外载作用下激光熔覆WC/Ni复合涂层的疲劳断裂行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光熔覆颗粒增强复合涂层具有金属材料的高韧性和陶瓷材料的高硬度、耐磨损、抗氧化等特性,广泛用于航空、军事、石油、化工、医疗器械等领域。本文制备了激光熔覆碳化钨(WC)颗粒增强镍(Ni)基复合涂层,研制开发了一套能实现自动监测和模拟多种工况的滚动接触疲劳试验系统,从理论分析、实验研究和数值模拟三个层面,系统研究了其在滑动摩擦、单轴拉伸、循环滚动接触三种工况下的失效行为。主要研究工作和结论如下:
     进行了不同WC含量的WC/Ni复合涂层摩擦磨损实验,建立了WC体积分数、涂层微观组织和抗滑动摩擦性能三者之间的对应关系。研究发现,涂层的耐磨性随WC含量的增加先增后减,在WC体积含量为6.91%时表现出最佳的抗滑动摩擦性能。WC颗粒含量决定了涂层的磨损机制,低WC含量涂层的失效主要为两体磨料磨损导致,高WC含量涂层失效表现为疲劳磨损与三体磨料磨损机制。
     开展了扫描电镜下WC-Ni涂层/45钢基体的原位拉伸实验研究。基于拉伸过程中涂层表面裂纹演化过程的原位观察,探讨了WC颗粒对涂层拉伸断裂行为的影响及涂层断裂失效机理。结果表明:WC颗粒导致WC/Ni涂层的脆性增加,表现为低拉伸应变下的脆性失效。微裂纹多萌生于WC增强颗粒,随载荷增加而长大,相互连接形成横贯裂纹,导致涂层失效。
     系统研究了滚动接触循环载荷下涂层的疲劳行为。采用间断试验,研究了涂层表面损伤及裂纹的萌生与扩展规律。研究发现:接触载荷下涂层主要表现为次表面裂纹引发的局部剥落失效,剥落坑深度与WC颗粒相关。次表面裂纹源于WC颗粒相关的剪应力,扩展路径表现为较大的随机性。这一物理过程表现为:高剪切应力诱发次表面裂纹萌生,次表面主裂纹扩展同时伴生枝状二次裂纹、表面裂纹向涂层内部扩展,与次表面二次裂纹相互连接,形成剥落失效。
     有限元分析了接触载荷下涂层表面、中心轴线以及涂层/基体界面等关键部位的力学响应,定量建立了涂层厚度、弹性模量等参数与应力分布的映射关系,提出了以应力强度为目标的涂层参数优化:对于陶瓷涂层等脆性材料,容易因为接触边缘较大的径向拉应力产生表面裂纹,tc/a0应控制在0.5-3范围;对于韧性金属涂层,tc/a0值应小于0.2以防止剪应力诱发的次表面裂纹。
Laser cladded composite coatings effectively combine advantages of the self-fluxing metal and the ceramic particles, so they have excellent surface performances, such as high strength, good toughness, high temperature resistance and good wear resistance. Therefore, they have been widely used in many fields, such as aerospace, military defense, petrochemical and medical device. In this dissertation, WC particle reinforced Ni matrix composite coatings with different WC contents were prepared. An experiment system was developed for the rolling contact fatigue performance testing, which could monitor the surface status automatically and simulate different lubrication conditions. The fracture and fatigue behaviors of laser cladded WC/Ni composite coating under different loads including sliding friction, uniaxial tension and cyclic rolling contact were systematically investigated in terms of theoretical analyses, experiments and numerical simulations. The main contents and conclusions of this dissertation are as follows:
     Experiments on the sliding wear resistance of the WC/Ni composite coatings with different WC contents have been carried out. The function relationship among the WC content, coating microstructure and sliding wear resistance was established. Results showed that the sliding wear resistance firstly increased and then decreased with the increasing of the WC content. The coating with6.91vol.%WC particles exhibited the best wear resistance. The wear mechanism depended on the volume fraction of WC particle. When the WC content was low, the two-body abrasion wear was identified as the main wear mechanism. For the coating with high WC content, the main mechanisms were fatigue and three-body abrasion.
     Experimental research on the in-situ tensile performance of the WC-Ni coating/45steel system have been done. Based on the in-situ observation of the evolution of crack at the coating surface during tensile test, the tensile fracture mechanism and the effect of WC particle on the fracture behavior of the composite coating were discussion. Results showed that the addition of WC particles increased the coating brittleness. It led to the brittle fracture of coating at low applied strain. Most of micro-cracks were initiated from WC particles, propagated and joined with each other or with a new one with increasing the tensile load. The joined cracks propagated towards the coatings surface and throughout the coating width, resulting in fracture of the composite coating.
     The fatigue behavior of laser cladded WC/Ni coating under repeated rolling contact loading was studied systematically. Interrupted experiments were used to research the surface damage and the initiation and propagation of the crack at the coating surface. Experimental results showed that the coating failed by the form of spalling which was caused by the subsurface crack. The orthogonal shear stress was the driving force that controls the initiation of the subsurface crack. The depth of the spall was related to the distribution of WC particles because of the shear stress redistribution due to the presence of WC particles. A processing model was proposed to illustrate the formation of the spall, which could be described as follow:the formation of the substrate crack due to high shear stress, propagation of the main substrate crack and the formation of branched substrate crack, the propagation of surface at an angle, the joining of the surface cracks and subsurface cracks and the formation of the spall.
     The elastic stress distributions at key locations, such as coating surface, contact central axis and the coating/substrate interface, were obtained under normal contact load by using finite element simulation method. The function relationship between the maximum value of stress components and coating parameters such as thickness and elastic modulus was established. A parameters optimization scheme targeted to reduction of the maximum stress was proposed. For the hard coating materials, such as ceramic coating, the normalized coating thickness tc/ao should be controlled at the range of0.5-3to prevent surface crack induced by the large radial tensile stress. For the soft coating such as metal coating, the probability of substrate crack due to the high shear stress is relatively high. The normalized coating thickness tc/ao should be set to be lower than0.2.
引文
[1]邵荷生,曲敬信,许小棣,陈华辉.摩擦与磨损[M].北京:煤炭工业出版社,1992.
    [2]Integrated Study of Rolling Contact Fatigue (ICON)-European Commission DGX111 Brite/Euram Ⅲ Project, Contract BRPR-CT96-0245 Project Program, Brussels,1997-1999.
    [3]Grassie S L. Rail corrugation:advances in measurement, understanding and treatment[J]. Wear,2005,258(7-8):1310-1318.
    [4]陶春虎,钟培道,王仁智,聂景旭.航空发动机转动部件的失效与预防[M].北京:国防工业出版,2000.
    [5]Ahmed R. Contact fatigue failure modes of HVOF coatings[J]. Wear,2002,253(3-4): 473-487.
    [6]Zong M, Liu W. Laser surface cladding:the state of the art and challenges[J]. The Journal of Engineering Manufacture,2006,220:1923-1936.
    [7]Oberlander B C, Lugscheider E. Comparison of properties of coatings produced by laser cladding and conventional methods[J]. Materials Science and Technology,1992,8(8): 657-665.
    [8]Gnanamuthu D S. Cladding:U.S.,3942180[P],1976-4-20.
    [9]Weerasinghe V M, Steen W M. Laser cladding by powder injection. ASME proceedings in transport phenomena in materials processing,1983, pp.15-23.
    [10]张永忠,石力开.高性能金属零件激光快速成形技术研究进展[J].航空制造技术,2010,8:47-50.
    [11]Emamiana A, Corbinb S F, Khajepourb A. Effect of laser cladding process parameters on clad quality and in-situ formed microstructure of Fe-TiC composite coatings[J]. Surface and Coatings Technology,2010,205(7):2007-2015.
    [12]黄凤晓,江中浩,张健.激光熔覆工艺参数对单道熔覆层宏观尺寸的影响[J].热加工工艺,2010,39(18):119-112.
    [13]朱刚贤,张安峰,李涤尘.激光熔覆工艺参数对熔覆层表面平整度的影响[J].中国激光,2010,37(1):296-301.
    [14]刘富荣,高谦,高登攀,王广生.激光熔覆WC增强复合涂层开裂行为分析[J].材料工程,2003,(5):37-39.
    [15]Wu P, Zhou C Z, Tang X N. Laser alloying of a gradient metal-ceramic layer to enhance wear properties [J]. Surface and Coatings Technology,1995,73(1-2):111-114.
    [16]Liang G Y, Wong T T. Investigation of microstructure of laser cladding Ni-WC layer on Al-Si alloy[J]. Journal of materials engineering and performance,1997,6:41-45.
    [17]Chong P H, Man H C, Yue T M. Microstructure and wear properties of laser surface-cladded Mo-WC MMC on AA6061 aluminum alloy [J]. Surface and Coatings Technology, 2001,145(1-3):51-59.
    [18]查莹,周昌炽,唐西南,张展.改善激光熔覆镍基合金和陶瓷硬质相复合涂层性能的研究[J].中国激光,1999,26(10):947-950.
    [19]Wu P, Du H M, Chen X L, Li Z Q, Bai H L, Jiang E Y. Influence of WC particle behavior on the wear resistance properties of Ni-WC composite coatings[J]. Wear,2004,257(1-2): 142-147.
    [20]吴萍,周昌炽.激光合金化熔覆制备耐磨陶瓷梯度涂层[J].金属学报,1994,30(11):508-512.
    [21]Chawla N, Shen Y L. Mechanical behavior of particle reinforced metal matrix composites[J]. Advanced Engineering Materials,2001,3:357-370.
    [22]Liu D, Zhang S Q, Li A, Wang H M. Microstructure and tensile properties of laser melting deposited TiC/TA15 titanium matrix composites[J]. Journal of Alloys and Compounds, 2009,485(1-2):156-162.
    [23]Johnson T P, Brooks J W, Loretto M H. Mechanical properties of a Ti-based metal matrix composite produced by a casting route[J]. Scripta Metallurgica et Materialia,1991,25: 785-789.
    [24]Tsang H T, Chao C G, Ma C Y. In situ fracture observation of a TiC/Ti MMC produced by combustion synthesis[J]. Scripta Materialia,1996,35(8):1007-1012
    [25]金云学.TiCP/Ti复合材料TiC生长形态及其控制[D].哈尔滨:哈尔滨工业大学,2002.
    [26]戚继球.熔铸法制备TiC增强高温钛合金基复合材料组织与高温变形行为[D].哈尔滨:哈尔滨工业大学,2013.
    [27]McDanels D L. Analysis of stress-strain, fracture, and ductility behavior of aluminum matrix composites containing discontinuous silicon carbide reinforcement[J]. Metallurgical Transactions A,1985,68:1105-1115.
    [28]Chawla N, Andres C, Jones J W, Allison J E. Effect of SiC volume fraction and particle size on the fatigue resistance of a 2080 Al/SiCP composite[J]. Metallurgical Transactions A,1998,29(11):2843-2854.
    [29]Ganesh V V, Chawla N. Effect of reinforcement-particle-orientation anisotropy on the tensile and fatigue behavior of metal-matrix composites[J]. Metallurgical and Materials Transactions A,2004,35(1):53-61.
    [30]Doel T J A, Bowen P. Tensile properties of particulate-reinforced metal matrix composites[J]. Composites Part A,1996,27(8):655-665.
    [31]Kouzeli M, Mortensen A. Size dependent strengthening in particle reinforced aluminium[J]. Acta Materialia,2002,50(1):39-51.
    [32]Manoharan M, Lewandowski J J. Effect of reinforcement size and matrix microstructure on the fracture properties of an aluminum metal matrix composite[J]. Materials Science and Engineering A,1992,150(2):179-186.
    [33]Brockenbrough J R, Suresh S, Wienecke H A. Deformation of metal-matrix composites with continuous fibers:geometrical effects of fiber distribution and shape[J]. Acta Metallurgica et Materialia,1991,39(5):735-752
    [34]Chrisman T, Needleman A, Suresh S. An experimental and numerical study of deformation in metal-ceramic composites[J]. Acta Metallurgica,1989,37(1):3029-3050.
    [35]Watt D F, Xu X Q, Lloyd D J. Effects of particle morphology and spacing on the strain fields in a plastically deforming matrix[J]. Acta Materialia,1996,44(2):789-799.
    [36]Llorca J, Needleman A, Suresh S. An analysis of the effects of matrix void growth on deformation and ductility in metal-ceramic composites[J]. Acta Metallurgica et Materialia,1991,39(10):2317-2335.
    [37]Spowart J E, Miracle D B. The influence of reinforcement morphology on the tensile response of 6061/SiC/25p discontinuously-reinforced aluminum[J]. Materials Science and Engineering A,2003,357(1-2):111-123.
    [38]Lloyd D J. Aspects of fracture in particulate reinforced metal matrix composites[J]. Acta Metallurgica et Materialia,1991,39(1):59-71.
    [39]Eshelby J D. The determination of elastic field of an ellipsoidal inclusion and related problems[J]. Proceedings of the Royal Society of London,1957,241:376-396.
    [40]Hill R A. Self-consistent mechanics of composite materials[J]. Journal of the Mechanics and Physics of Solids,1965,13(4):213-222.
    [41]Christensen R M, Lo K H. Solutions for effective shear properties in three phase space and cylinder model[J]. Journal of the Mechanics and Physics of Solids,1979,27(4):315-330.
    [42]Milton G W. Bounds on the electromagnetic, elastic and other properties of two-component composites [J]. Physical Review Letters,1981,46:542-545.
    [43]Mori T, Tanaka K. Average stress in matrix and average elastic energy of materials with misfitting inclusions [J]. Acta metallurgica,1973,21(5):571-574.
    [44]宋旼,谢灿强,贺跃辉.颗粒失效对SiC增强铝基复合材料屈服应力的影响模型[J].中国有色金属学报,2010,20(2):244-249.
    [45]Jiang B, Liu C, Zhang C, Wang B, Wang Z. The effect of non-symmetric distribution of fiber orientation and aspect ratio on elastic properties of composites [J]. Composites Part B,2007,37(1):24-34.
    [46]余寿文,冯西桥.复合材料中增强相形状对有效模量的影响Ⅰ[J].清华大学学报(自然科学版),2001,41(11):8-10.
    [47]余寿文,冯西桥.复合材料中增强相形状对有效模量的影响Ⅱ[J].清华大学学报(自然科学版),2001,41(11):11-14.
    [48]Wu Y L, Ling Z, Dong Z F. Stress-strain fields and the effectiveness shear properties for three-phase composites with imperfect interface[J]. International journal of solids and structures,1999,37(9):1275-1292
    [49]Liu D, Zhang S Q, Li A, Wang H M. Microstructure and tensile properties of laser melting deposited TiC/TA15 titanium matrix composites[J]. Journal of Alloys and Compounds, 2009,485(1-2):156-162.
    [50]Liu D, Zhang S Q, Li A, Wang H M. Creep rupture behaviors of a laser melting deposited TiC/TA15 in situ titanium matrix composite[J]. Materials & Design,2010,31(6):3127-3133.
    [51]Gu D D, Shen Y F. Influence of reinforcement weight fraction on microstructure and properties of submicron WC-CoP/Cu bulk MMCs prepared by direct laser sintering[J]. Journal of Alloys and Compounds,2007,431(1-2):112-120.
    [52]Haque M A, Saif M T A. In-situ Tensile Testing of Nano-scale Specimens in SEM and TEM[J]. Experimental Mechanics,2002,42(1):123-128.
    [53]Hugo R C, Kung H, Weertman J R, Mitra R, Knapp J A, Follstaedt D M. In-situ TEM tensile testing of DC magnetron sputtered and pulsed laser deposited Ni thin films[J]. Acta Materialia,2003,51:1937-1943
    [54]Chen B F, Hwang J, Yu G P, Huang J H. In situ observation of the cracking behavior of TiN coating on 304 stainless steel subjected to tensile strain[J]. Thin Solid Films,1999, 352(1-2):173-178.
    [55]Chen Z T, Li G, Wu Z Q, Xia Y. The crack propagating behavior of composite coatings prepared by PEO on aluminized steel during in situ tensile processing[J]. Materials Science and Engineering A,2011,528:1409-1414.
    [56]Zhang C, Liu L, Chan K C, Chen Q, Tang C Y. Wear behavior of HVOF-sprayed Fe-based amorphous coatings[J]. Intermetallics,2012,29:80-85.
    [57]Kim H J, Yoon B H, Lee C H. Wear performance of the Fe-based alloy coatings produced by plasma transferred arc weld-surfacing process[J]. Wear,2001,249(10-11):846-852.
    [58]Hejwowski T. Sliding wear resistance of Fe-, Ni-and Co-based alloys for plasma deposition[J]. Vacuum,2006,80(11-12):1326-1330.
    [59]Corchia M, Delogu P, Nenci F, Belmondo A, Corcoruto S, Stabielli W. Microstructural aspects of wear-resistant stellite and colmonoy coatings by laser processing[J]. Wear, 1987,119(2):137-152.
    [60]Grigorescu I C, Rauso C D, Drirs-Halouani R, Lavelle B, Giampaolo R, Lira J. Phase characterization in Ni alloy-hard carbide composites for fused coatings[J]. Surface and Coatings Technology,1995,76-77:494-498.
    [61]Gonzalez R, Cadenas M, Fernandez R, Cortizo J L, Rodriguez E. Wear behaviour of flame sprayed NiCrBSi coating remelted by flame or by laser[J]. Wear,2007,262(3-4): 301-307.
    [62]Niu YS, Wei J, Yang Y, Hu J X, Yu Z M. Influence of microstructure on the wear mechanism of multilayered Ni coating deposited by ultrasound-assisted electrodeposition[J]. Surface and Coatings Technology,2012,210:21-27.
    [63]Shivamurthy R C, Kamaraj M, Nagarajan R, Shariff S M, Padmanabham G. Slurry erosion characteristics and erosive wear mechanisms of Co-based and Ni-based coatings formed by laser surface alloying[J]. Metallurgical and Materials Transactions A,2010, 41(2):470-486.
    [64]Liu X B, Liu S, Fan J W. The design of cobalt-free, nickel-based alloy powder (Ni-3) used for sealing surfaces of nuclear power valves and its structure of laser cladding coating[J]. Nuclear Engineering and Design,2011,241:1403-1406.
    [65]Liu X B, Fu G Y, Liu S, Shi S H, He X M, Wang M D. High temperature wear and corrosion resistance of Co-free Ni-based alloy coatings on nuclear valve sealing surfaces[J]. Nuclear Engineering and Design,2011,241(12):4924-4928.
    [66]Chen Z D, Lim L C, Qian M. Laser cladding of WC/Ni composite[J]. Journal of Materials Processing Technology,1996,62(4):321-323.
    [67]Wang H, Xia W M, Jin Y S. A study on abrasive resistance of Ni-based coatings with a WC hard phase[J]. Wear,1996,195(1-2):47-52.
    [68]Zhao T, Cai X, Wang S X, Zheng S A. Effect of CeO2 on microstructure and corrosive wear behavior of laser-cladded Ni/WC coating[J]. Thin Solid Films,2000,379(1-2):128-132.
    [69]Cai B, Tan Y F, Tu Y Q, Wang X L, Xu T. Effects of graphite content on microstructure and tribological properties of graphite/TiC/Ni-base alloy composite coatings[J]. Transactions of Nonferrous Metals Society of China,2011,21(8):1741-1749.
    [70]Poirier D, Legoux J G, Lima R S. Engineering HVOF-sprayed Cr3C2-NiCr coatings:the effect of particle morphology and spraying parameters on the microstructure, properties, and high temperature wear performance[J]. Journal of Thermal Spray Technology,2013, 22(2-3):280-289.
    [71]Maatta A, Kanerva U, Vuoristo P. Structure and tribological characteristics of HVOF coatings sprayed from powder blends of Cr3C2-25NiCr and NiCrBSi alloy[J]. Journal of Thermal Spray Technology,2011,20(1-2):366-371.
    [72]Benea L, Bonora P L, Borello A, Martelli S. Wear corrosion properties of nano-structured SiC-nickel composite coatings obtained by electroplating[J]. Wear,2001,249(10-11): 995-1003.
    [73]Garcia I, Fransaer J, Celis J P. Electrodeposition and sliding wear resistance of nickel composite coatings containing micron and submicron SiC particles[J]. Surface and Coatings Technology,2001,148(2-3):171-178.
    [74]Chen L, Wang L P, Zeng Z X, Zhang J Y. Effect of surfactant on the electrodeposition and wear resistance of Ni-Al2O3 composite coatings[J]. Materials Science and Engineering A,2006,434(1-2):319-325.
    [75]Chen L, Wang L P, Zeng Z X, Xu T. Influence of pulse frequency on the microstructure and wear resistance of electrodeposited Ni-AlO3 composite coatings[J]. Surface and Coatings Technology,2006,201(3-4):599-605.
    [76]Moller A, Hahn H. Synthesis and characterization of nanocrystalline Ni/ZrO2 composite coatings[J]. Nanostructured Materials,1999,12(1-4):259-262.
    [77]Wang W, Hou F Y, Wang H, Guo H T. Fabrication and characterization of Ni-ZrO2 composite nano-coatings by pulse electrodeposition[J]. Scripta Materialia,2005,53(5): 613-618.
    [78]Huang S W, Samandi M, Brandt M. Abrasive wear performance and microstructure of laser clad WC/Ni layers[J]. Wear,2004,256(11-12):1095-1105.
    [79]Van Acker K, Vanhoyweghen D, Persoons R, Vangrunderbeek J. Influence of tungsten carbide particle size and distribution on the wear resistance of laser clad WC/Ni coatings[J]. Wear,2005,258(1-4):194-202.
    [80]卢柯,卢磊.金属纳米材料力学性能的研究进展[J].金属学报,2000,36(8):785-789.
    [81]王为,郭鹤桐.纳米复合镀技术[J].化学通报,2003,66(3):178-183.
    [82]Li J N, Chen C Z, Zhang C F, Li W. Improvement in surface performance of Al3Ti+TiB2/(Ni coated WC) laser cladded coating with Al3O3/nano-Y2O3[J]. Materials Research Innovations,2011,15(5):344-348.
    [83]Zhang S H, Li M X, Cho T Y, Yoon J H, Lee C G, He Y Z. Laser clad Ni-base alloy added nano-and micron-size CeO2 composites[J]. Optics & Laser Technology,2008,40(5): 716-722.
    [84]Wang H Y, Zuo D W, Wang M D, Sun G F, Miao H, Sun Y L. High temperature frictional wear behaviors of nano-particle reinforced NiCoCrAlY cladded coatings[J]. Transactions of Nonferrous Metals Society of China,2011,21(6):1322-1328.
    [85]Li M X, He Y Z, Yuan X M. Effect of nano-Y2O3 on microstructure of laser cladding cobalt-based alloy coatings[J]. Applied Surface Science,2006,252(8):2882-2887.
    [86]Liu S L, Sun D B, Fan Z S, Yu H Y, Meng H M. The influence of HVAF powder feedstock characteristics on the sliding wear behaviour of WC-NiCr coatings [J]. Surface and Coatings Technology,2008,202(20):4893-4900.
    [87]Chen H H, Xu C Y, Chen J, Zhao H Y, Zhang L, Wang Z T. Microstructure and phase transformation of WC/Ni60B laser cladding coatings during dry sliding wear[J]. Wear, 2008,264(7-8):487-493.
    [88]徐丽娜,周凯常,翟亚,张雪云,欧丹林,刘春平,顾宁,张海黔,刘举正.氧化铝粉末表面的快速镍金属化及其磁学性质[J].稀有金属材料与工程,2003,32(5):348-351.
    [89]邵忠财,李保山,郭亚萍,翟玉春,田彦文.镍包覆型粉末的制备方法与应用[J].中国有色金属学报,1998,8(S2):277-279.
    [90]姚建华,张伟.激光熔覆镍包纳米氧化铝[J].中国激光,2006,33(5):705-708.
    [91]陈生钻,姚建华.激光熔覆Ni包纳米氧化铝的组织和性能研究[J].应用激光,2004,24(3):142-144.
    [92]Nakajima A, Mawatari T, Yoshida M, Tani K, Nakahira A. Effects of coating thickness and slip ratio on durability of thermally sprayed WC cermet coating in rolling/liding contact [J]. Wear,2000,241:166-173.
    [93]Manoj V, Manohar Shenoy K, Gopinath K. Developmental studies on rolling contact fatigue test rig[J]. Wear,2008,264(7-8):708-718.
    [94]Barwell F T, Bunce J K, Davies V A, Roylance B J. The rolling four-ball machine-a study of its performance[C]. in:Tourret R, Wright E P(Eds.), Rolling Contact Fatigue Performance Testing of Lubricants, HEYDEN & SON LTD, London,1976:27-38.
    [95]陈铭,孙德志.四球机改装的接触疲劳试验机及其应用[J].润滑与密封,1997,5:35-39.
    [96]Stewart S, Ahmed R, Itsukaichi T. Rolling contact fatigue of post-treated WC-NiCrBSi thermal spray coatings[J]. Surface and Coatings Technology,2005,190(2-3):171-189.
    [97]Glover D. A ball-rod rolling contact fatigue tester[C]. in:Hoo J J C(Ed.), Rolling Contact Fatigue Testing of Bearing Steels, ASTM STP 771, ASTM, Philadelphia,1982:107-112.
    [98]朱宝库,宋宝玉,李新元,齐毓霖,刘生华,贾树森.一种新型接触疲劳试验机[J].试验技术与试验机,1991.31(6):21-24.
    [99]曹珍,廖凯,梁爽,王文.加速寿命接触试验机的研制[J].机械制造,2010,48(551):66-69.
    [100]杨育林,齐效文,张瑞军.超硬涂层材料滚动接触疲劳试验机的研制[J].润滑与密封,2006,10:43-45.
    [101]Piao Z Y, Xu B S, Wang H D, Pu C H. Investigation of fatigue failure prediction of Fe-Cr alloy coatings under rolling contact based on acoustic emission technique[J]. Applied Surface Science,2011,257(7):2581-2586.
    [102]Ahmed R, Hadfield M. Experimental measurement of the residuastress field within thermally sprayed rolling elements[J]. Wear,1997,209:84-95.
    [103]Ahmed R, Hadfield M. Wear of high velocity oxy-fuel (HVOF)-coated cones in rolling contact[J]. Wear,1997,203-204:98-106.
    [104]Ahmed R, Hadfield M. Influence of coating thickness and contact stress on the fatigue failure of HVOF coatings[C]. in:Proceedings of the International Thermal Spray Conference, Singapore, ISBN 0871707373,2001, pp.1009-1015.
    [105]Ahmed R. Contact fatigue failure modes of HVOF coatings[J]. Wear,2002,253(3-4): 473-487.
    [106]Berger L M, Lipp K, Spatzier J, Bretschneider J. Dependence of the rolling contact fatigue of HVOF-sprayed WC-17%Co hardmetal coatings on substrate hardness [J]. Wear, 2011,271(9-10):2080-2088.
    [107]Nieminen R, Vuoristo P, Niemi K, Mantylaa T, Barbezat G. Rolling contact fatigue failure mechanisms in plasma and HVOF sprayed WC-Co coatings[J]. Wear,1997,212(1):66-77.
    [108]Nakajima A, Mawatari T, Yoshida M, Tani K, Nakahira A. Effects of coating thickness and slip ratio on durability of thermally sprayed WC cermet coatings in rolling/sliding contact[J]. Wear,2000,241:166-173.
    [109]Nuruzzaman D M, Nakajima A, Mawatari T. Effects of substrate surface finish and substrate material on durability of thermally sprayed WC cermet coating in rolling with sliding contact[J]. Tribology International,2006,30(7):678-685.
    [110]Yoshida M, Tani K, Nakahira A, Nakajima A, Mawatari T. Durability and tribological properties of thermally sprayed WC cermet coatings in rolling/sliding contact[C]. in: Proceedings of ITSC, Kobe, May 1995,1992, pp.663-668
    [111]Stewart S, Ahmed R. Contact fatigue failure modes in hot isostatically pressed WC-12%Co coatings[J]. Surface and Coatings Technology,2003,172(2-3):204-216.
    [112]Stewart S, Ahmed R, Itsukaichi T. Contact fatigue failure evaluation of post-treated WC-NiCrBSi functionally graded thermal spray coatings[J]. Wear,2004,257(9-10):962-983.
    [113]Stewart S, Ahmed R, Itsukaichi T. Rolling contact fatigue of post-treated WC-NiCrBSi thermal spray coatings[J]. Surface and Coatings Technology,2005,190(2-3):171-189.
    [114]Ahmed R, Hadfield M. Failure modes of plasma sprayed WC-15%Co coated rolling elements[J]. Wear,1999,230(1):39-55.
    [115]Ahmed R, Hadfield M. Rolling contact fatigue performance of plasma sprayed coatings[J]. Wear,1998,220(1):80-91.
    [116]Shen X Y, Yu S Y. Performance in resistance to surface fatigue for Cr3C2-25%NiCr coatings by plasma spray and CDS spray[J]. Tribology Letters,2004,16(3):173-180.
    [117]Tobe S, Kodama S, Misawa H. Rolling fatigue behaviour of plasma sprayed coatings on aluminum alloy [C]. in:Proceedings of the National Thermal Spray Conference, Tokoyo, Japan,1990, pp.171-178.
    [118]Sarma B Y, Mayuram M M. Some studies on life prediction of thermal sprayed coatings under rolling contact conditions[J]. Journal of Tribology-Transactions of the ASME, 2000,122:503-510.
    [119]Zhang X C, Xu B S, Xuan F Z, Tu S T, Wang H D,Wu Y X. Rolling contact fatigue behavior of plasma-sprayed CrC-NiCr cermet coatings[J]. Wear,2008,265(11-12):1875-1883.
    [120]Zhang X C, Xu B S, Xuan F Z, Tu S T, Wang H D, Wu Y X. Fatigue resistance of plasma-sprayed CrC-NiCr cermet coatings in rolling contact[J]. Applied Surface Science,2008, 254:3734-3744.
    [121]Ahmed R, Hadfield M. Rolling contact fatigue behavior of thermally sprayed rolling elements[J]. Surface coatings Technology,1996,82:176-186.
    [122]Ahmed R, Hadfield M. Rolling contact fatigue performance of detonation gun coated elements[J]. Tribology International,1997,30:129-137.
    [123]Zhang X C, Xu B S, Xuan F Z, Wang Z D, Tu S T. Failure mode and fatigue mechanism of laser-remelted plasma-sprayed Ni alloy coatings in rolling contact[J]. Surface and Coatings Technology,2011,205:3119-3127.
    [124]Fujii M, Ma J B, Yoshida A, Shigemura S, Tani K. Influence of coating thickness on rolling contact fatigue of alumina ceramics thermally sprayed on steel roller[J]. Tribology International,2006,39:1447-1453.
    [125]Donnet C. Tribology of solid lubricant coatings[J]. Condensed Matter News,1995,4(6): 9-24.
    [126]Ramalingam S, Zheng L. Film-substrate interface stresses and their role in the tribological performance of surface coatings[J]. Tribology Internationa,1995,28(3):145-161.
    [127]Tallian T E. Prediction of rolling contact fatigue life in contaminated lubricant:Part II-experimental[J]. ASME Journal of Lubrication Technology,1976,98:384-392.
    [128]Lorosch H. Research on longer life for rolling element bearings[J]. Lubrication Engineering,1983,41:37-43
    [129]Dommarco R C, Bastias P C, Rubin C A, Hahn GT. The influence of material build up around artificial defects on rolling contact fatigue life and failure mechanism[J]. Wear, 2006,260:1317-1323.
    [130]Xu G, Sadeghi F, Cogdell J D. Debris denting effects on elastohydrodynamic lubricated contacts[J]. ASME Journal of Tribology,1997,119:579-587.
    [131]Nelias D, Jacq C, Lormand G, Dudragne G, Vincent A. New methodology to evaluate the rolling contact fatigue performance of bearing steels with surface dents:application to 32CrMoV13 (Nitrided) and M50 steels[J]. ASME Journal of Tribology,2005,127: 611-622.
    [132]Nelias D, Ville F. Detrimental effects of debris dents on rolling contact fatigue[J]. ASME Journal of Tribology,2000,122:55-64.
    [133]Ai X, Cheng H S. The influence of moving dent on point EHL contacts[J]. Tribology Transactions,1994,37(2):323-335.
    [134]Ueda T, Mitamura N. Mechanism of dent initiated flaking and bearing life enhancement technology under contaminated lubrication condition:Part Ⅰ-Effect of tangential force on dent initiated flaking[J]. Tribology Internation,2008,41:965-974.
    [135]Ioannides E, Harris T A. A new fatigue life model for rolling element bearings[J]. ASME Journal of Lubrication Technology,1985,107:367-378.
    [136]Ko C N, Ioannides E. Debris denting-the associated residual stresses and their effect on the fatigue life of rolling bearing:An FEM analysis[J]. Tribology Series,1989,14:199-207.
    [137]Dang Van K, Maitournam M H. On some recent trends in modelling of contact fatigue and wear in rail[J]. Wear,2002,253(1-2):219-227.
    [138]Lundberg G, Palmgren A. Dynamic capacity of roller bearings[J]. Acta Polytechnica, Mechanical Engineering Series,1947,1(3):1-50.
    [139]Lundberg G, Palmgren A. Dynamic capacity of roller bearings[J]. Acta Polytechnica, Mechanical Engineering Series,1952,2(3):96-127.
    [140]Ioannides E, Harris T A. Anew fatigue life model for rolling element bearings[J]. ASME Journal of Lubrication Technology,1985,107:367-378
    [141]Harris T A, Barnsby R M. Life rating for ball a nd roller bearings[J]. Journal of Engineering Tribology,2001,215(6):577-595.
    [142]Schlicht H, Schreiber E, Zwirlein O. Fatigue and failure mechanism of bearings[C]. Proceedings, Institution of Mechanical Engineers, London C,285:85-90.
    [143]Tallian T E. Simplified contact fatigue life prediction model-Part Ⅱ:New model[J]. ASME Journal of Tribology,1992,114(2):214-222.
    [144]Harris T A, McCool J. On the accuracy of rolling bearing fatigue life prediction[J]. ASME Journal of Tribology,1996,118:297-310.
    [145]Shimizu S. Fatigue limit concept and life prediction model for rolling contact machine elements[J]. Tribology Transactions,2002,45(1):39-46.
    [146]Keer L M, Bryant M D. A pitting model for rolling contact fatigue[J]. ASME Journal of Lubrication Technology,1983,105:198-205.
    [147]Bhargava V, Hahn G T, Rubin C A, Rolling contact deformation, etching effects and failure of high strength steel[J]. Metallurgical Transactions A,1990,21:1921-1931.
    [148]Cheng W, Cheng H S, Mura T, Keer L M. Micromechanics modeling of crack initiation under contact fatigue[J]. ASME Journal of Tribology,1994,116:2-8.
    [149]Vincent A, Lormand G, Lamagnere P, Gosset L, Girodin D, Dudragne G, Gougeres R. From white etching areas formed around inclusions to crack nucleation in bearing steels under rolling contact[C]. In:Hoo J, Green W(Eds.), Bearing steels:Into the 21 st century, ASTM Special Technical Publication, West Conshohocken, PA,1998, pp.109-123.
    [150]Lormand G, Meynaud G, Vincent A, Baudry G, Girodin D, Dudragne G. From cleanliness to rolling fatigue life of bearings-A new approach. In:Hoo J, Green W(Eds.), Bearing steels:Into the 21 st century, ASTM Special Technical Publication, West Conshohocken, PA,1998, pp.55-69.
    [151]Jiang Y, Sehitoglu H. Modeling of cyclic ratcheting plasticity, Part 1:Development of constitutive relations[J]. ASME Journal of Applied Mechanics,1996,63:720-725.
    [152]Raje N, Rateick R G, Hoeprich M R, Sadeghi F. A numerical model for life scatter in rolling element bearings[J]. ASME Journal of Tribology,2008,130(1):011011.
    [153]Raje N, Rateick R G, Sadeghi F. A statistical damage mechanics model for subsurface initiated spalling in rolling contacts[J]. ASME Journal of Tribology,2008,130(4): 042201.
    [154]Jalalahmadi B, Sadeghi F. A Voronoi FE fatigue damage model for life scatter in rolling contacts[J]. ASME Journal of Tribology,2010,132(2):021404.
    [155]Nicoll A R. Self-fluxing coatings for stationary gas turbines[J]. Thin Solid Films,1982, 95(3):285-295.
    [156]Sidhu T S, Prakash S, Agrawal R D. Hot corrosion behaviour of HVOF-sprayed NiCrBSi coatings on Ni-and Fe-based superalloys in Na2SO4-60%V2O5 environment at 900 ℃[J]. Acta Materialia,2006,54(3):773-784.
    [157]Liu Y, Koch J, Mazumder J, Shibata K. Processing, microstructure, and properties of laser-clad Ni alloy FP-5 on Al alloy AA333[J]. Metallurgical and Materials Transactions B,1994,25(3):425-434.
    [158]徐绯,李玉龙,郭伟国,汤忠斌.颗粒形状、含量和基体特性对金属基复合材料压缩力学行为的影响[J].复合材料学报,2003,20(6):36-41.
    [159]Mellalli M, Fauchais P, Grimaud A. Influence of substrate roughness and temperature on the adhesion/cohesion of alumina coatings[J]. Surface and Coatings Technology,1996, 81(2-3):275-286.
    [160]Wang H M, Wang C M, Cai L X. Wear and corrosion resistance of laser clad Ni2Si/NiSi composite coatings[J]. Surface and Coatings Technology,2003,168(2-3):202-208.
    [161]Kurz W, Fisher D J. Fundamentals of solidification[M]. Netherlands:Transactions Technical Publications.1989.53-57.
    [162]Tassin C, Laroudie F, Lelait L. Improvement of the wear resistance of 316L stainless steel by laser surface alloying[J]. Surface and Coatings Technology,1996,80(1-2):207-210.
    [163]丁阳喜,吴冀林.激光熔覆参数对熔覆层组织的影响[J].材料热处理技术,2010,39(2):94-96.
    [164]Hajbagheri F A, Bozorg S F K, Amadeh A A. Microstructure and wear assessment of TIG surface alloying of CP-titanium with silicon[J]. Journal of Materials Science,2008, 43:5720-5727.
    [165]Huang Y J. Characterization of dilution action in laser induction hybrid cladding[J]. Optica & Laser Technology,2011,43(5):965-973.
    [166]达则晓丽,朱彦彦,李铸国.激光功率对激光熔覆Fe-Co-B-Si-Nb涂层组织和性能的影响[J].中国表面工程,2012,25(3):52-56.
    [167]Cadenas M, Vijande R, Montes H J, Sierra J M. Wear behaviour of laser cladded and plasma sprayed WC/Co coatings[J]. Wear,1997,212(2):244-253.
    [168]Yang Q Q, Senda T, Ohmori A. Effect of carbide grain size on microstructure and sliding wear behavior of HVOF-sprayed WC-12%Co coatings[J]. Wear,2003,254(1-2):23-34.
    [169]Tobar M J, Alvarez C, Amado J M, Rodriguez G, Yanez A. Morphology and characterization of laser clad composite NiCrBSi-WC coatings on stainless steel[J]. Surface and Coatings Technology,2006,200(22-23):6313-6317.
    [170]Przybylowicz J, Kusinski J. Structure of laser cladded tungsten carbide composite coatings[J]. Journal of Materials Processing Technology,2001,109(1-2):154-160.
    [171]Burwell J T. Survey of possible wear mechanisms[J]. Wear,1957,1(2):119-141.
    [172]Khruschov M M. Principles of abrasive wear[J]. Wear,1974,28(1):69-88.
    [173]Moore M A. A review of two-body abrasive wear[J]. Wear,1974,27(1):1-17.
    [174]Rabinowicz E, Dunn L A, Russell P G. A study of abrasive wear under three-body conditions[J]. Wear,1961,4(5):345-355.
    [175]Trezona R I, Allsopp D N, Hutchings I M. Transitions between two-body and three-body abrasive wear:influence of test conditions in the microscale abrasive wear test[J]. Wear, 1999,225-229(1):205-214.
    [176]Harsha A P, Tewari U S. Two-body and three-body abrasive wear behaviour of polyaryletherketone composites[J]. Polymer Testing,2003,22(4):403-418.
    [177]吴春蕾,章明秋,容敏智.低填充Si02/聚丙烯纳米复合材料的拉伸特征[J].材料工程,2001,5:30-33.
    [178]廖凯荣,陈学信,卢泽俭,郑臣谋.PP/L-CaCO3复合材料的拉伸断裂韧性[J].高分子材料科学与工程,1997,13(2):48-53.
    [179]钟群鹏,郑臣谋.断口学[M].北京:高等教育出版社,2006.
    [180]刘德健,李俐群,李福泉,陈彦宾.单晶颗粒增强WCP/Ti-6Al-4V梯度复合材料层微观断裂行为[J].稀有金属材料与工程,2010,39(8):1431-1434.
    [181]金云学,李俊刚.TiC/Ti复合材料动态拉伸的裂纹形成及扩展机制[J].稀有金属材料与工程,2007,36(5):764-768.
    [182]Volynskii A L, Bazhenov S, Lebedeva O V, Ozerin A N, Bakeev N F. Multiple cracking of rigid platinum film covering polymer substrate[J]. Journal of Applied Polymer Science, 1999,72(10):1267-1275.
    [183]Yanaka M, Tsukahara Y, Okabe T, Takeda N. Statistical analysis of multiple cracking phenomenon of a SiOx thin film on a polymer substrate[J]. Journal of Applied Physics, 2011,90(2):713-719.
    [184]Hsueh C H, Yanaka M. Multiple film cracking in film/substrate systems with residual stresses and unidirectional loading[J]. Journal of Materials Science,2003,38(8):1809-1817.
    [185]Nairn J A, Kim S R. A fracture mechanics analysis of multiple cracking in coatings[J]. Engineering Fracture Mechanics,1992,42(1):195-208.
    [186]Agrawal D C, Raj R. Measurement of the ultimate shear strength of a metal-ceramic interface[J]. Acta Metallurgica,1989,37(4):1265-1270.
    [187]Wetzel B, Haupert F, Friedrich K, Zhang M Q, Rong M Z. Impact and wear resistance of polymer nanocomposites at low filler content[J]. Polymer Engineering and Science,2002, 42(9):1919-1927.
    [188]Doel T J A, Bowen P. Tensile properties of particulate-reinforced metal matrix composites[J]. Composites Part A,1996,27(8):655-665.
    [189]Leterrier Y. Durability of nanosized oxygen-barrier coatings on polymers[J]. Progress in Materials Science,2003,48(1):1-55.
    [190]Zhang X C, Xu B S, Xuan F Z, Tu S T. Analysis on multiple cracking in film/substrate systems with residual stresses[J]. Journal of Applied Physics,2008,103(2):023519.
    [191]Kim S R, Nairn J A. Fracture mechanics analysis of coating/substrate systems:Part I: Analysis of tensile and bending experiments [J]. Engineering Fracture Mechanics,2000, 65(5):573-593.
    [192]黄伯云,李成功,石力开,邱冠周,左铁镛.中国材料工程大典[M].北京:化工工业出版社,2006.
    [193]Kesler O, Matejicek J, Sampath S, Suresh S, Gnaeupel-Herold T, Brand P C, Prask H J. Measurement of residual stress in plasma-sprayed metallic, ceramic and composite coatings[J]. Materials Science and Engineering A,1998,257(2):215-224.
    [194]Jiang J Q, Zhao H D, Tan R S. The observation of fracture behaviour in AI2O3/Al-Si metal matrix composites[J]. Journal of Materials Science Letters,1995,14:790-793.
    [195]Mummery P, Derby B. The influence of microstructure on the fracture behaviour of particulate metal matrix composites[J]. Materials Science and Engineering A,1991,135: 221-224.
    [196]肖伯律,毕敬,赵明久,马宗义.SiCp尺寸对铝基复合材料拉伸性能和断裂机制的影响[J].金属学报,2002,38(9):1006-1008.
    [197]Sidhu B S, Puri D, Prakash S. Mechanical and metallurgical properties of plasma sprayed and laser remelted Ni-20Cr and Stellite-6 coatings[J]. Journal of Materials Processing Technology,2005,159(3):347-355.
    [198]Vilaro T, Colin C, Bartout J D, Naze L, Sennour M. Microstructural and mechanical approaches of the selective laser melting process applied to a nickel-base superalloy[J]. Materials Science and Engineering A,2012,534:446-451.
    [199]Felgueroso D, Vijande R, Cuetos J M, Tucho R, Hernandez A. Parallel laser melted tracks: Effects on the wear behaviour of plasma-sprayed Ni-based coatings[J]. Wear,2008, 264(3-4):257-263.
    [200]葛世荣,王世博.一种滚动摩擦磨损试验机:中国,200720039048.9[P].2011-3-17.
    [201]朱昌明,张晓峰,孙时红,周凤台.滚动与摩擦复合试验机:中国,03151240.2[P].2004-9-15.
    [202]Fu W X, Sun L, Yu Y F, Zhu S P, Yan J. Design and model-building of motor-driven load simulator with large torque outputs[J]. Journal of System Simulation,2009,21(12):3596-3598.
    [203]Wang Y, Hadfield M. Rolling contact fatigue failure modes of lubricated silicon nitride in relation to ring crack defects[J]. Wear,1999,225:1284-1292.
    [204]Zhang X C, Xu B S, Xuan F Z, Wang H D, Wu Y X, Tu S T. Statistical analyses of porosity variations in plasma-sprayed Ni-based coatings[J]. Journal of Alloys and Compounds,2009,467:501-508.
    [205]Girish D V, Mayuram M M, Krishnamurthy S. Influence of shot peening on the surface durability of thermomechanically treated EN 24 steel spur gears[J]. Tribology International,1997,30:865-870.
    [206]Wang H M, Cao F, Cai L X, Tang H B, Yu R L, Zhang L Y. Microstructure and tribological properties of laser clad Ti2Ni3Si/NiTi intermetallic coatings[J]. Acta Materialia,2003, 51(20):6319-6327.
    [207]Johnson KL.接触力学[M].徐秉业译.北京:高等教育出版社,1992.
    [208]Diao D F, Kato K, Hokkirigawa K. Fracture mechanisms of ceramic coatings in indentation[J]. Journal of Tribology,1994,116:860-869.
    [209]周井玲,吴国庆,陈晓阳.氮化硅陶瓷球滚动接触疲劳寿命模型[J].机械工程学报,2008,44(2):37-42.
    [210]江志华,李志,佟小军,李志明.深氮化硬化钢的接触疲劳试验研究[J].航空材料学报,2006,26(3):303-304.
    [211]Erdemir A. Rolling-contact fatigue and wear resistance of hard coatings on bearing-steel substrates[J]. Surface and Coatings Technology,1992,54-55(2):482-489.
    [212]Wei R H, Wilbur P J. Rolling-contact-fatigue wear characteristics of diamond-like hydrocarbon coatings on steels[J]. Wear,1993,162-164:558-568.
    [213]贾普荣,矫桂琼,何家文,李年.双金属板软化界面的止裂与分层机理[J].机械科学与技术,2001,20:46-48

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700