二氧化钛基复合光催化材料的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类进入21世纪后,随着环境污染的日益严重,环境污染的控制与治理已经成为人类社会面临的亟待解决的重大问题。在众多治理环境污染的材料中,以二氧化钛为代表的氧化物半导体光催化材料以其独特的性能成为一种理想的环境污染清洁材料。但是,以二氧化钛半导体为基础的光催化技术还存在着量子效率低,太阳能利用率低等关键科学技术难题,极大地制约着它在工业上的广泛应用。针对上述难题,为加速光催化技术的实用化进程,提高二氧化钛的光催化活性和新型光催化材料的稳定性,本论文通过对二氧化钛进行复合改性以降低光生电子-空穴对的复合率,并考察了一种新型光催化材料的光腐蚀机理,取得了以下成果:
     第一,通过对C2H4(NH2)2, NaOH和Ni (NO3)2的混合溶液进行水热处理合成出由纳米片组装而成的分等级结构的花状β-Ni(OH)2。所制备的β-Ni(OH)2粉末在400℃煅烧5小时后则转变成NiO,而其形貌没有发生大的改变。此外,通过将β-Ni(OH)2粉末分散在Ti(OC4H9)4和C2H5OH的混合溶液中并加热至100度使乙醇蒸发,最后于400度煅烧5小时,得到表面均匀沉积了Ti02纳米颗粒的NiO超结构。所制备的NiO/TiO2p-n结超结构在降解对氯苯酚的过程中表现出比相同条件下制备的TiO2粉末和NiO粉术更高的光催化活性。其光催化活性的显著提高可归因为诸多因素,包括分等级多孔结构的形成,TiO2粒子在NiO超结构表面的均匀分布以及p-n结的形成。当p型NiO和n型TiO2复合时,它们之间会形成许多p-n结(内建电场)。在紫外光照射下,二氧化钛受激发产生电子-空穴对。在内建电场的作用下,二氧化钛价带上的光生空穴会加速往p型NiO上迁移,而电子向n型TiO2上迁移,使得光生电子-空穴对得到了有效的分离。此外,与传统的粉末光催化剂相比,NiO/TiO2复合结构在光催化反应结束后更容易通过离心或沉降法从悬浮液中分离出来并重复利用。经过多次降解对氯苯酚的循环实验后,NiO/TiO2复合体系的光催化活性没有明显的降低,表明NiO/TiO2样品具有很好的稳定性且不容易发生光腐蚀。
     第二,石墨烯是一种单层石墨,它拥有独特的二维结构,高导电率,优异的电子迁移率和非常大的比表面积,成本低廉,可以被大批量生产。因此,它被认为是一种优异的催化剂载体。最近,基于石墨烯的半导体光催化材料由于具有增强的光催化活性而引起了广泛的关注。我们以钛酸四丁酯为钛源,通过简单的一步水热法制备出低石墨烯负载(0-0.2wt.%)的分等级大孔/介孔TiO2-石墨烯复合材料。所制备的复合样品在光催化降解空气中的丙酮时表现出增强的光催化活性。石墨烯的含量对光催化活性有显著的影响,我们确定了石墨烯的最佳负载量。当石墨烯达到最佳负载量(0.05wt.%)时,所制备的复合材料具有最高的光催化活性,其速率常数分别是纯二氧化钛和商业P25(Degussa公司生产)的1.7倍和1.6倍。YiO2-石墨烯复合材料光催化活性的增强是因为石墨烯是优异的电子受体和传输体,它减少了电荷载流子的复合从而提高了光催化活性。瞬时光电流响应测试进一步证实了光生电子从Ti02到石墨烯的转移过程。
     第三,以甲醇为牺牲剂,通过在反应体系中直接添加Ni(NO3)2作为助催化剂,研究了商业P25二氧化钛粉末在氙灯光照下的光催化产氢活性。研究了Ni(NO3)2的浓度对二氧化钛在甲醇水溶液中光催化产氢活性的影响。研究结果表明,在添加Ni(NO3)2助催化剂后,Ti02的光催化产氢活性得到了明显的提高。本实验中,Ni(NO3)2(?)勺最佳浓度为0.32mo1.%,此时的光催化产氢速率为2547μmolh-1g-1,相应的量子效率为8.1%。二氧化钛光催化产氢活性的显著提高是因为二氧化钛表面沉积着被还原的Ni0。光催化活性提高的机理是:由于Ni2+/Ni的电极电势的位置(Ni2++2e-=Ni,E°=-0.23V)要比锐钛矿Ti02的导带位置(-0.26V)稍微低一些,同时又要比H+/H2的电极电势的位置(2H++2e-=H2,矿=-0.00v)高一些。这就有利于二氧化钛导带的电子转移到Ni2+上,并将部分Ni2+还原成Ni0,而Ni0可以促进电荷的分离并作为光催化分解水产氢的助催化剂,从而提高了二氧化钛的光催化产氢活性。
     第四,以硝酸银和Na2HPO4为前驱体,通过简单的沉淀法合成出Ag3P04球形颗粒。新制备的样品在可见光下降解罗丹明B时表现出高的光催化活性。其光催化活性随着循环次数的增加先升高而后降低。根据X射线衍射、X射线光电子能谱、紫外-可见吸收光谱、扫描电子显微镜以及透射电子显微镜等一系列表征结果,我们第一次提出了一种Ag3PO4光催化性能的增强与失活的机理。经过四次循环的Ag3PO4球形颗粒具有最高的光催化活性,这是由于沉积在Ag3PO4表面的Ag纳米颗粒扮演着电子捕获中心的角色,它可以阻止光生电子和空穴的复合。进一步增加循环次数,Ag3PO4的光催化活性下降,这是由Ag3PO4表面的Ag薄层的屏蔽效应导致的。本实验研究结果对Ag3PO4球形颗粒的光稳定性提供了新的解释,并有可能适用于阐述其它光催化活性复合材料的失活机理。
In the21st century, environmental pollution has become increasingly serious. Pollution control and management has been the major issue and must be resolved. Among various pollution control technologies, titanium dioxide, as a representative oxide semiconductor photocatalytic material, is an ideal environmental pollution cleaning product due to its unique properties. However, there still exists some key scientific and technological problems with titanium dioxide semiconductor based photocatalytic technology such as low quantum efficiency and can only absorb a small fraction of solar energy, which greatly restricts its widely practical applications in industry. In view of the above problems, in order to promote the practical application of photocatalytic technology, improve the photocatalytic activity of titanium dioxide and stability of novel photocatalyst, we successfully prepared a serious of titanium dioxide-based composite photocatalysts to reduce the recombination rate of photogenerated electron-hole pairs. Meanwhile, the photocorrosion mechanism of a novel photocatalyst was also studied. The main points could be summarized as follows:
     Firstly, hierarchical flowerlike (3-Ni(OH)2superstructures composed of intermeshed nanoflakes are synthesized by hydrothermal treatment with a mixed solution of C2H4(NH2)2, NaOH and Ni (NO3)2. The as-prepared β-Ni(OH)2superstructures could be easily changed into NiO superstructures without great morphology change by calcination at400℃for5h. Furthermore, the TiO2nanoparticles can be homogeneously deposited on the surface of NiO superstructures by dispersing (3-Ni(OH)2powders in Ti(OC4H9)4-C2H5OH mixed solution and then vaporizing to remove the ethanol at100℃, and finally calcination at400℃for5h. The prepared NiO/TiO2p-n junction superstructures show much higher photocatalytic activity for photocatalytic degradation of p-chlorophenol aqueous solution than conventional TiO2powders and NiO superstructures prepared under the same experimental conditions. An obvious enhancement in the photocatalytic activity can be related to several factors, including formation of hierarchical porous structures, dispersion of TiO2particles on the surface of NiO superstructures, and production of a p-n junction. When p-type NiO and n-type TiO2integrate, a number of p-n junctions will be formed. Under UV light illumination, photons strike TiO2and create free electron-hole pairs in the electric field, the photo-generated holes at the valence band of TiO2will be accelerated towards the p-type NiO and the electrons towards the n-type with the effect of the inner electric field. Thus, the photogenerated electron-hole pairs will be easily separated. Further results show that NiO/TiO2composite superstructures can be more readily separated from the slurry system by filtration or sedimentation after photocatalytic reaction and re-used, compared with conventional powder photocatalysts. After many recycling experiments for the photodegradation of p-chlorophenol, the NiO/TiO2composite sample does not exhibit any great activity loss, confirming that NiO/TiO2sample is stable and not photocorroded.
     Secondly, graphene, a single layer of graphite, possesses a unique two-dimensional structure, high conductivity, superior electron mobility and extremely high specific surface area, and can be obtained on a large scale at low cost. Thus, it has been regarded as an excellent catalyst support. Recently, graphene-based semiconductor photocatalysts have attracted more attention due to their enhanced photocatalytic activity. In this work, hierarchical macro/mesoporpous TiO2-graphene composites with low loadings (0-0.2wt.%) of graphene were first produced by a simple one-step hydrothermal method using tetrabutyl titanate as the titanium precursor. The prepared composite samples presented enhanced photocatalytic activity in photodegradation of acetone in air. Graphene content exhibited an obvious influence on photocatalytic activity and the optimal graphene addition content was determined. At the optimal graphene concentration (0.05wt.%), the prepared composites showed the highest photocatalytic activity, exceeding that of pure TiO2and Degussa P-25by a factor of1.7and1.6, respectively. The enhanced photocatalytic activity is due to graphene as an excellent electron acceptor and transporter, thus reducing the recombination of charge carriers and enhancing the photocatalytic activity. The transient photocurrent response experiment further confirmed the transfer of photogenerated electrons from TiO2to graphene.
     Thirdly, photocatalytic H2-production activity on Degussa P25TiO2powder (P25) was evaluated by directly using Ni(NO3)2as a cocatalyst and methanol as a scavenger under Xenon light irradiation. The effect of Ni(NO3)2concentration on the photocatalytic hydrogen production rates of the TiO2in methanol aqueous solution was investigated. The results showed that the photocatalytic H2-production activity of TiO2was significantly enhanced by adding Ni(NO3)2aqueous solution. The optimal Ni(NO3)2concentration was found to be0.32mol.%, giving H2-production rate of2547μmolh-1g-1with quantum efficiency (QE) of8.1%. This high photocatalytic H2-production activity is due to the reduced Ni0on the surface of TiO2. The enhanced mechanism is because the potential of Ni2+/Ni (Ni2++2e-=Ni,E0=-0.23V) is slightly lower than conduction band (CB)(-0.26V) of anatase TiO2, meanwhile higher than the reduction potential of H+/H2(2H++2e-=H2, E0=-0.00V), which favors the electrons transfer from CB of TiO2to Ni2+and the reduction of partial Ni2+to Ni0. The function of Ni0is to help the charge separation and to act as co-catalyst for water reduction, thus enhancing the photocatalytic H2-production activity.
     Forthly, Ag3PO4spherical particles were synthesized by a facile precipitation method using silver nitrate and Na2HPO4as precursors. The as-prepared samples showed enhanced photocatalytic activity toward rhodamine-B (RhB) degradation under visible-light. The photocatalytic activity first increased and then decreased with increasing recycle times. Based on systematic characterization results obtained using X-ray diffraction, X-ray photoelectron spectroscopy, UV-vis absorption spectroscopy, scanning electron microscopy and transmission electron microscopy, a possible mechanism responsible for the enhancement and deactivation of Ag3PO4photocatalytic performance was for the first time proposed. Ag3PO4spherical particles recycled for four times showed the highest photocatalytic activity in that Ag nanoparticles deposited on Ag3PO4acted as the electron trapping centers to prevent photogenerated electron-hole pairs from recombination. Further increasing recycle times decreased photocatalytic activity owing to the shielding effect by Ag layers on the surface of Ag3PO4. Results from current study shed new light on the photo stability of Ag3PO4spherical particles and are potentially applicable to other photocatalytically active composites.
引文
[1]Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature,1972,238 (5358):37-38.
    [2]Frank S N, Bard A J. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders [J]. Journal of Physical Chemistry,1977,81 (15): 1484-1488.
    [3]Frank S N, Bard A J. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solution at TiO2 powder [J]. Journal of the American Chemical Society,1977,99 (1):303-304.
    [4]Carey J H, Lawrence J, Tosine H M. Photodegradation of PCBs in the presence of titanium dioxide in aqueous suspension [J]. Bulletin of Environmental Contamination and Toxicology, 1976,16 (6):697-701.
    [5]余火根.纳米二氧化钛光催化材料的可控制备与光催化活性[D].武汉:武汉理工大学,2007.
    [6]刘升卫.新型光催化纳米材料的分等级组装、改性及其活性[D].武汉:武汉理工大学,2009.
    [7]于笑潇.分等级纳米复合光催化材料的制备及其光催化性能研究[D].武汉:武汉理工大学,2010.
    [8]张军.复合金属硫化物光催化剂的制备及其可见光活性研究[D].武汉:武汉理工大学,2010.
    [9]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M].北京:化学工业出版社,2002:25-34.
    [10]Koparde V N, Cummings P T. Phase transformations during sintering of titania nanoparticles [J]. ACS nano,2008,2 (8):1620-1624.
    [11]Magne C, Cassaignon S, Lancel G, et al. Brookite TiO2 nanoparticle films for dye-sensitized solar cells [J]. ChemPhysChem,2011,12 (13):2461-2467.
    [12]Xie J, Lii X M, Liu J, et al. Brookite titania photocatalytic nanomaterials:Synthesis, properties, and applications [J]. Pure and Applied Chemistry,2009,81 (12):2407-2415.
    [13]刘其军.板钛矿相TiO2电子结构和光学性质的第一性原理研究[J].北京联合大学学报:自然科学版,2011,25(1):78-92.
    [14]郝艳明,石国英,钱迪峰,等.基于锐钛矿相二氧化钛溶胶的高效染料敏化太阳能电池[J].硅酸盐学报,2011,39(7):1090-1096.
    [15]田国辉,冯清茂,历荣,等.高稳定性、高光催化活性的锐钛矿Ti02的制备[J].化学工程师,2011,193(10):7-9.
    [16]Fu G F, Vary P S, Lin C T. Anatase TiO2 nanocomposites for antimicrobial coatings [J]. Journal of Physical Chemistry B,2005,109 (18):8889-8898.
    [17]Yang H G, Sun C H, Qiao S Z, et al. Anatase TiO2 single crystals with a large percentage of reactive facets [J]. Nature,2008,453 (7195):638-641.
    [18]王濮,潘兆橹,翁玲宝,等.系统矿物学[M].北京:地质出版社,1982.
    [19]邓捷,吴立峰.钛白粉应应手册[M].北京:化学工业出版社,2005.
    [20]陈朝华,刘长河.钛白粉生产及应用技术[M].北京:化学工业出版社,2006.
    [21]Hoffmann M R, Martin S T, Wonyong Choi, et al. Environmental application of semiconductor photocatalysis [J]. Chemical Reviews,1995,95 (1):69-96.
    [22]沈伟韧,赵文宽,贺飞,等.TiO2光催化反应及其在废水处理中的应用[J].化学进展,1998,10(4):349-361.
    [23]Srinivasan C, Somasundaram N. Bacteridical and detoxification effects of irradiated semiconductor catalyst, TiO2 [J]. Current Science,2003,85 (10):1431-1438.
    [24]魏绍东,王杏.气相法制备纳米二氧化钛的研究进展[J].中国涂料,2005,20(10):29-31.
    [25]Riffel D. The use of fumed silica in printing inks [J]. Pigment & Resin Technology,1986,15 (1):13-19.
    [26]Djeghri N, Formenti M, Juillet F, et al. Photointeraction on the surface of titanium dioxide between oxygen and alkanes [J]. Faraday Discuss of the Chemical Society,1974,58 (0): 185-193.
    [27]王俊尉,谷晋川,黄健盛,等.纳米二氧化钛制备技术的发展[J].矿业快报,2006,25(11):105-112.
    [28]王英锋,李雪,刘云义.溶胶-凝胶法制备二氧化钛溶胶[J].合成化学,2008,16(6):705-708.
    [29]余家国,赵修建,叶晓川,等.溶胶—凝胶法制备TiO2纳米薄膜及其光催化性能的研究[J].光学技术,1998,(4):17-19.
    [30]胡日博,张新娜,彭芬兰,等.直接沉淀法制备纳米Ti02粉体的研究[J].昆明冶金高等专科学校学报,2006,22(5):69-73.
    [31]雷闫盈,俞行.均匀沉淀法制备纳米二氧化钛工艺条件研究[J].无机盐工业,2001,33(2):3-5.
    [32]施尔畏,夏长泰,王步国,等.水热法的应用与发展[J].无机材料学报,1996,11(2):193-206.
    [33]李宗任,陈小泉,刘焕彬,等.用硫酸氧钛制备纳米二氧化钛的研究进展[J].涂料工业,2009,39(2):64-67.
    [34]肖逸帆,柳松.纳米二氧化钛的水热法制备及光催化研究进展[J].硅酸盐通报,2007,26(3):523-528.
    [35]钱春香,赵联芳,付大放,等.路面材料负载纳米二氧化钛光催化降解氮氧化物[J].硅酸盐学报,2005,33(4):422-427.
    [36]翟增运,李纯海.纳米二氧化钛对室内空气中甲醛的降解作用[J].职业与健康,2009,25(10):1080-1081.
    [37]古政荣,陈爱平,戴智铭,等.活性炭—纳米二氧化钛复合光催化空气净化网的研制[J].华东理工大学学报,2000,26(4):367-371.
    [38]张天永,李祥忠,赵进才.国产二氧化钛在光催化降解染料废水中的应用[J].催化学报,1999,20(3):356-358.
    [39]余家国,赵修建,赵青南.Ti02涂层白洁净玻璃的制备及其特性研究[J].太阳能学报,1999,20(4):398-403.
    [40]魏建红,赵修建,余家国,等.光催化白洁净玻璃的研制[J].硅酸盐学报,2001,29(1):93-96.
    [41]Regan B O, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 film [J]. Nature,1991,353 (4):737-739.
    [42]夏之宁.光分析化学[M].重庆:重庆大学出版社,2004:304-305.
    [43]Gong D W, Grimes C A, Varghese O K, et al. Titanium oxide nanotube arrays prepared by anodic oxidation [J]. Journal of Materials Research,2001,16 (12):3331-3334.
    [44]Shankar K, Mor G K, Prakasam H E, et al. Highly-ordered TiO2 nanotube arrays up to 220 μm in length:use in water photoelectrolysis and dye-sensitized solar cells [J]. Nanotechnology,2007,18 (6):065707.
    [45]Yan J F, Zhou F. TiO2 nanotubes:Structure optimization for solar cells [J]. Journal of Materials Chemistry,2011,21 (26):9406-9418.
    [46]张萍,丁世华,周大利.化妆品专用二氧化钛[J].日用化学工业,1999,1:58-59.
    [47]余济美.具有高杀菌光活性介孔二氧化钛薄膜的制备方法.中国香港,02119304[P].2005-09-14.
    [48]张震宇,杭建忠,施利毅,等.纳米材料在汽车涂料中的应用研究进展[J].材料导报,2007,21:7-10.
    [49]Matsumoto Y, Kurimoto J, Amagasaki Y, et al. Visible light response of polycrystalline TiO2 electrodes [J]. Journal of Electrochemical Society,1980,127 (10):2148-2152.
    [50]Kutty T R N, Avudaithai M. Photocatalytic activity of tin-substituted TiO2 in visible light [J]. Chemical Physics Letters,1989,163 (1):93-97.
    [50]Choi W, Termin A, Hoffmann M R. The role of metal ion dopants in quantum-sized TiO2: Correlation between photoreaetivity and charge carrier combination dyramics [J]. Journal of Physical Chemistry,1994,98 (51):13669-13679
    [52]Yuan Z H, Jia J H, Zhang L D. Influence of co-doping of Zn(II)+Fe(Ⅲ) on the photocatalytic activity of TiO2 for phenol degradation [J]. Materials Chemistry and Physics, 2002,73 (2):323-326.
    [53]栾勇,傅平丰,戴学刚,等.金属离子掺杂对TiO2光催化性能的影响[J].化学进展,2004,16(5):738-746.
    [54]李凡修,陆晓华,梅平.金属离子掺杂对纳米TiO2晶型转变影响作用机制的研究进展[J].材料导报,2006,20(9):13-15.
    [55]Sato S. Photocatalytic activity of NOx-doped TiO2 in the visible light region [J]. Chemical Physics Letters,1986; 123 (1):126-128.
    [56]Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium dioxide [J]. Science,2001,293 (5528):269-271.
    [57]秦好丽,古国榜,柳松.二氧化钛非金属氮掺杂的研究进展[J].材料导报.2005,19(10):12-15.
    [58]顾德恩,杨邦朝,胡永达.非金属元素掺杂TiO2的可见光催化活性研究进展[J].功能材料,2008,39(1):1-5.
    [59]田凤惠.非金属元素掺杂改性的TiO2基光催化剂的理论研究[D].山东:山东大学,2006.
    [60]Yang D, Lee S W. Photocatalytic activity of Ag, Au-deposited TiO2 nanoparticles prepared by sonochemical reduction method [J]. Surface Review and Letters,2010,17 (1):21-26.
    [61]Sun B, Vorontsov A V, Smirniotis P G. Role of platinum deposited on TiO2 in phenol photocatalytic oxidation [J]. Langmuir,2003,19 (8):3151-3156.
    [62]Sakthivel S, Shankar M V, Palanichamy M, et al. Enhancement of photocatalytic activity by metal deposition:characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst [J]. Water Research,2004,38 (13):3001-3008.
    [63]Xin B F, Jing L Q, Ren Z Y, et al. Effects of simultaneously doped and deposited Ag on the photocatalytic activity and surface states of TiO2 [J]. Journal of Physical Chemistry B,2005, 109 (7):2805-2809.
    [64]Haruta M. Catalysis of gold nanoparticles deposited on metal oxides [J]. Cattech,2002,6 (3): 102-115.
    [65]Wang X D, Waterhouse G I N, Mitchell D R G. et al. Noble metal-modified porous titania networks and their application as photocatalysts [J]. ChemCatChem,2011,3 (11): 1763-1771.
    [66]Rajeshwar K, Tacconi N R, Chenthamarakshan C R. Semiconductor-based composite materials:preparation, properties, and performance [J]. Chemistry of Materials,2001,13 (9): 2765-2782.
    [67]尚静,谢绍东,刘建国SnO2/TiO2复合半导体纳米薄膜的研究进展[J].化学进展,2005,17(6):1012-1018.
    [68]Bedja I, Kamat P V. Capped semiconductor colloids:Synthesis and photoelectrochemical behavior of TiO2 capped SnO2 nanocrystallites [J]. Journal of Physical Chemistry,1995,99 (22):9182-9188.
    [69]Vinodgopal K, Kamat P V. Enhanced rates of photocatalytic degradation of an azo dye using SnO2/TiO2 coupled semiconductor thin films [J]. Environmental Science & Technology, 1995,29 (3):841-845.
    [70]Song K Y Park M K, Kwon Y T, et al. Preparation of transparent particulate MoO3/TiO2 and WO3/TiO2 films and their photocatalytic properties [J]. Chemistry of Materials,2001,13 (7): 2349-2355.
    [71]Kwon Y T, Song K Y, Lee W I, et al. Photocatalytic behavior of WO3-loaded TiO2 in an oxidation reaction [J]. Journal of Catalysis,2000,191 (1):192-199.
    [72]Pal B, Sharon M, Nogami G. Preparation and characterization of TiO2/Fe2O3 binary mixed oxides and its photocatalytic properties [J]. Materials Chemistry and Physics,1999,59 (3): 254-261.
    [73]Pal B, Hata T, Goto K, et al. Photocatalytic degradation of o-cresol sensitized by iron-titania binary photocatalysts [J]. Journal of Molecular Catalysis A,2001,169 (1):147-155.
    [74]Wang C, Zhao J C, Wang X M, et al. Preparation, characterization and photocatalytic activity of nano-sized ZnO/SnO2 coupled photocatalysts [J]. Applied Catalysis B,2002,39 (3): 269-279.
    [75]吴欢文,张宁,钟金莲,等.p-n复合半导体光催化剂研究进展[J].化工进展,2007,26(12):1669-1674.
    [76]Zhao J C, Wu K Q, Wu T X, et al. Photodegradation of dyes with poor solubility in an aqueous surfactant/TiO2 dispersion under visible light irradiation [J]. Journal of the Chemical Society, Faraday Transactions,1998,94 (5):673-676.
    [77]Zhao J C, Wu T X, Wu K Q, et al. Photoassisted degradation of dye pollutants.3. Degradation of the cationic dye rhodamine B in aqueous anionic surfactant/TiO2 dispersions under visible light irradiation:Evidence for the need of substrate adsorption on TiO2 particles [J]. Environmental Science & Technology,1998,32 (16):2394-2400.
    [78]闫世成,罗文俊,李朝升,等.新型光催化材料探索和研究进展[J].中国材料进展,2010,29(1):1-9.
    [79]Wang P, Huang B B, Qin X Y, et al. Ag@AgCl:A highly efficient and stable photocatalyst active under visible Light [J]. Angewandte Chemie International Edition,2008,47 (41): 7931-7933.
    [80]Yi Z G, Ye J H, Kikugawa N, et al. An orthophosphate semiconductor with photooxidation properties under visible-light irradiation [J]. Nature Materials,2010,9 (7):559-564.
    [81]Liu Y P, Fang L, Lu H D, et al. Highly efficient and stable Ag/Ag3PO4 plasmonic photocatalyst in visible light [J]. Catalysis Communications,2012,17:200-204.
    [82]Vayssieres L. Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions [J]. Advanced Materials,2003,15 (5):464-466.
    [83]Zhu K, Neale N R, Miedaner A, et al. Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using vertically oriented TiO2 nanotubes arrays [J]. Nano Letters,2007,7(1):69-74.
    [84]Li M, Schnablegger H, Mann S. Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization [J]. Nature,1999,402 (6760):393-395.
    [85]Yu J G, Yu X X. Hydrothermal synthesis and photocatalytic activity of zinc oxide hollow spheres [J]. Environmental Science & Technology,2008,42 (13):4902-4907.
    [86]Ebina Y, Sasaki T, Harada M, et al. Restacked perovskite nanosheets and their Pt-loaded materials as photocatalysts [J]. Chemistry of Materials,2002,14 (10):4390-4395.
    [87]Yu J G, Dai G P, Huang B B. Fabrication and characterization of visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO2 nanotube arrays [J]. Journal of Physical Chemistry C, 2009,113 (37):6394-6401.
    [88]Park W I, Kim J S, Yi G C, et al. ZnO nanorod logic circuits [J]. Advanced Materials,2005, 17(11):1393-1397.
    [89]Huang M H, Mao S, Feick H, et al. Room-temperature ultraviolet nanowire nanolasers [J]. Science,2001,292 (5523):1897-1899.
    [90]Romer R A, Raikh M E. Aharonov-bohm oscillations in the exciton luminescence from a semiconductor nanoring [J]. Physica Status Solidi B-Basic Solid State Physics,2000,221 (1):535-539.
    [91]Yu J G, Liu S W, Yu H G. Microstructures and photoactivity of mesoporous anatase hollow microspheres fabricated by fluoride-mediated self-transformation [J]. Journal of Catalysis, 2007,249(1):59-66.
    [92]Yu J G, Guo H T, Davis S A, et al. Fabrication of hollow inorganic microspheres by chemically induced self-transformation [J]. Advanced Functional Materials,2006,16 (15): 2035-2041.
    [93]Sreethawong T, Suzuki Y, Yoshikawa S. Photocatalytic evolution of hydrogen over mesoporous TiO2 supported NiO photocatalyst prepared by single-step sol-gel process with surfactant template [J]. International Journal of Hydrogen Energy,2005,30 (10):1053-1062.
    [94]Yoshio M, Todorov Y, Yamato K, et al. Preparation of LiyMnxNi1-xO2 as a cathode for lithium-ion batteries [J]. Power Sources,1998,74 (1):46-53.
    [95]Kim S G, Yoon S P, Han J, et al. A study on the chemical stability and electrode performance of modified NiO cathodes for molten carbonate fuel cells [J]. Electro-chimica Acta,2004,49 (19):3081-3089.
    [96]Bouessaya 1, Rougier A, Poizot P, et al. Electrochromic degradation in nickel oxide thin film: A self-discharge and dissolution phenomenon [J]. Electro-chimica Acta,2005,50 (18): 3737-3745.
    [97]Nam K W, Yoon W S, Kim K B. X-ray absorption spectroscopy studies of nickel oxide thin film electrodes for supercapacitors [J]. Electro-chimica Acta,2002,47 (19):3201-3209.
    [98]Choudhury M A, Rahman J. The influence of NiO addition on the magnetic properties of polycrystalline yttrium iron garnet [J]. Journal of Magnetism and Magnetic Materials,2001, 232(3):147-150.
    [99]Matsumiya M, Qiu F, Shin W. Thin-film Li-doped NiO for thermoelectric hydrogen gas sensor [J]. Thin Solid Films,2002,419 (1):213-217.
    [100]Boschloo G, Hagfeldt A. Spectroelectrochemistry of nanostructured NiO [J]. Journal of Physical Chemistry B,2001,105 (15):3039-3044.
    [101]Song X F, Gao L. Facile synthesis and hierarchical assembly of hollow nickel oxide architectures bearing enhanced photocatalytic properties [J]. Journal of Physical Chemistry, 2008,112(39):15299-15305.
    [102]Lin Y, Xie T, Cheng B C, et al. Ordered nickel oxide nanowire arrays and their optical absorption properties [J]. Chemical Physics Letters,2003,380 (5-6):521-525.
    [103]Shi C S, Wang G Q, Zhao N Q, et al. NiO nanotubes assembled in pores of porous anodic alumina and their optical absorption properties [J]. Chemical Physics Letters,2008,454 (1-3):75-79.
    [104]Beach E, Brown S, Shqau K, et al. Solvothermal synthesis of nanostructured NiO, ZnO and Co3O4 microspheres [J]. Materials Letters,2008,62 (12):1957-1960.
    [105]Zhang S M, Zeng H C. Self-assembled hollow spheres of β-Ni(OH)2 and their derived nanomaterials [J]. Materials Letters,2009,21 (5):871-883.
    [106]Zhao B, Ke X K, Bao J H, et al. Synthesis of flower-like NiO and effects of morphology on its catalytic properties [J]. Journal of Physical Chemistry C,2009,113 (32):14440-14447.
    [107]Yu J C, Yu J G, Ho W K, et al. Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders [J]. Chemistry of Materials,2002,14 (9): 3808-3816.
    [108]Leung T Y, Chan C Y, Hu C, et al. Photocatalytic disinfection of marine bacteria using fluorescent light [J]. Water Research,2008,42 (19):4827-4837.
    [109]Trapalis C, Gartner M, Modreanu M, et al. Stabilization of the anatase phase in TiO2 (Fe3-PEG) nanostructured coatings [J]. Applied Surface Science,2006,253 (1):367-371.
    [110]Liu S W, Yu J G, Jaroniec M. Tunable photocatalytic selectivity of hollow TiO2 microspheres composed of anatase polyhedra with exposed{001} facets [J]. Journal of the American Chemical Society,2010,132 (34):11914-11916.
    [111]Herrmann J M, Tahiri H, Ait-Ichou Y, et al. Characterization and photocatalytic activity in aqueous medium of TiO2 and Ag-TiO2 coatings on quartz [J]. Applied Catalysis B: Environmental,1997,13 (3-4):219-228.
    [112]Beydoun D, Amal R. Novel photocatalyst:Titania-coated magnetite. Activity and photodissolution [J]. Journal of Physical Chemistry B,2000,104 (18):4387-4396.
    [113]Bolton J R, Sun L. Determination of the quantum yield for the photochemical generation of hydroxyl radicals in TiO2 suspensions [J]. Journal of Physical Chemistry,1996,100 (10): 4127-4134.
    [114]Vinodgopal K, Kamat P V. Enhanced rates of photocatalytic degradation of an azo dye using SnO2/TiO2 coupled semiconductor thin films [J]. Environmental Science and Technology,1995,29 (3):841-845.
    [115]Ye F X, Ohmori A, Li C J. New approach to enhance the photocatalytic activity of plasma sprayed TiO2 coatings using p-n junctions [J]. Surface and Coatings Technology,2004,184 (2-3):233-238.
    [116]Chen Y S, Crittenden J C, Hackney S, et al. Preparation of a novel TiO2-based p-n junction nanotube photocatalyst [J]. Environmental Science and Technology,2005,39 (5): 1201-1208.
    [117]Chen S F, Zhang S J. Liu W, et al. Preparation and activity evaluation of p-n junction photocatalyst NiO/TiO2 [J]. Journal of Hazardous Materials,2008,155 (1-2):320-326.
    [118]Sing K S W, Everett D H, Haul R A W, et al. Reporting physisorption data for gas/solid Systems with special reference to the determination of surface area and porosity [J]. Pure and Applied Chemistry,1985,57 (4):603-619.
    [119]Cai W Q, Yu J G, Cheng B, et al. Controlled preparation of boehmite hollow core/shell and hollow microspheres via sodium tartrate-mediated phase transformation and their enhanced adsorptive performance in water treatment [J]. Journal of Physical Chemistry C,2009,113 (33):14739-14746.
    [120]Yu J G, Zhao X J, Zhao Q N. Effect of surface structure on photocatalytic of TiO2 thin films prepared by sol-gel method [J]. Thin Solid Films,2000,379 (1-2):7-14.
    [121]Oku M, Tokuda H, Hirokawa K. Final states after Ni2p photoemission in the nickel-oxygen system [J]. Journal of Electron Spectroscopy and Related Phenomena,1991,53 (4):201-211.
    [122]Hao H W, Chen Y F, Wu M S, et al. Sonochemistry of degrading p-chlorophenol in water by high frequency ultrasound [J]. Ultrasonics Sonochemistry,2004,11(1):43-46.
    [123]Li X J, Cubbage J W, Jenks W S. Photocatalytic degradation of 4-chlorophenol.2. The 4-chlorocatechol pathway [J]. Journal of Organic Chemistry,1999,64 (23):8525-8536.
    [124]Yu J G, Zhang L J, Cheng B, et al. Hydrothermal preparation and photocatalytic activity of hierarchically sponge-like macro-/mesoporous titania [J]. Journal of Physical Chemistry C, 2007,111 (28):10582-10589.
    [125]Yu J G, Su Y R, Cheng B. Template-free fabrication and enhanced photocatalytic activity of hierarchical macro-/mesoporous titania [J]. Advanced Functional Materials,2007,17 (12): 1984-1990.
    [126]Yu X X, Yu J G, Cheng B, et al. Synthesis of hierarchical flower-like AlOOH and TiO2/AlOOH superstructures and their enhanced photocatalytic properties [J]. Journal of Physical Chemistry C,2009,113 (40):17527-17535.
    [127]Yu J G, Yu X X, Huang B B, et al. Hydrothermal synthesis and visible-light photocatalytic activity of novel cage-like ferric oxide hollow spheres [J]. Crystal Growth and Design,2009, 9(3):1474-1480.
    [128]Bandara J, Weerasinghe H. Solid-state dye-sensitized solar cell with p-type NiO as a hole collector [J]. Solar Energy Materials and Solar Cells,2005,85 (3):385-390.
    [129]Irwin M D, Buchholz D B, Hains A W, et al. P-type seminconducting nikel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells [J]. Proceedings of the National Academy of Sciences of the United States of America.2008, 105 (8):2783-2787.
    [130]Fox M A. Dulay M T. Heterogeneous photocatalysis [J]. Chemical Reviews.1993,93 (1): 341-357.
    [131]Yu J G, Wang W G, Cheng B, et al. Enhancement of photocatalytic activity of mesporous TiO2 powders by hydrothermal surface fluorination treatment [J]. Journal of Physical Chemistry C,2009,113 (16):6743-6750.
    [132]Yu J G, Wang W G, Cheng B. Synthesis and enhanced photocatalytic activity of a hierarchical porous flower like p-n junction NiO/TiO2 photocatalyst [J]. Chemistry-An Asian Journal,2010,5 (12):2499-2506.
    [133]Yu X X, Liu S W, Yu J G. Superparamagnetic y-Fe2O3/SiO2/TiO2 composite microspheres with superior photocatalytic properties [J]. Applied Catalysis B:Environmental,2011,104 (1-2):12-20.
    [134]Cheng Y W, Chan R C Y, Wong P K. Disinfection of legionella pneumophila by photocatalytic oxidation [J]. Water Research,2007,41 (4):842-852.
    [135]Li Y X, Lu G X, Li S B. Photocatalytic transformation of rhodamine B and its effect on hydrogen evolution over Pt/TiO2 in the presence of electron donors [J]. Journal of Photochemistry and Photobiology A:Chemistry,2002,152 (1-3):219-228.
    [136]Carp O, Huisman C L, Reller A. Photoinduced reactivity of titanium dioxide [J]. Progress in Solid State Chemistry,2004,32 (1-2):33-177.
    [137]Park H, Choi W. Effects of TiO2 surface fluorination on photocatalytic reactions and photoelectrochemical behaviors [J]. Journal of Physical Chemistry B,2004,108 (13): 4086-4093.
    [138]Li Q, Guo B D, Yu J G, et al. Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets [J]. Journal of the American Chemical Society,2011,133 (28):10878-10884.
    [139]Xiang Q J, Yu J G, Jaroniec M. Graphene-based semiconductor photocatalysts [J]. Chemical Society Reviews,2012,41 (2):782-796.
    [140]Pomoni K, Vomvas A, Trapalis C. Transient photoconductivity of nanocrystalline TiO2 sol-gel thin films [J]. Thin Solid Films,2005,479 (1-2):160-165.
    [141]Ksibi M, Rossignol S, Tatibouet J M, et al. Synthesis and solid characterization of nitrogen and sulfur-doped TiO2 photocatalysts active under near visible light [J]. Materials Letters, 2008,62 (26):4204-4206.
    [142]Kumar S G, Devi L G. Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics [J]. Journal of Physical Chemistry A,2011,115(46):13211-13241.
    [143]Devi L G, Kottam N, Kumar S G. Preparation and characterization of Mn-doped titanates with a bicrystalline framework:correlation of the crystallite size with the synergistic effect on the photocatalytic activity [J]. Journal of Physical Chemistry C,2009,113 (35): 15593-15601.
    [144]Wen C Z, Jiang H B, Qiao S Z, et al. Synthesis of high-reactive facets dominated anatase TiO2 [J]. Journal of Materials Chemistry,2011,21 (20):7052-7061.
    [145]Xiang Q J, Yu J G, Wang W G, et al. Nitrogen self-doped nanosized TiO2 sheets with exposed{001} facets for enhanced visible-light photocatalytic activity [J]. Chemical Communications,2011,47 (24):6906-6908.
    [146]Yu J G, Xiang Q J, Zhou M H. Preparation, characterization and visible-light-driven photocatalytic activity of Fe-doped titania nanorods and first-principles study for electronic structures [J]. Applied Catalysis B:Environmental,2009,90 (3-4):595-602.
    [147]Yu J G, Li Q L, Shu Z. Dye-sensitized solar cells based on double-layered TiO2 composite films and enhanced photovoltaic performance [J]. Electrochimica Acta,2011,56 (18): 6293-6298.
    [148]Yu J G, Ma T T, Liu S W. Enhanced photocatalytic activity of mesoporous TiO2 aggregates by embedding carbon nanotubes as electron-transfer channel [J]. Physical Chemistry Chemical Physics,2011,13 (8):3491-3501.
    [149]Yu J G, Ma T T, Liu G, et al. Enhanced photocatalytic activity of bimodal mesoporous titania powders by C60 modification [J]. Dalton Transactions,2011,40 (25):6635-6644.
    [150]Yao Y, Li G H, Ciston S, et al. Photoreactive TiO2/carbon nanotube composites:synthesis and reactivity [J]. Environmental Science and Technology,2008,42 (13):4952-4957.
    [151]Long Y Z, Lu Y, Huang Y, et al. Effect of C60 on the photocatalytic activity of TiO2 nanorods [J]. Journal of Physical Chemistry C,2009,113 (31):13899-13905.
    [152]Wang W D, Silva C G, Faria J L. Photocatalytic degradation of chromotrope 2R using nanocrystalline TiO2/activitated-carbon composite catalysts [J].2007,70 (1-4):470-478.
    [153]Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films [J]. Science,2004,306 (5696):666-669.
    [154]Allen M J, Tung V C, Kaner R B. Honeycomb carbon:a review of graphene [J]. Chemical Reviews,2010,110(1):132-145.
    [155]Sun Y Q, Wu Q, Shi G Q. Graphene based new energy materials [J]. Energy & Environmental Science,2011,4 (4):1113-1132.
    [156]Wang D H, Choi D W, Li J, et al. Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion [J]. ACS Nano,2009,3 (4):907-914.
    [157]Cao A N, Liu Z S, Chu S, et al. A facile one-step method to produce graphene-CdS quantum dots nanocomposites as promising optoelectronic materials [J]. Advanced Materials,2010,22 (1):103-106.
    [158]Ng Y H, Iwase A, Kudo A, et al. Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water splitting [J]. Journal of Physical Chemistry Letters,2010,1 (17):2607-2612.
    [159]Gao E, Wang W Z, Shang M, et al. Synthesis and enhanced photocatalytic performance of graphene-Bi2WO6 composite [J]. Physical Chemistry Chemical Physics,2011,13 (7): 2887-2893.
    [160]Jia L, Wang D H, Huang Y X, et al. Highly durable N-doped graphene/CdS nanocomposites with enhanced photocatalytic hydrogen evolution from water under visible light irradiation [J]. Journal of Physical Chemistry C,2011,115 (23):11466-11473.
    [161]Xiang Q J, Yu J G, Jaroniec M. Preparation and enhanced visible-light Pphotocatalytic H2-production activity of graphene/C3N4 composites [J]. Journal of Physical Chemistry C, 2011,115 (15):7355-7363.
    [162]Zhang H, Lv X J, Li Y M, et al. P25-graphene composite as a high performance photocatalyst [J]. ACS Nano,2009,4 (1):380-386.
    [163]Xiang Q J, Yu J G, Jaroniec M. Enhanced photocatalytic H2-production activity of grapheme-modified titania nanosheets [J]. Nanoscale,2011,3 (9):3670-3678.
    [164]Du J, Lai X Y, Yang N L, et al. Hierarchically ordered macro-mesoporous TiO2-graphene composite films:Improved mass transfer, reduced charge recombination and their enhanced photocatalytic activities [J]. ACS Nano,2010,5 (1):590-596.
    [165]Liu S W, Yu J G, Jaroniec M. Anatase TiO2 with dominant high-energy{001} facets: synthesis, properties, and applications [J]. Chemistry of Materials,2011,23 (18): 4085-4093.
    [166]Yu J G, Su Y R, Cheng B, et al. Effects of pH on the microstructures and photocatalytic activity of mesoporous nanocrystalline titania powders prepared via hydrothermal method [J]. Journal of Molecular Catalysis A:Chemical,2006,258 (1-2):104-112.
    [167]Yu J G, Wang W G, Cheng B, et al. Preparation and photocatalytic activity of multi-modally macro/mesoporous titania [J]. Research on Chemical Intermediates,2009,35 (6-7):653-665.
    [168]Dreyer D R, Murali S, Zhu Y W, et al. Reduction of graphite oxide using alcohols [J]. Journal of Materials Chemistry,2011,21 (10):3443-3447.
    [169]Akhavan O, Ghaderi E. Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation [J]. Journal of Physical Chemistry C,2009,113 (47):20214-20220.
    [170]Wang G X, Yang J, Park J, et al. Facile synthesis and characterization of graphene nanosheets [J]. Journal of Physical Chemistry C.2008,112 (22):8192-8195.
    [171]Choi W, Ko J Y, Park H, et al. Investigation on TiO2-coated optical fibers for gas-phase photocatalytic oxidation of acetone [J]. Applied Catalysis B:Environmental,2001,31 (3): 209-220.
    [172]Ng Y H, Lightcap I V, Goodwin K, et al. To What extent do graphene scaffolds improve the photovoltaic and photocatalytic response of TiO2 nanostructured films? [J]. Journal of Physical Chemistry Letters,2010,1 (15):2222-2227.
    [173]Ogden J M. Prospects for building a hydrogen energy infrastructure [J]. Annual Review of Energy and the Environment,1999,24 (1):227-279.
    [174]Chen X B, Shen S H, Guo L J, et al. Semiconductor-based photocatalytic hydrogen generation [J]. Chemical Reviews,2010,110 (11):6503-6570.
    [175]Yu J G, Zhang J, Jaroniec M. Preparation and enhanced visible-light photocatalytic H2-production activity of CdS quantum dots-sensitized Zn1-xCdxS solid solution [J]. Green Chemistry,2010,12 (9):1611-1614.
    [176]Yu J G, Qi L F, Jaroniec M. Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed (001) facets [J]. Journal of Physical Chemistry C,2010, 114(30):13118-13125.
    [177]Yu J G, Hai Y, Cheng B. Enhanced photocatalytic H2-production activity of TiO2 by Ni(OH)2 cluster modification [J]. Journal of Physical Chemistry C,2010,115 (11): 4953-4958.
    [178]Murakami S Y, Kominami H, Kera Y, et al. Evaluation of electron-hole recombination properties of titanium(IV) oxide particles with high photocatalytic activity [J]. Research on Chemical Intermediates,2007,33 (3-5):285-296.
    [179]Kim S, Choi W. Dual photocatalytic pathways of trichloroacetate degradation on TiO2: Effects of nano-sized Pt deposits on kinetics and mechanism [J]. Journal of Physical Chemistry B,2002,106 (51):13311-13317.
    [180]Jang J S, Choi S H, Kim D H, et al. Enhanced photocatalytic hydrogen production from water-methanol solution by nickel intercalated into titanate nanotube [J]. Journal of Physical Chemistry C,2009,113 (20):8990-8996.
    [181]Korzhak A V, Remokhina N I, Stroyuk A L, et al. Photocatalytic activity of a mesoporous TiO2/Ni composite in the generation of hydrogen from aqueous ethanol systems [J]. Theoretical and Experimental Chemistry,2005,41 (1):26-31.
    [182]Yu J G, Ran J R. Facile preparation and enhanced photocatalytic H2-production activity of Cu(OH)2 cluster modified TiO2 [J]. Energy & Environmental Science,2011,4 (4): 1364-1371.
    [183]Nesbitt H W, Legrand D, Bancroft G M. Interpretation of Ni2p XPS spectra of Ni conductors and Ni insulators [J]. Physics and Chemistry of Minerals,2000,27 (5):357-366.
    [184]Moulder J F, Stickle W F, Sobol P E, et al. Handbook of X-ray photoelectron spectroscopy [M]. USA:Perkin-Elmer Corporation,1992.
    [185]Domen K, Kudo A, Onishi T, et al. Photocatalytic decomposition of water into hydrogen and oxygen over nickel(II) oxide-strontium titanate (SrTiO3) powder.1. Structure of the catalysts [J]. Journal of Physical Chemistry,1986,90 (2):292-295.
    [186]Yu H G, Irie H, Hashimoto K. Conduction band energy level control of titanium dioxide: Toward an efficient visible-light-sensitive photocatalyst [J]. Journal of the American Chemical Society,2010,132 (20):6898-6899.
    [187]Livraghi S, Paganini M C, Giamello E, et al. Origin of photoactivity of nitrogen-doped titanium dioxide under visible light [J]. Journal of the American Chemical Society,2006, 128(49):15666-15671.
    [188]Shi R, Lin J, Wang Y J, et al. Visible-light photocatalytic degradation of BiTaO4 photocatalyst and mechanism of photocorrosion suppression [J]. Journal of Physical Chemistry C,2010,114 (14):6472-6477.
    [189]Qi L F, Yu J G, Jaroniec M. Preparation and enhanced visible-light photocatalytic H2-production activity of CdS-sensitized Pt/TiO2 nanosheets with exposed (001) facets [J]. Physical Chemistry Chemical Physics,2011,13 (19):8915-8923.
    [190]Park J H, Kim S, Bard A J. Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting [J]. Nano Letters,2006,6 (1):24-28.
    [191]Xiang Q J, Yu J G, Cheng B, et al. Microwave-hydrothermal preparation and visible-light photoactivity of plasmonic photocatalyst Ag-TiO2 nanocomposite hollow spheres [J]. Chemistry-An Asian Journal,2010,5 (6):1466-1474.
    [192]Yu J G, Dai G P, Huang B B. Fabrication and characterization of visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO2 nanotube arrays [J]. Journal of Physical Chemistry C, 2009,113(37):16394-16401.
    [193]Maruyama Y, Irie H, Hashimoto K. Visible light sensitive photocatalyst, delafossite structured a-AgGaO2 [J]. Journal of Physical Chemistry B,2006,110 (46):23274-23278.
    [194]Lin H S, Maggard P A. Synthesis and structures of a new series of silver-vanadate hybrid solids and their optical and photocatalyticproperties [J]. Inorganic Chemistry,2008,47 (18): 8044-8052.
    [195]Zhou X F, Hu C, Hu X X, et al. Plasmon-assited degradation of toxic pollutions with Ag-AgBr/Al2O3 undervisible-light irradiation [J]. Journal of Physical Chemistry C,2010, 114 (6):2746-2750.
    [196]Hu C, Peng T W, Hu X X, et al. Plasmon-induced photodegradation of toxic pollutions with Ag-Agl/Al2O3 under visible-light irradiation [J]. Journal of the American Chemical Society, 2010,132 (2):857-862.
    [197]Bi Y P, Ouyang S X, Umezawa N, et al. Facet effect of single-crystalline Ag3PO4 sub-microcrystals on photocatalytic properties [J]. Journal of the American Chemical Society,2011,133 (17):6490-6492.
    [198]Ishibashi K, Fujishima A, Watanabe T, et al. Detection of active species in TiO2 photocatalysis using the fluorescence technique [J]. Electrochemistry Communications, 2000,2 (3):207-210.
    [199]Thomas M, Ghosh S K, George K C. Characterisation of nanostructured silver orthophosphate [J]. Materials Letters,2002,56 (4):386-392.
    [200]Chen A B, Zhang W P, Liu Y, et al. In-situ incorporation of dispersed metallic Ag nanoparticles into the channels of mesoporous carbon CMK-3 [J]. Chinese Chemical Letters, 2007,18(8):1017-1020.
    [201]Takayoshi S, Yasuo E, Katsutoshi F, et al. Titania nanostructured films derived from a titania nanosheet/polycation multilayer assembly via heat treatment and UV irradiation [J]. Chemistry of Materials,2002,14 (8):3524-3530.
    [202]Dong F, Zhao W R, Wu Z B. Characterization and photocatalytic activities of C, N and S co-doped TiO2 with 1D nanostructure prepared by the nano-confinement effect [J]. Nanotechnology,2008,19 (36):365607.
    [1203]Whang T J, Huang H Y, Hsieh M T, et al. Laser-induced silver nanoparticles on titanium oxide for photocatalytic degradation of methylene blue [J]. International Journal of Molecular Sciences,2009,10(11):4707-4718.
    [204]Fan F R, Leempoel P, Bard A J. Semiconductor electrodes. Part 51:efficient electroluminescence at ZnS electrode in aqueous electrolytes [J]. Journal of the Electrochemical Society,1983,130(9):1866-1875.
    [205]Yu X X, Yu J G, Cheng B, et al. One-pot template-free synthesis of monodisperse zinc sulfide hollow spheres and their photocatalytic properties [J]. Chemistry-A European Journal,2009,15 (27):6731-6739.
    [206]Xu C W, Liu Y Y, Huang B B, et al. Preparation, characterization, and photocatalytic properties of silver carbonate [J]. Applied Surface Science,2011,257 (20):8732-8736.
    [207]Cheng B. Le Y, Yu J G. Preparation and enhanced photocatalytic activity of Ag@TiO2 core-shell nanocomposite nanowires [J]. Journal of Hazardous Materials,2010,177 (1-3): 971-977.
    [208]Yu J G, Xiong J F, Cheng B, et al. Fabrication and characterization of Ag-TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity [J]. Applied Catalysis B: Environmental,2005,60 (3-4):211-221.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700