氧化铝、碳化硅及Al_2O_3/SiC复相陶瓷高应变率形变研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为充分揭示陶瓷装甲材料的抗弹机理及探索优化陶瓷材料的高应变率形变性能测试的技术方法,针对目前陶瓷材料在进行真实子弹速度的抗弹性能测试后靶材破坏严重无法进行后续材料结构分析与动态载荷响应表征的突出问题,本论文利用压缩空气高速气枪在可控子弹质量与速度的前提下进行了100m/s子弹击打实验研究,并使用分离式霍普金森压杆(SHPB)实验对陶瓷材料的高应变率载荷下压缩强度性能进行分析,取得一些重要研究成果。
     论文分析了晶粒尺寸与第二相纳米颗粒对陶瓷材料力学性能的影响,细晶1.7μm的氧化铝材料具有较高的硬度18.3GPa,5wt%纳米碳化硅颗粒加入时Al2O3/SiC复相材料的强度和韧性明显提高,相比1550℃烧结的氧化铝陶瓷分别增加60%与45%,晶粒成分均匀的碳化硅陶瓷性能较好。
     研究了陶瓷试样弹坑表面形貌与弹坑下方裂纹类型,并结合Cr3+荧光/SiC拉曼光谱技术对试样的应力应变分布情况进行分析。结果表明高硬度的陶瓷材料中,弹坑逐渐减小且剖面裂纹类型从尖锐型压痕裂纹向锥形裂纹转变,高硬度23.8GPa的碳化硅试样中的锥形裂纹与表面角度小于45°;由于碳化硅与B4C/Al8B4C7材料脆性较大造成试样表面出现碎裂;氧化铝试样表面最大残余压应力为3.25GPa,双轴应力引起弹痕区域出现大量微裂纹,其中Al2O3/SiC材料弹坑中心区域微裂纹密度较大,更多地消耗了子弹侵彻的能量。借助Yoffe’s模型计算出了尖锐型压痕裂纹的出现位置与发展方向。
     根据子弹形变模型计算出子弹高速冲击瞬间产生1000℃以上高温,造成子弹与陶瓷靶材击打点局部材料的弹性模量降低,子弹与试样变形程度相对于准静态子弹压痕较大;氧化铝材料准静态子弹压痕区域最大残余压应力为5.19GPa,压痕下应力应变程度与子弹高速冲击后相似,塑性变形区域深度较浅。
     通过改变分离式霍普金森压杆实验的测试条件,研究了碳化钨垫块种类、陶瓷试样形状尺寸、入射波整形技术、接触端面摩擦效应等因素与测试过程中的陶瓷试样应力平衡状态及一维性、均匀性前提条件的关系。在1200-1800/s的高应变率压缩载荷下评价了陶瓷材料的压缩强度,发现随着氧化铝陶瓷晶粒尺寸减小其SHPB强度逐渐增加,最大为3.63GPa,含有5wt%碳化硅纳米颗粒的Al2O3/SiC复相陶瓷的SHPB压缩强度略有提高。由于裂纹尖端惯性效应的原因,所研究的陶瓷材料表现出高应变率敏感的力学性能特征。
     陶瓷材料高应变率形变过程中氧化铝陶瓷呈现较小的形变量,Al2O3/SiC陶瓷的弹坑区域残余应力较小且分布较均匀,较高硬度的陶瓷材料出现的锥形裂纹对装甲破坏程度最小。本研究为进一步丰富陶瓷装甲抗弹机理和新型陶瓷装甲材料设计提供重要的理论依据。
In order to fully understand the bullet-proof mechanism of ceramic armour and furtheroptimize the testing technique of high strain rate deformation properties of ceramic materials,and aim at the continual problem: ceramic targets for bullet-proof properties testing, which areusually carried out at ballistic velocities, are seriously damaged after impact and cannot be usedfor the post-characterization of microstructure and dynamic response. The projectiles with thecontrolled speed and tip quality were fired by gas gun to impact the ceramic specimens at100m/sto mimic the bullet-proof properties testing, the microstructure, residual stress and plasticdeformation on both the target surface and cross-section were analysed in the project. The SplitHopkinson Pressure Bar (SHPB) method was also used to test the compression strength ofceramics under high strain rate.
     In this thesis, the effects of grain sied and nano particles as the second phase on themechanical properties of ceramics were studied. The alumina ceramic with fine grain size1.7μmhad higher Vickers hardness of18.3GPa. Compared with the alumina sintered at1550°C, thestrength and toughness of Al2O3/SiC nanocomposites increased by60%and45%respectively,when5wt%nano silicon carbide particle was added.
     The influence of different material mechanical properties on the bullet-proof efficiency wasanalysed in the project, the vital property for ceramic armour appeared to be hardness. Thecomparisons of the imparct region microstructure and crack categories beneath the impact ofdifferent materials were made, and the residual stress and material plastic deformation wereexamined by Cr3+fluorescence or SiC Raman spectroscopic technique. The results show that:with the increase of material hardness, the dimension of impact crater reduced and the conicalcracks appeared. The cracks in SiC sample with23.8GPa hardness were almost conical and hadless than45°angle to the surface. The surface materials of SiC and B4C/Al8B4C7Ceramics werepartly fractured due to the low toughness. The alumina sample had the highest compressionresidual stress level at3.25GPa, the microcracks in the impact region were induced by sufficientbiaxial stress. The highest microcrack density was observed in the centre area of Al2O3/SiCcrater and more energy of the penetrating projectile can be consumed. It is feasible to use theYoffe’s model to predict the crack patterns and positions under sharp impact.
     Because of the high temperature above1000°C was reached when the high speed impactoccurred, the Young’s Modulus of both projectiles and ceramic materials in the small impactregion reduced. Hence the projectiles and targets deformed significantly, and the bigger impactarea with lower level compression residual stress was found when compared to the quasi-staticspecimens. The highest compression stress for quasi-static samples was also existed in aluminaat5.19GPa. However compared to the dynamic tests, the residual stress and material plasticdeformation level beneath the quasi-static indentation were nearly the same but with moreshallow material deformation region.
     According to the effect studies of the tungsten carb anvils’ shape, ceramic specimen shapeand dimension designing, incident pulse shaping and interfacial frictions on the Split HopkinsonPressure Bar technique, the testing equipment and condition were modified and to assure thespecimens were in stress equilibrium during dynamic compression, so the preconception ofone-dimensional and uniform planar elastic wave propagation can be achieved. In this project theSHPB compression strength of different ceramics at1200-1800/s high strain rate obtained, thestrength increased with the reduction of grain size in alumina and the maximum result was3.63GPa. Compared with alumina ceramics, the5wt%addition of nano SiC particles had littleimprovement of the SHPB strength for Al2O3/SiC nanocomposites. Due to the inertia associatedwith the crack tip, ceramic materials exhibit rate-sensitive failure strength under the high strainrate load.
     The high strain rate deformation level of alumina was smaller than other materials; howeverAl2O3/SiC nanocomposites showed uniform and low residual stress in the crater region, the conecracks in high hardness materials was less harmful to ceramic armour. This study is a supplementto the bullet-proof mechanism of ceramics, and it can provide theoretical basis for designing andpreparing ceramic armours.
引文
Anstis G R, Chantikul P, Lawn B R, et al. A Critical Evaluation of Indentation Techniques forMeasuring Fracture Toughness: I, Direct Crack Measurements. J. A. Ceram. Soc.,1981,46:533~538
    Anton R I, Subhash G, Dynamic Vickers Indentation of Brittle Materials. Wear,1999,239:27~35
    Appleby-Thomas G J, Hazell P J. A Study on the Strength of an Armour-grade Aluminumunder High Strain-rate Loading. J. Appl. Phys.,2010,107:1~12
    Bennett S. Ceramics for Armour:[硕士学位论文], UK: University of Oxford,2010
    Bertholf L D, Karnes C H. Axis Symmetric Elastic-plastic Wave Propagation in6061-T6Aluminum Bars of Finite Length. Journal of Applied Mechanics,1969,36:533~541
    Bertholf L D, Karnes C H. Two-dimensional Analysis of the split Hopkinson Pressure BarSystem. Journal of the Mechanics and Physics of Solids,1975,23:1~19
    Bless S J, Rosenberg Z, Yoon B. Hypervelocity Penetration of Ceramics. Int. J. Impact. Eng,1987,5:165~171
    Borsa C E, Jiao S, Todd R I, et al. Processing and Properties of Al2O3/SiC Nanocomposites.J. Microscopy.,1995,177:305~312
    Chan H M, Lawn B R. Indentation Deformation and Fracture of Sapphire. J. Am. Ceram.Soc.,1988,71:29~35
    Chen W W, Rajendran A M, Song B, et al. Dynamic Fracture of Ceramics in ArmorApplications. Journal of the American Ceramic Society,2007,90:1005~1018
    Chen W, Song B. Split Hopkinson (Kolsky) Bar-Design, Testing and Applications. USA:Springer Science+Business,2011
    Chen W, Subhash G, Ravichandran G. Evaluation of Ceramic Specimen Geometries Used inSplit-Hopkinson Pressure Bar. Dymat,1994,1:191~210
    Chen W, Zhang B, Forrestal M J. A Split Hopkinson Bar Technique for Low ImpedanceMaterials. Experimental Mechanics,1999,39:81~85
    Chiang S S, Marshall D B, Evans A G. The Response of Solids to Elastic Plastic Indentation.1. Stresses and Residual Stresses. Journal of Applied Physics,1982,53:298~311
    Chou W B, Tuan W H, Chang S T. Preparation of Ni/Al Toughened Al2O3by Vacuum HotPressing. Brit. Ceram.Trans.,1996,2:71~75
    Cook R F, Pharr G M. Direct Observation and Analysis of Indentation Cracking In Ceramicsand Glasses. J. Am. Ceram. Soc.,1990,73:787~817
    Curtis H. Ceramic Armour:[硕士学位论文], UK: University of Oxford,2009
    Dancer C E J, Curtis H M, Bennett S M, et al. High strain Rate Indentation-inducedDeformation in Alumina Ceramics Measured by Cr3+Fluorescence Mapping. Journal of theEuropean Ceramic Society,2011,31:2177~2187
    Davies E D H, Hunter S C. The Dynamic Compression Testing of Solids by the Method ofthe Split Hopkinson Pressure Bar. Journal of the Mechanics and Physics of Solids,1963,11:155~179
    Davies R M. A Critical Study of the Hopkinson Pressure Bar. Philosophical Transactions ofthe Royal Society of London. Series A. Mathematical Physical&Engineering Sciences,1948,240:375~457
    Debernardi A, Ulrich C, Syassen K, et al. Raman Linewidths of Optical Phonons in3C-SiCunder Pressure: First-Principles Calculations and Experimental Results. Physical Review B,1999,59:6774
    Domnich V, Reynaud S, Haber R A, et al. Boron Carbide: Structure, Properties, and Stabilityunder Stress. Journal of the American Ceramic Society,2011,94:3605~3628
    European Committee for Standardization. BS EN843-1. Advanced technical ceramics–Mechanica properties of monolithic ceramics at room temperature. BSi,2006
    European Committee for Standardization. BS EN843-1. Advanced technical ceramics-Part2:Determination of Young’s modulus, shear modulus and Poisson’s ration. BSi,2004
    Feldman D W, Parker J H, Choyke W J, et al. Raman Scattering in6H SiC. Physical Review,1968,170:698~704
    Forrestal M J, Longcope D B. Target Strength of Ceramic Materials for High VelocityPenetration. J. Appl. Phys.,1990,67:3669
    Frew D J, Forrestal M J, Chen W. A SHPB Technique to Determine CompressionStress-strain Data for Rock Materials. Energetic Materials,2002,42:40~46
    Gao Y, Huang Z, Fang M, et al. Synthesis of Al8B4C7ceramic powder from Al/B4C/Cmixtures. Powder Technology,2012,226:269~273
    Ghosh D, Subhash G, Sudarshan T S, et al. Dynamic Indentation Response of Fine-GrainedBoron Carbide. J. Am. Ceram. Soc.,2007,90:1850~1857
    Gomez E, Echeberria J, Iturriza I, et al. Liquid Phase Sintering of SiC with addtions of Y2O3,Al2O3and SiO2. Journal of European Ceramic Society,2004:2895
    Grabner L. Spectroscopic Technique for the Measurement of Residual Stress in SinteredAl2O3. J. Appl. Phys.,1978,49:580~583
    Guo S. Fluorescence Microscopy Investigation on Residual Stresses in Alumina-basedCeramics.博士学位论文, UK: University of Oxford,2009
    Habberstad J L. A Two-Dimensional Numerical Solution for Elastic Waves in VariouslyConfigured Rods. Journal of Applied Mechanics,1971,38:62~70
    Habberstad J. A Two-dimensional Numerical Solution for Elastic Waves in VariouslyConfigured Rods. Journal of Applied Mechanics,1971,38:62~70
    Halverson D C, Pyzik A J, Aksay I A, et al. Processing of Boron Carbide-AluminumComposites. Journal of the American Ceramic Society,1989,72:775~780
    Hardding J, Wood E D, Campbell J D. Tensile Testing of Material at Impact Rates of Strain.Journal of Mechanical Engineering Science,1960,2:88~96
    Hazell P J, Roberson C J, Moutinho M. The Design of Mosaic Armour: The Influence of TileSize on Ballistic Performance. Mater. Design,2008,29:1497~1503
    Hazell P J. Ceramic Armour: Design and Defeat Mechanisms. Argos Press,2006
    Hill R. The Mathematical Theory of Plasticity. UK: Oxford University Press,1950
    Hockey B J. Plastic Deformation of Aluminum Oxide by Indentation and Abrasion. J. Am.Ceram. Soc.,1971,54:223~231
    Holmquist T J, Rajendran A M, Templeton D W, et al. Ceramic Armor Material Database.http://handle.dtic.mil/100.2/ADA362926,1999
    Hopkinson B. A Method of Measuring the Pressure Produced in the Detonation of HighExplosives or by the Impact of Bullets. Philosophical Transactions of the Royal Society of London.Series A. Mathematical Physical&Engineering Sciences,1914,213:437~456
    Hopkinson B. The Effects of Momentary Stresses in Metals. Proceedings of the RoyalSociety of London.1905,74:498~506
    Hopkinson J. Further Experiences on the Rupture of Iron Wire. Proceedings of theManchester Literary and Philosophical Society,1872
    Hopkinson J. On the Rupture of Iron Wire by a Blow. Proceedings of the Manchester Literaryand Philosophical Society,1872
    Inoue Z, Tanaka H, Inomata Y. Synthesis and X-ray crystallography of aluminium boroncarbide, Al8B4C7. Journal of Materials Science,1980:15:3036~3040
    Jiao S, M.L. Jenkins, R.W. Davidge. Electron microscopy of crack/particle interactions inAl2O3/SiC nanocomposites. J. Microsc.,1997,185:259~264
    Karandikar P G, Evans G, Wong S, et al. A Review of Ceramics for Armor Applications,Proceedings from32nd International Conference on Advanced Ceramics and Composites,2008
    Klassen T, Günther R, Dickau B. Processing and Characterization of NovelIntermetalic/Ceramic Composites. Materials Science Forum.1998,269-272:37~46
    Koeppel B J, Subhash G. Characteristics of Residual Plastic Zone under Static and DynamicVickers Indentations. Wear,1999,224:56~67
    Kolsky H. An Investigation of the Mechanical Properties of Materials at Very High Rates ofLoading. Proceedings of the Physical Society. Section B,1949,62:676~700
    Kolsky H. Stress Waves in Solids. USA: Dover Publications,1963
    Lang F F. Sinertability of Agglomerated Powders. J. A. Ceram. Soc.,1984,67:83~89
    Lankford J, Blanchard C R. Fragmentation of Brittle Materials at High rates of Loading. J.Mater. Sci.,1991,26:3067~3072
    Lankford J. Compressive Strength and Microplasticity in Polycrystalline Alumina. Journal ofMaterials Science,1977,12:791~796
    Lankford J. Dynamic Compressive Fracture in Fiber-reinforced Ceramic Matrix Composites.Mater. Sci. Eng. A,1989,107:261~268
    Lankford J. The Role of Dynamic Materials Properties in the Performance of Ceramic Armor.J. Appl. Ceram. Tech.,2004,1:205~210
    Lasalvia J C, Campbell J. Beyond hardness: Ceramics and ceramic-based Composites forProtection. Journal of Materials,2010,62:16~23.
    Lawn B, Wilshaw R. Review Indentation Fracture: Principles and Applications. J. Mat. Sci.,1975,10:1049~1081
    Levin I, Kaplan W D, Brandon D G. Residual Stresses in Alumina-SiC Nanocomposites.Acta Metallurgica Et Materialia,1994,42:1147~1154
    Limpichaipanit A, Todd R I. The Relationship between Microstructure, Fracture and AbrasiveWear in Al2O3/SiC Nanocomposites and Microcomposites Containing5and10%Sic. J. Euro.Ceram. Soc.,2009;29:2841~2848
    Limpichaipanit A. Wear and Indentation of SiC/Al2O3Nanocomposites:[博士学位论文].UK: University of Oxford,2008
    Lin S, Hills D A, Warren P D. A Theoretical Investigation of Sharp Indentation Testing ofNearly-Brittle Material, With Some Experimental Results. J. Mech. Phys. Sol.,2000,48:2057~2075
    Lindholm U S. Some Experiences with the Split Hopkinson Pressure Bar. Journal of theMechanics and Physics of Solids,1964,12:317~335
    Longy F, J. Cagnoux. Plasticity and Microcracking in Shock Loaded Alumina. J. Am. Ceram.Soc.,1989,72:971~979
    López-López E. Validity of Split Hopkinson Pressure Bar Testing for Ceramics.37thInternational Conference and Exposition on Advanced Ceramics and Composites,2013
    Lundberg P. Interface Defeat and Penetration: Two Modes of Interaction between MetallicProjectiles and Ceramic Targets. Science and Technology,2004
    Lyer K Relationships between Multiaxial Stress States and Internal Fracture Patterns inSphere-Impacted Silicon Carbide. Int. J. Fract.,2007,46:1~18
    L pez-Puente J, Arias A, Zaera R, et al. The Effect of the Thickness of the Adhesive Layer onthe Ballistic Limit of Ceramic/Metal Armours, an Experimental and Numerical Study. Int. J.Impact. Eng.,2005,32:321~336
    Ma Q, Clarke D R. Piezospectroscopic Determination of Residual Stresses in PolycrystallineAlumina. Journal of the American Ceramic Society,1994,77:298~302
    Macmillan N H, Kelly A. Strong Solids. Oxford: Clarendon Press,1986
    Medvedovski E. Alumina ceramics for ballistic protection–Part1. Am. Ceram. Soc. Bull.,2002,81:27~32
    Merino J L O, Todd R I. Relationship between Wear Rate, Surface Pullout and Microstructureduring Abrasive Wear of Alumina and Alumina/Sic Nanocomposites. Acta Mater.,2005,53:3345~3357
    Merino J L O, Todd R I. Thermal Microstress Measurements in Al2O3/SiC Nanocompositesby Cr3+Fluorescence Microscopy. J. Eur. Ceram. Soc.,2003,23:1779~1783
    Meyer L W, Manwaring S, Murr L E, et al. Metallurgical Applications of Shock-Wave andHigh-Strain-Rate Phenomena. New York: Dekker Machanical Engineering,1986
    Molis S E, Clarke D R. Measurement of Stresses Using Fluorescence in an OpticalMicroprobe: Stresses around Indentations in a Chromium Doped Sapphire. J. Am. Ceram. Soc.,1990,73:3189~3194
    Munakata M, Kamata O, Shirasaka T, et al. Degree of Crystallization and ContaminationEfeect on Ferroelectric Ceramic Powder Produced by Fine Grinding. Jpn. J. Appl. Phys.,2001,40:5638~5641.
    Nakahira A, Fukushima F, Niihara K. Al2O3-SiC-ZrO2Composites. UK: British Industrialand Scientific International Translation Service,199
    Niihara K. New Design Concept of Structural Ceramics–Ceramic Nanocomposites. J.Ceram. Soc. Jpn,1991,99:974~982
    Numerical Simulation of Impact on Ceramic Armour System.http://www.dec.fct.unl.pt/projectos/impacto/Public_Papers/NUMERICAL%20SIMULATION%20OF%20IMPACT%20ON%20CERAMIC%20ARMOUR%20SYSTEM.pdf
    Pezzotti G. In situ Study of Fracture Mechanisms in Advanced Ceramics using Fluorescenceand Raman Microprobe Spectroscopy. Journal of Raman Spectroscopy,1999,30:867~875
    Prime M B. Cross-Sectional Mapping of Residual Stresses by Measuring the Surface Contourafter a Cut. Journal of Engineering Materials and Technology,2001,123:162~168
    Rajagopalan S, Prakash V. A Modified Torsional Kolsky Bar for Investigating DynamicFriction.Experimental Mechanics,1999,39:295-303.
    Rajendran A M, Dandekar D P. Inelastic response of alumina. Int. J. Impact. Eng.,1995,17:649~660
    Ravichandran G, Subhash G. A Micro Mechanical Model for High Strain Rate Behavior ofCeramics. Int. J. Solids Struct.,1995,32:2627~2650
    Ravichandran G, Subhash G. Critical Appraisal of Limiting Strain Rates for CompressionTesting of Ceramics in a Split Hopkinson Pressure Bar. Journal of American Ceramic Society,1994,77:263~267
    Rittel D, Wang Z G. Thermo-Mechanical Aspects of Abiabatic Shear Failure of AM50andTi6Al4V Alloys. Mechanics,2008,40:629~635
    Rogers H C. Adiabatic Plastic Deformation. Annual Review of Materials Science,1979,9283~9311
    Rover S L.21st-Century Armor. Chem. Eng. News,2009,87:51~53
    Satapathy S. Dynamic Spherical Cavity Expansion in Brittle Ceramics. Int. J. Sol. Struct.,2001,38:5833~5845
    She J H, Ueno K. Effect of additive content on liquid-phase sintering on silicon carbideceramics. Materials Reaseach Bull,1999,34:1629
    Shih C J, Adams M A, Howald G A. Development of a Versatile, Low Cost Ceramic Armour.http://www.dtic.mil/ndia/11ground/adams.pdf,2002.
    Shockey D A, Marchand A H, Skaggs S R, et al. Failure Phenomenology of ConfinedCeramic Targets and Impacting Rods. Int. J. Impact. Eng.,1990,9:263~275
    Spawton J. Ceramic Armour:[硕士学位论文], UK:University of Oxford,2011
    Stone H J, Withers P J, Roberts S M. Comparison of Three Different Techniques forMeasuring the Residual Stresses in an Electron Beam-Welded Plate of WASPALOY. Metallurgicaland Materials Transactions A,1999,30:1797~1808
    Subhash G, Maiti G, Geubelle P H, et al. Recent Advances in Dynamic Indentation Fracture,Impact Damage and Fragmentation of Ceramics. J. Am. Ceram. Soc.,2008,91:2777~2791
    Subhash G, Zhang H. Dynamic Indentation Response if ZrHf Based Bulk Metallic Glasses.Journal of Materials Research,2006,22:478~485
    Taylor G I. The Use of Flat-ended Projectiles for Determining Dynamic Yield Stress. Proc. R.Soc. Lond. A,1948,194:289~299
    Tirupataiah Y, Sundararajan G. A Dynamic Indentation Technique for the Characterization ofthe High Strain Rate Plastic Flow Behaviour of Ductile Metals and Alloys. J. Mech. Phys. Solids,1991,39:243~271
    Todd R I, Bourke M A M, Borsa C E, et al. Neutron Diffraction Measurements of ResidualStresses in Alumina/SiC Aanocomposites. Acta Materialia,1997,42:1791~1800
    Todd R I, Limpichaipanit A. Microstructure-property Relationships in Wear ResistantAlumina/SiC ‘Nanocomposites’. Advanced in Science and Technology,2006,45:555
    Walker C N, Borsa C E, Todd R I, et al. Fabrication, Characterization and Properties ofAlumina Matrix Nanocomposites. Briti. Ceramic. Pro.,1994,53:249~264
    Walley S M. Historical Review of High Strain Rate and Shock Properties of CeramicsRelevant To Their Application in Armour. Advances in Applied Ceramics,2010,109:446~466.
    Wang Q C, Ke K L, Xing H Y. Evaluation of Residual Stress Relief of Aluminum Alloy7050by using crack compliance method. Transactions of Nonferrous Metals Society of China,2003,13:1190
    Wang T, Yamaguchi A. Some properties of sintered Al8B4C7. Journal of Materials ScienceLetters,2000,19:1245~1246
    Wilkins M L. Mechanics of Penetration and Perforation. Int. J. Engng. Sci.,1978,16:793~807
    Withers P J, Bhadeshia H. Overview–Residual Stress Part1-Measurement techniques.Materials Science and Technology,2001,17:355~365
    Withers P J, Bhadeshia H. Overview-Residual Stress Part2-Nature and Origins. MaterialsScience and Technology,2001,17:366~375
    Wu H Z, Roberts S G, Derby B. Residual Stress Distributions around Indentations andScratches in Polycrystalline Al2O3and Al2O3/SiC Nanocomposites Measured using FluorescenceProbes. Acta Mater.,2008,56:140~149
    Wurst J C, Nelson J A. Lineal Intercept Technique for Measuring Grain Size in Two-PhasePolycrystalline Ceramics. J. A. Ceram. Soc.,1972,55:109
    Yoffe E. Elastic Stress Fields Caused by Idnenting Brittle Materials. Philosophical magazine,1982,46:617~628
    Zhao J, Steans L C, Harmer M P, et al. Mechanical Behavior of Alumina–Silicon CarbideNanocomposites, J. Am. Ceram. Soc.1993,76:503~510
    Zhou H, Singh R N. Kinetics Model for the Growth of Silicon Carbide by the Reaction ofLiquid Silicon with Carbon.Journal of American Ceramic Society,1995,78:2456~2464
    曾方允.真空冷冻干燥法制备纳米氧化铝粉体的研究:[硕士学位论文].沈阳:东北大学,2004
    董绍明,丁玉生,江东亮,等.制备工艺对热压烧结SiC/SiC复合材料结构与性能的影响.无机材料学报,2005,20:853~858
    段祝平,孙琦清,杨大光.高应变率下金属动力学性能的实验与理论研究一维杆的实验方法及其应用.力学进展,1980,1:1~16
    龚江宏,关振铎.陶瓷材料断裂韧性测试技术在中国的研究进展.硅酸盐通报,1995,1:53~57
    郭伟国. PVDF压电薄膜用于Hopkinson压杆测量泡沫金属的动态性能.实验力学,2005,20:635~639
    胡时胜,邓德涛,任小彬.材料冲击拉伸试验的若干问题探讨.实验力学,1998,13:9~14
    胡时胜,王礼立.一种用于材料高应变率试验的装置.振动与冲击,1986,1:40~47
    胡一文. SEVNB法测试陶瓷材料断裂韧性研究:[硕士学位论文].北京:清华大学,2011
    黄斌,杨延清.金属基复合材料中热残余应力的分析方法及其对复合材料组织和力学性能的影响.材料导报,2006,20:413~416
    江东亮.精细陶瓷材料.北京:中国物资出版社,2000
    梁训裕,刘景林.碳化硅耐火材料.北京:冶金工业出版社,1981
    刘维良,喻佑华.先进陶瓷工艺学.武汉:武汉理工大学出版社,2004
    刘彦平. Cf/SiC复合材料表面残余应力研究:[硕士学位论文].长沙:国防科技大学,2009
    卢芳云,陈荣,林玉亮,等.霍普金森杆实验技术.北京:科学出版社,2013
    陆佩文.硅酸盐物理化学,南京:东南大学出版社,1991
    彭可武,吴文远,徐璟玉,等. B4C和Al在高温条件下的化学反应及相组成的研究.稀有金属与硬质合金,2008,1:16~19
    沈建兴,张炳荣,刘宏,等.金属间化和物增韧陶瓷材料的效果与机理.硅酸盐通报,2000,4:54~57
    谭寿洪,陈忠明,江东亮.液相烧结SiC陶瓷.硅酸盐学报,1998,26:191~197
    谭训彦,王听,尹衍升,等. α-Al2O3的晶体结构与价电子结构.中国有色金属学报,2002,51:18~23
    谭毅,李敬锋.新材料概论.北京:冶金工业出版社,2004
    王晓燕,卢芳云,林玉亮. SHPB实验中端面摩擦效应研究.爆炸与冲击,2006,26:134~189
    夏开文,程经毅,胡时胜. SHPB装置应用于测量高温动态力学性能的研究.实验力学,1998,13:307~313
    肖汉宁,高朋召.高性能结构陶瓷及其应用.北京:化学工业出版社,2006:71~72
    张锐.陶瓷工艺学.北京:化学工业出版社,2007
    赵鹏铎.分离式霍普金森压剪杆实验技术及其应用研究:[博士学位论文].长沙:国防科技大学,2011

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700