K, et al. Effect of the particle size for photocatalytic decomposition of water on Ni-loaded K4Nb6O17 [J]. Microporous Materials,1997,9 (5-6): 253-258.
    [90]Sakatani Y, Nunoshige J, Ando H, et al. Photocatalytic decomposition of acetaldehyde under visible light irradiation over La3+ and N co-doped TiO2. Chemistry Letters,2003,32 (12): 1156-1157.
    [91]Colon G, Maicu M, Hidalgo M, et al. Cu-doped TiO2 systems with improved photocatalytic activity [J]. Applied Catalysis B:Environmental,2006,67 (1):41-51.
    [92]Wong R S K, Feng J, Hu X, et al. Discoloration and mineralization of non-biodegradable azo dye orange II by copper-doped TiO2 nanocatalysts [J]. Journal of Environmental Science and Health, Part A,2005,39 (10):2583-2595.
    [93]Asahi R, Morikawa T, Ohwaki T, et al. Visible light photocatalysis in nitrogen-doped titanium oxide [J]. Sicence,2001,293 (5528):269-271
    [94]Shangguan W F, Yoshida A. Synthesis and photocatalytic properties of CdS-intercalated metal oxides [J]. Solar Energy Materials and Solar Cells,2001,69 (2):189-194.
    [95]Shangguan W F, Yoshida A. Photocatalytic hydrogen evolution from water on nanocomposites incorporating cadmium sulfide into the interlayer [J]. The Journal of Physical Chemistry B,2002,106 (47):12227-12230.
    [96]Shangguan W F. Hydrogen evolution from water splitting on nanocomposite photocatalysts [J]. Science and Technology of Advanced Materials,2007,8 (1):76-81.
    [97]Ohno T, Tsubota T, Toyofuku M, et al. Photocatalytic activity of a TiO2 photocatalyst doped with C4+and S4+ions having a rutile phase under visible light [J]. Catalysis Letters,2004,98 (4):255-258.
    [98]Li H, Zhang X, Huo Y, et al. Supercritical preparation of a highly active S-doped TiO2 photocatalyst for methylene blue mineralization [J]. Environmental Science & Technology, 2007,41 (12):4410-4414.
    [99]Wei F, Ni L, Cui P. Preparation and characterization of N-S-codoped TiO2 photocatalyst and its photocatalytic activity [J]. Journal of Hazardous Materials,2008,156 (1):135-140.
    [100]未锦,田秀君.纳米硫化镉的制备、表征及其光催化性能研究[J].功能材料,2007,38:2536-2539.
    [101]Inoue T, Watanabe T, Fujishima A, et al. Suppression of surface dissolution of CdS photoanode by reducing agents [J]. Journal of the Electrochemical Society,1977,124: 719-722.
    [102]Howe RF. Recent developments in photocatalysis [J]. Developments in Chemical Engineering and Mineral Processing,1998,6:55-84.
    [103]Kudo A, Sekizawa M. Photocatalytic H2 evolution under visible light irradiation on Ni-doped ZnS photocatalyst [J]. Chemical Communications,2000,15:1371-1372.
    [104]Hara K, Sayama K, Arakawa H. Photocatalytic hydrogen and oxygen formation over SiO2-supported RuS2 in the presence of sacrificial donor and acceptor [J]. Applied Catalysis A: General,1999,189:127-137.
    [105]Ye J, Zou Z, Oshikiri M, et al. A novel hydrogen-evolving photocatalyst InVO4 activeunder visible light irradiation [J]. Chemical Physics Letters,2002,356:221-226.
    [106]Zhang L, Fu H, Zhang C, et al. Synthesis, characterization, and photocatalytic properties of InVO4 nanoparticles [J]. Journal of Solid State Chemistry,2006,179:804-811.
    [107]Kudo A, Omori K, Kato H. A novel aqueous process for praparation of crystal from-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties [J]. Journal of the American Chemical Society,1999,121:11459-11467.
    [108]Kohtani S, Makino S, Kudo A, et al. Photocatalytic degradation of 4-n-nonylphenol under irradiation from solar simulator:comparison between BiVO4 and TiO2 photocatalysis [J]. Chemistry Letters,2002,7:660-661.
    [109]Kasahara A, Nukumizu K, Hitoki G, et al. Photoreactions on LaTiO2N under visible light irradiation [J]. Journal of Physical Chemistry A,2002,106:6750-6753.
    [110]Yamasita D, Takata T, Hara M, et al. Recent progress of visible-light-driven heterogeneous photocatalysts for overall water splitting [J]. Solid State Ionics,2004,172:591-595.
    [111]Hitoki G, Yakata T, Kondo J N, et al. An oxyitride, TaON, as an effieient water oxidation photocatalyst under visible light irradiation (λ≤ 500 nm) [J]. Chemical Communications, 2002,16:1698-1699.
    [112]白树林,付希贤,王俊珍,等.LaFeO3的光催化活性[J].应用化学,2000,17:343-345.
    [113]Li S, Jing L, Fu W, et al. Photoinduced charge property of nanosized perovskite-type LaFeO3 and its relationships with photocatalytic activity under visible irradiation [J]. Materials Research Bulletin,2007,42:203-212.
    [114]Gao F, Chen X, Yin K, et al. Viaible-light photocatalytic properties of weak magnetic BiFeO3 nanoparticle [J]. Advanced Materials,2007,19:2889-2892.
    [115]蒋正静,戴洁,卞国庆.钛酸铅的水热法制备及其光催化活性的研究[J].化学世界,2002,10: 522-525.
    [116]Yanagisawa M, Uchida S, Sato S. Synthesis and photochemical propreties of Cu2+doped layered hydrogen titanate [J]. International Journal of Inorganic Materials,2000,2:339-346.
    [117]Zou Z, Ye J, Sayama K. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst [J]. Nature,2001,414:625-627
    [118]Takata T, Tnanka A, Domen, K. et al. Recent progress of photocatalysts of overall water splitting [J]. Catalysis Today,1998,44:17-26.
    [119]Zou Z, Ye J, Arakawa H. Photophysical and photocatalytic properties of InMO4 (M= Nb5+ Ta5+) under visible light irradiation [J]. Materials Research Bulletin,2001,36:1185-1193.
    [120]Zanetti S, Silva S A, Thim G. A chemical route for the synthesis of cubic bismuth zinc niobate pyrochlore nanopowders [J]. Journal of Solid State Chemistry,2004,177:4546-4551.
    [121]Cortright R D, Davda R R, Dumesic J A. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water [J]. Nature,2002,418:964-967.
    [122]Turner J A. Sustainable hydrogen production [J]. Science,2004,305 (5686):972-974.
    [123]Hoffmann M R, Martin S T, Choi W, et al. Environmental applications of semiconductor photocatalysis [J]. Chemical Reviews,1995,95 (1):69-96.
    [124]Park H, Choi W. Effects of TiO2 surface fluorination on photocatalytic reactions and photoelectrochemical behaviors [J]. Journal of Physical Chemistry B,2004,108 (13): 4086-4093.
    [125]Choi W. Pure and modified TiO2 photocatalysts and their environmental applications [J]. Catalysis Surveys from Asia,2006,10 (1):16-28.
    [126]Ksibi M, Rossignol S, Tatibouet J M, et al. Synthesis and solid characterization of nitrogen and sulfur-doped TiO2 photocatalysts active under near visible light [J]. Materials Letters, 2008,62 (26):4204-4206.
    [127]Ma Z, Brown S, Howe J Y, et al. Surface modification of Au/TiO2 catalysts by SiO2 via atomic layer deposition [J]. The Journal of Physical Chemistry C,2008,112 (25):9448-9457.
    [128]Li Y X, Lu G X, Li S B. Photocatalytic transformation of rhodamine B and its effect on hydrogen evolution over Pt/TiO2 in the presence of electron donors [J]. Journal of Photochemistry and Photobiology A:Chemistry,2002,152 (1-3):219-228.
    [129]Li Y, Xie Y, Peng S, et al. Photocatalytic hydrogen generation in the presence of chloroacetic acids over Pt/TiO2 [J]. Chemosphere,2006,63 (8):1312-1318.
    [130]Cheng Y W, Chan R C Y, Wong P. Disinfection of legionella pneumophila by photocatalytic oxidation [J]. Water research,2007,41 (4):842-852.
    [131]Zhou J K, Lv L, Yu J, et al. Synthesis of self-organized polycrystalline F-doped TiO2 hollow microspheres and their photocatalytic activity under visible light [J]. The Journal of Physical Chemistry C,2008,112 (14):5316-5321.
    [132]Li G, Wang L, Lv L, et al. Preparation and characterization of SiO2/TiO2-Pt core/shell nanostructures and evaluation of their photocatalytic activity [J]. Journal of Nanoscience and Nanotechnology,2009,9(1):177-184.
    [133]Yu J Q Xiang Q J, Zhou M H. Preparation, characterization and visible-light-driven photocatalytic activity of Fe-doped titania nanorods and first-principles study for electronic structures [J]. Applied Catalysis B:Environmental,2009,90 (3):595-602.
    [134]Yu J G, Yu J C, Leung M K P, et al. Effects of acidic and basic hydrolysis catalysts on the photocatalytic activity and microstructures of bimodal mesoporous titania [J]. Journal of Catalysis,2003,217(1):69-78.
    [135]Yan W, Chen B, Mahurin S, et al. Surface sol-gel modification of mesoporous silica materials with TiO2 for the assembly of ultrasmall gold nanoparticles [J]. The Journal of Physical Chemistry B,2004,108 (9):2793-2796.
    [136]Ma C Y, Mu Z, Li J J, et al. Mesoporous Co3O4 and AU/Co3O4 catalysts for low-temperature oxidation of trace ethylene [J]. Journal of the American Chemical Society,2010,132 (8): 2608-2613.
    [137]Yu J G, Su Y R, Cheng B. Template-Free fabrication and enhanced photocatalytic activity of herarchical macro-/mesoporous titania [J]. Advanced Functional Materials,2007,17 (12): 1984-1990.
    [138]Jimmy C Y, Yu J G, Ho W, et al. Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders [J]. Chemistry of Materials,2002,14 (9): 3808-3816.
    [139]Ni M, Leung M K H, Leung D Y C, et al. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production [J]. Renewable and Sustainable Energy Reviews,2007,11 (3):401-425.
    [140]Yu J G, Yu H G, Cheng B, et al. Enhanced photocatalytic activity of TiO2 powder (P25) by hydrothermal treatment [J]. Journal of Molecular Catalysis A:Chemical,2006,253 (1): 112-118.
    [141]Yang H G, Sun C H, Qiao S Z, et al. Anatase TiO2 single crystals with a large percentage of reactive facets [J]. Nature,2008,453 (7195):638-641.
    [142]Wu B, Guo C, Zheng N, et al. Nonaqueous production of nanostructured anatase with high-energy facets [J]. Journal of the American Chemical Society,2008,130 (51): 17563-17567.
    [143]Yang H G, Liu G, Qiao S Z, et al. Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant{001} facets [J]. Journal of the American Chemical Society, 2009,131 (11):4078-4083.
    [144]Yu J G, Xiang Q J, Ran J R, et al. One-step hydrothermal fabrication and photocatalytic activity of surface-fluorinated TiO2 hollow microspheres and tabular anatase single micro-crystals with high-energy facets [J]. CrystEngComm,2010,12 (3):872-879.
    [145]Han X, Kuang Q, Jin M, et al. Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties [J]. Journal of the American Chemical Society,2009,131 (9):3152-3153.
    [146]Hengerer R, Kavan L, Krtil P, et al. Orientation dependence of charge-transfer processes on TiO2 (anatase) single crystals [J]. Journal of the Electrochemical Society,2000,147:1467.
    [147]Kamei M, Mitsuhashi T. Hydrophobic drawings on hydrophilic surfaces of single crystalline titanium dioxide:surface wettability control by mechanochemical treatment [J]. Surface Science,2000,463 (1):L609-L612.
    [148]Vittadini A, Selloni A, Rotzinger F, et al. Structure and energetics of water adsorbed at TiO2 anatase (101) and (001) surfaces [J]. Physical Review Letters,1998,81 (14):2954-2957.
    [149]Gong X Q, Selloni A. Reactivity of anatase TiO2 nanoparticles:The role of the minority (001) surface [J]. The Journal of Physical Chemistry B,2005,109 (42):19560-19562.
    [150]Diebold U. The surface science of titanium dioxide [J]. Surface Science Reports,2003,48 (5):53-229.
    [151]Herman G S, Dohnalek Z, Ruzycki N, et al. Experimental investigation of the interaction of water and methanol with anatase-TiO2 (101) [J]. The Journal of Physical Chemistry B,2003, 107 (12):2788-2795.
    [152]Selloni A. Crystal growth:Anatase shows its reactive side [J]. Nature Materials,2008,7 (8): 613-615.
    [153]Amano F, Prieto-Mahaney O O, Terada Y, et al. Decahedral single-crystalline particles of anatase titanium (IV) oxide with high photocatalytic activity [J]. Chemistry of Materials,2009, 21 (13):2601-2603.
    [154]Liu G, Yang H G, Wang X, et al. Enhanced photoactivity of oxygen-deficient anatase TiO2 sheets with dominant{001} Facets [J]. The Journal of Physical Chemistry C,2009,113 (52): 21784-21788.
    [155]Liu G, Yang H G, Wang X, et al. Visible light responsive nitrogen doped anatase TiO2 sheets with dominant{001} facets derived from TiN [J]. Journal of the American Chemical Society, 2009,131 (36):12868-12869.
    [156]Liu G, Sun C, Yang H G, et al. Nanosized anatase TiO2 single crystals for enhanced photocatalytic activity [J]. Chemical Communications,2010,46 (5):755-757.
    [157]Prieto-Mahaney O O, Murakami N, Abe R, et al. Correlation between photocatalytic activities and structural and physical properties of titanium (IV) oxide powders [J]. Chemistry Letters,2009,38 (3):238-239.
    [158]Kominami H, Matsuura T, Iwai K, et al. Ultra. highly active titanium (IV) oxide photocatalyst prepared by hydrothermal crystallization from titanium (IV) alkoxide in organic solvents [J]. Chemistry Letters,1995, (8):693-694.
    [159]Everett D, Haul R, Moscou L, et al. Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity (Recommendations 1984) [J]. Pure and Applied Chemistry,1985,57 (4):603.
    [160]Kruk M, Jaroniec M. Gas adsorption characterization of ordered organic-inorganic nanocomposite materials [J]. Chemistry of Materials,2001,13 (10):3169-3183.
    [161]Czili H, Horvath A. Applicability of coumarin for detecting and measuring hydroxyl radicals generated by photoexcitation of TiO2 nanoparticles [J]. Applied Catalysis B: Environmental,2008,81 (3):295-302.
    [162]Ishibashi K, Fujishima A, Watanabe T, et al. Detection of active oxidative species in TiO2 photocatalysis using the fluorescence technique [J]. Electrochemistry Communications,2000, 2 (3):207-210.
    [163]Yu J G, Wang W G, Cheng B, et al. Enhancement of photocatalytic activity of mesporous T1O2 powders by hydrothermal surface fluorination treatment [J]. The Journal of Physical Chemistry C,2009,113 (16):6743-6750.
    [164]Zhang F, Chen J, Zhang X, et al. Synthesis of titania-supported platinum catalyst:the effect of pH on morphology control and valence state during photodeposition [J]. Langmuir,2004, 20 (21):9329-9334.
    [165]Sing K, Everett D, Haul R, et al. Reporting physisorption data for gas/solid systems [J]. Pure and Applied Chemistry,1985,57 (4):603-619.
    [166]Yu J Q Dai G P, Huang B B. Fabrication and characterization of Visible-Light-Driven plasmonic photocatalyst Ag/AgCl/TiO2 nanotube arrays [J]. The Journal of Physical Chemistry C,2009,113 (37):16394-16401.
    [167]Yu J G, Tao H, Cheng B. In situ monitoring of heterogeneous catalytic reactions [J]. ChemPhysChem,2010,11 (8):1617-1618.
    [168]Yu J G, Xiong J F, Cheng B, et al. Fabrication and characterization of Ag-TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity [J]. Applied Catalysis B: Environmental,2005.60 (3):211-221.
    [169]Cheng B, Le Y, Yu J G. Preparation and enhanced photocatalytic activity of Ag@ TiO2 core-shell nanocomposite nanowires [J]. Journal of Hazardous Materials,2010,177 (1-3): 971-977.
    [170]Yu J G, Yue L, Liu S W, et al. Hydrothermal preparation and photocatalytic activity of mesoporous Au-TiO2 nanocomposite microspheres [J]. Journal of Colloid and Interface Science,2009,334 (1):58-64.
    [171]Zhang W, Zhang M, Yin Z, et al. Photoluminescence in anatase titanium dioxide nanocrystals [J]. Applied Physics B:Lasers and Optics,2000,70 (2):261-265.
    [172]Zhou M H, Yu J G, Liu S W, et al. Effects of calcination temperatures on photocatalytic activity of SnO2/TiO2 composite films prepared by an EPD method [J]. Journal of Hazardous Materials,2008,154(1-3):1141-1148.
    [173]Bolton J R. Solar photoproduction of hydrogen:a review [J]. Solar Energy 1996,57 (1): 37-50.
    [174]Bard A J. Design of semiconductor photoelectrochemical systems for solar energy conversion [J]. The Journal of Physical Chemistry,1982,86 (2):172-177.
    [175]Hashimoto K, Kawai T, Sakata T. Photocatalytic reactions of hydrocarbons and fossil fuels with water. Hydrogen production and oxidation [J]. The Journal of Physical Chemistry,1984, 88 (18):4083-4088.
    [176]Yu J G, Wang G H, Cheng B. Effects of hydrothermal temperature and time on the photocatalytic activity and microstructures of bimodal mesoporous TiO2 powders. Applied Catalysis B:Environmental,2007,69 (3):171-180.
    [177]Yu J G, Zhao X J, Zhao Q N. Effect of surface structure on photocatalytic activity of TiO2 thin films prepared by sol-gel method [J]. Thin Solid Films,2000,379 (1):7-14.
    [178]Yu J G, Zhao X J, Zhao Q N. Photocatalytic activity of nanometer TiO2 thin films prepared by the sol-gel method [J]. Materials Chemistry and Physics,2001,69 (1-3):25-29.
    [179]Korzhak A V, Ermokhina N I, Stroyuk A L, et al. Photocatalytic hydrogen evolution over mesoporous TiO2 metal nanocomposites [J]. Journal of Photochemistry and Photobiology A: Chemistry,2008,198 (2):126-134.
    [180]Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting [J]. Chemical Society Reviews,2009,38 (1):253-278.
    [181]Yu J G, Zhang J, Jaroniec M. Preparation and enhanced visible-light photocatalytic H2-production activity of CdS quantum dots-sensitized Zn1-xCdxS solid solution [J]. Green Chem.2010,12(9):1611-1614.
    [182]Yu J G, Zhang J. A simple template-free approach to TiO2 hollow spheres with enhanced photocatalytic activity [J]. Dalton Trans,2010,39 (25):5860-5867.
    [183]Yu J G, Fan J J, Lv K L. Anatase TiO2 nanosheets with exposed (001) facets:improved photoelectric conversion efficiency in dye-sensitized solar cells [J]. Nanoscale,2010,2 (10): 2144-2149.
    [184]Xiang Q J, Lv K L, Yu J G. Pivotal role of fluorine in enhanced photocatalytic activity of anatase TiO2 nanosheets with dominant (001) facets for the photocatalytic degradation of acetone in air [J]. Applied Catalysis B:Environmental,2010,96 (3):557-564.
    [185]Li G S, Zhang D Q, Yu J C. A new visible-light photocatalyst:CdS quantum dots embedded mesoporous TiO2 [J]. Environmental Science & Technology,2009,43 (18):7079-7085.
    [186]Yu J G, Qi L F. Template-free fabrication of hierarchically flower-like tungsten trioxide assemblies with enhanced visible-light-driven photocatalytic activity [J]. Journal of Hazardous Materials,2009,169 (1-3):221-227.
    [187]Yu J G, Qi L F, Cheng B, et al. Effect of calcination temperatures on microstructures and photocatalytic activity of tungsten trioxide hollow microspheres [J]. Journal of Hazardous Materials,2008,160 (2-3):621-628.
    [188]Irie H, Watanabe Y, Hashimoto K. Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders [J]. The Journal of Physical Chemistry B,2003,107 (23): 5483-5486.
    [189]Liu S W, Yu J G, Wang W G. Effects of annealing on the microstructures and photoactivity of fluorinated N-doped TiO2 [J]. Physical Chemistry Chemical Physics,2010,12 (38): 12308-12315.
    [190]Xiang Q J, Yu J G, Jaroniec M. Nitrogen and sulfur co-doped TiO2 nanosheets with exposed {001} facets:synthesis, characterization and visible-light photocatalytic activity [J]. Physical Chemistry Chemical Physics,2011,13 (11):4853-4861.
    [191]Matsubara K, Tatsuma T. Morphological changes and multicolor photochromism of Ag nanoparticles deposited on single-crystalline TiO2 surfaces [J]. Advanced Materials,2007,19 (19):2802-2806.
    [192]Zhao L, Yu J G, Fan J J, et al. Dye-sensitized solar cells based on ordered titanate nanotube films fabricated by electrophoretic deposition method [J]. Electrochemistry Communications, 2009,11 (10):2052-2055.
    [193]Robel I, Kuno M, Kamat P V. Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles [J]. Journal of the American Chemical Society,2007,129 (14): 4136-4137.
    [194]Yu J G, Wang W G, Cheng B. Synthesis and enhanced photocatalytic activity of a hierarchical porous flowerlike p-n junction NiO/TiO2 photocatalyst [J]. Chemistry-An Asian Journal,2010,5 (12):2499-2506.
    [195]Yu J G, Ma T T, Liu S W. Enhanced photocatalytic activity of mesoporous TiO2 aggregates by embedding carbon nanotubes as electron-transfer channel [J]. Physical Chemistry Chemical Physics,2011,13 (8):3491-3501.
    [196]Peter L M, Riley D J, Tull E J, et al. Photosensitization of nanocrystalline TiO2 by self-assembled layers of CdS quantum dots [J]. Chemical Communications,2002, (10): 1030-1031.
    [197]Lin S C, Lee Y L, Chang C H, et al. Quantum-dot-sensitized solar cells:Assembly of CdS-quantum-dots coupling techniques of self-assembled monolayer and chemical bath deposition [J]. Applied Physics Letters,2007,90 (14):143517-143517-3.
    [198]Robel I, Subramanian V, Kuno M, et al. Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films [J]. Journal of the American Chemical Society,2006,128 (7):2385-2393.
    [199]Lee Y L, Huang B M, Chien H T. Highly efficient CdSe-sensitized TiO2 photoelectrode for quantum-dot-sensitized solar cell applications [J]. Chemistry of Materials,2008,20 (22): 6903-6905.
    [200]Plass R, Pelet S, Krueger J, et al. Quantum dot sensitization of organic-inorganic hybrid solar cells [J]. The Journal of Physical Chemistry B,2002,106 (31):7578-7580.
    [201]Hoyer P, Konenkamp R. Photoconduction in porous TiO2 sensitized by PbS quantum dots [J]. Applied Physics Letters,1995,66:349.
    [202]Schaller R D, Klimov V I. High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion [J]. Physical Review Letters,2004,92 (18):186601.
    [203]Zaban A, Micic O, Gregg B, et al. Photosensitization of nanoporous TiO2 electrodes with InP quantum dots [J]. Langmuir,1998,14 (12):3153-3156.
    [204]Gratzel M. Photoelectrochemical cells [J]. Nature,2001,414 (6861):338-344.
    [205]Lee Y L, Chi C F, Liau S Y. CdS/CdSe co-sensitized TiO2 Photoelectrode for efficient hydrogen generation in a photoelectrochemical cell [J]. Chemistry of Materials,2009,22 (3): 922-927.
    [206]Sun W T, Yu Y, Pan H Y, et al. CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes [J]. Journal of the American Chemical Society,2008,130 (4):1124-1125.
    [207]Bai J, Li J, Liu Y, et al. A new glass substrate photoelectrocatalytic electrode for efficient visible-light hydrogen production:CdS sensitized TiO2 nanotube arrays [J]. Applied Catalysis B:Environmental,2010,95 (3-4):408-413.
    [208]Marti nez-Ferrero E, Sakatani Y, Boissiere C, et al. Nanostructured titanium oxynitride porous thin films as efficient visible-active photocatalysts [J]. Advanced Functional Materials,2007,17 (16):3348-3354.
    [209]Li F, Li X, Hou M, et al. Enhanced photocatalytic activity of Ce3+-TiO2for 2-mercaptobenzothiazole degradation in aqueous suspension for odour control [J]. Applied Catalysis A:General,2005,285 (1-2):181-189.
    [210]Yu J G, Liu S W, Yu H G. Microstructures and photoactivity of mesoporous anatase hollow microspheres fabricated by fluoride-mediated self-transformation [J]. Journal of Catalysis, 2007,249(1):59-66.
    [211]Linsebigler A L, Lu G, Yates J T. Photocatalysis on TiO2 surfaces:principles, mechanisms, and selected results. Chemical Reviews,1995,95 (3):735-758.
    [212]Ma X Y, Chen Z G, Hartono S B, et al. Fabrication of uniform anatase TiO2 particles exposed by{001} facets [J]. Chemical Communications,2010,46 (35):6608-6610.
    [213]Chen J S, Luan D, Li C M, et al. TiO2 and SnO2@TiO2 hollow spheres assembled from anatase TiO2 nanosheets with enhanced lithium storage properties [J]. Chemical Communications,2010,46 (43):8252-8254.
    [214]Liu S W, Yu J G, Jaroniec, M. Tunable photocatalytic selectivity of hollow TiO2 microspheres composed of anatase polyhedra with exposed{001} facets [J]. Journal of the American Chemical Society,2010,132(34):11914-11916.
    [215]Li J, Xu D. Tetragonal faceted-nanorods of anatase TiO2 single crystals with a large percentage of active{100} facets [J]. Chemical Communications,2010,46 (13):2301-2303.
    [216]Yu J G, Qi L F, Jaroniec M. Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed (001) facets [J]. Journal of Physical Chemistry C,2010,114 (30):13118-13125.
    [217]Chang C H, Lee Y L. Chemical bath deposition of CdS quantum dots onto mesoscopic TiO2 films for application in quantum-dot-sensitized solar cells [J]. Applied Physics Letters,2007, 91 (5):053503-053503-3.
    [218]Chi C F, Lee Y L, Weng H S. A CdS-modified TiO2 nanocrystalline photoanode for efficient hydrogen generation by visible light [J]. Nanotechnology,2008,19:125704.
    [219]Yu J G, Dai G P, Xiang Q J, et al. Fabrication and enhanced visible-light photocatalytic activity of carbon self-doped TiO2 sheets with exposed{001} facets [J]. Journal of Materials Chemistry,2011,21 (4):1049-1057.
    [220]Xiang Q J, Yu J G, Jaroniec M. Tunable photocatalytic selectivity of TiO2 films consisted of flower-like microspheres with exposed{001} facets [J]. Chemical Communications,2011,47 (15):4532-4534.
    [221]Moulder J F, Stickle W F, Sobol P E, et al ed. Handbook of x-ray photoelectron spectroscopy:a reference book of standard spectra for identification and interpreation of XPS data [M]. Eden Prairie:Perkin-Elmer,1992.
    [222]Xiang Q J, Yu J G, Cheng B, et al. Microwave-hydrothermal preparation and visible-light photoactivity of plasmonic photocatalyst Ag-TiO2 nanocomposite hollow spheres [J]. Chemistry-an Asian Journal,2010,5 (6):1466-1474.
    [223]Li Y X, Lu G X, Li S B. Photocatalytic hydrogen generation and decomposition of oxalic acid over platinized TiO2 [J]. Applied Catalysis A:General,2001,214 (2):179-185.
    [224]Yu J G, Wang B. Effect of calcination temperature on morphology and photoelectrochemical properties of anodized titanium dioxide nanotube arrays [J]. Applied Catalysis B: Environmental,2010,94 (3-4):295-302.
    [225]Lin W C, Yang W D, Huang I L, et al. Hydrogen production from methanol/water photocatalytic decomposition using Pt/TiO2-xNx catalyst [J]. Energy & Fuels,2009,23 (4): 2192-2196.
    [226]Park J H, Kim S, Bard A J. Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting [J]. Nano letters,2006,6 (1):24-28.
    [227]Yu J G, Yu H G, Cheng B, et al. The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition [J]. Journal of Physical Chemistry B,2003,107 (50):13871-13879.
    [228]Choi W, Termin A, Hoffmann M R. The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics [J]. The Journal of Physical Chemistry,1994,98 (51):13669-13679.
    [229]Cheng Y W, Chan R C Y, Wong P. Disinfection of legionella pneumophila by photocatalytic oxidation [J]. Water Research,2007,41 (4):842-852.
    [230]Liu S W, Yu J G, Jaroniec M, et al. Anatase TiO2 with dominant high-energy{001} facets: Synthesis, properties, and applications [J]. Chemistry of Materials,2011,23 (18):4085-4093.
    [231]Xiang Q J, Yu J G, Wang W G, et al. Nitrogen self-doped nanosized TiO2 sheets with exposed{001} facets for enhanced visible-light photocatalytic activity [J]. Chemical Communications,2011,47 (24):6906-6908.
    [232]Frank S N, Bard A J. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder [J]. Journal of the American Chemical Society,1977,99 (1):303-304.
    [233]Qi L F, Yu J G, Jaroniec M. Preparation and enhanced visible-light photocatalytic H2-production activity of CdS-sensitized Pt/TiO2 nanosheets with exposed (001) facets [J]. Physical Chemistry Chemical Physics,2011,13 (19):8915-8923.
    [234]Vohra M S, Kim S, Choi W. Effects of surface fluorination of TiO2 on the photocatalytic degradation of tetramethylammonium [J]. Journal of Photochemistry and Photobiology A: Chemistry,2003,160 (1-2):55-60.
    [235]Dupont J, de Souza R F, Suarez P A Z. Ionic liquid (molten salt) phase organometallic catalysis [J]. Chemical Reviews,2002,102 (10):3667-3692.
    [236]Guo S, Dong S, Wang E. Constructing carbon nanotube/Pt nanoparticle hybrids using an imidazolium-salt-based ionic liquid as a linker [J]. Advanced Materials,2010,22 (11): 1269-1272.
    [237]Lee C P, Yeh M H, Vittal R, et al. Solid-state dye-sensitized solar cell with a charge transfer layer comprising two ionic liquids and a carbon material [J]. Journal of Materials Chemistry, 2011,21:15471-15478.
    [238]Ding K, Miao Z, Liu Z, et al. Facile synthesis of high quality TiO2 nanocrystals in ionic liquid via a microwave-assisted process [J]. Journal of the American Chemical Society,2007, 129 (20):6362-6363.
    [239]Zhang D, Li G, Yang X, et al. A micrometer-size TiO2 single-crystal photocatalyst with remarkable 80% level of reactive facets [J]. Chemical communications,2009, (29): 4381-4383.
    [240]Huang G, Zhang S, Xu T, et al. Fluorination of ZnWO4 photocatalyst and influence on the degradation mechanism for 4-chlorophenol [J]. Environmental science & technology,2008,42 (22):8516-8521.
    [241]Hu S, Zhu J, Wu L, et al. Effect of fluorination on photocatalytic degradation of rhodamine B over In(OH)(y)S(Z):Promotion or suppression? [J]. Journal of Physical Chemistry C,115 (2): 460-467.
    [242]Chen Y, Yang S, Wang K, et al. Role of primary active species and TiO2 surface characteristic in UV-illuminated photodegradation of acid orange 7 [J]. Journal of Photochemistry and Photobiology A:Chemistry,2005,172 (1):47-54.
    [243]Gazi S, Rajakumar A, Singh N. Photodegradation of organic dyes in the presence of [Fe(Ⅲ)-salen]Cl complex and H2O2 under visible light irradiation [J]. Journal of Hazardous Materials,2010,183 (1-3):894-901.
    [244]Zhuang J, Dai W, Tian Q, et al. Photocatalytic degradation of RhB over TiO2 bilayer films: Effect of defects and their location [J]. Langmuir,2010,26 (12):9686-9694.
    [245]Liu G, Li X, Zhao J, Horikoshi S, Hidaka H. Photooxidation mechanism of dye alizarin red in TiO2 dispersions under visible illumination:an experimental and theoretical examination [J]. Journal of Molecular Catalysis A:Chemical,2000,153 (1):221-229.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700