硼(铝)的叠氮簇合物结构和性质的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
运用量子化学密度泛函理论(DFT)方法,对多系列叠氮硼、叠氮铝簇合物的结构和性能进行了较为系统的计算,并注意关联BN和AlN材料的潜在的单一源前驱体的寻求。主要包括两部分内容:
     第一部分叠氮硼簇合物结构和性能的理论研究。
     采用DFT-B3LYP方法,在不同基组下求得多聚叠氮甲硼烷簇合物(BH2N3)2-4的全优化几何构型,它们均为包含Bn(Nα)n骨架结构的环状构型。三聚体(BH2N3)3拥有船式和椅式两种构象,其结合能相近。四聚体的四种构象的能量稍有差别。随簇合物聚合度(n)增大,Nα-NB和B-H键长增加,Nβ-Nγ键长减小,预示较易失去N2(Nβ-Nγ)和H2,从而利于生成BN材料。对计算所得气相IR谱进行归属,并讨论了聚合度对IR谱的影响。研究表明热力学函数(C°p,m、S°m及H°m)随聚合度和温度的增加而增大;构象异构体的热力学函数值彼此很接近。等压下三聚化和四聚化反应在298.2 K可自发进行,而二聚化反应则不能。通过分析比较6-311+G*和6-311++G**以及aug-cc-pVTZ三个基组下的计算结果,表明选用较经济的6-311+G*基组研究(BH2N3)1-4体系的结构和性能是比较合适的。
     以B3LYP/6-311+G*方法,分别计算研究了多聚叠氮二卤化硼簇合物(BN3X2)n (n=1-4; X=F,Cl, Br)的几何构型、电子结构、IR谱和聚合反应的热力学函数的变化,重点考察了尺寸效应。结果表明,Nα-Nβ、B-X键长和B-Nα-B、Nα-B-Nα键角随簇合物尺寸的增大而增大,而Nβ-Nγ键长则减小。二聚体中B-Nα键长较在三聚体和四聚体中大,可能归因于四元环张力较大。讨论了聚合反应中的电荷递变规律。计算所得振动频率与已有实验值相吻合,表明经校正的计算IR谱较为可信。IR谱有三个特征区:分别对应于N3的反对称和对称伸缩振动以及复杂的指纹区。在室温下,聚合反应的吉布斯自由能变化(AG)均为正值,表明等压下聚合反应不能自发进行。
     以DFT-B3LYP/6-311+G*方法对最简单有机多聚叠氮硼簇合物(BMe2N3)n(n=1-3)进行计算。探讨了B-Nα、Nα-Nβ、Nβ-Nγ和B-C键长随聚合度的变化规律,环状构型中B-Nα-B键角较Nα-B-Nα键角大。对所得优化构型进行振动频率计算,并对其IR谱进行归属。计算所得振动频率与已有实验值很接近。比较能量和热力学数据,表明三聚二甲基叠氮化硼的船式构象较椅式构象稳定。在298.2 K下,三聚化为放热反应,而二聚化则为吸热反应。随温度升高,聚合反应越来越不利。
     第二部分叠氮铝簇合物结构和性能的理论研究。
     以DFT-B3LYP/6-311+G*方法,计算研究了最简单叠氮二氟化铝簇合物(AlN3F2)n(n=1-4)的结构和性质。所得多聚体均为环状构型,取Al-Nα-Al连接方式。随聚合度(n)增大,Nα-Nβ和Al-F键长略微变长,而β键长则变短,表明利于形成AlN材料。随聚合度增大,原子上电荷变化明显。构象异构体的结合能稍有差别,零点能校正对结合能影响不大。热力学数据表明,温度升至800 K,等压下聚合反应仍可自发进行。基于方程ΔG=-RTInKp,求得298.2 K下最稳定二聚体、三聚体和四聚体的平衡常数均非常大,推测叠氮二氟化铝体系是二聚、三聚和四聚体的平衡共存体。经简谐振动分析,求得(AlN3F2)n(n=1-4)的IR谱,并对其进行了归属。随聚合度增加,N3反对称伸缩振动发生蓝移,而对称伸缩振动发生红移。
     基于DFT-B3LYP/6-311+G*类似研究,求得(AlN3X2)n(n=1-4, X=Cl, Br)的全优化几何构型。讨论了几何参数Al-Nα、Nα-Nβ、Nβ-Nγ和A1-X与聚合度的关系。环状构型中,Al-Nα-Al的键角总较Nα-Al-Nα大。未见三聚体和四聚体(AlN3X2)3-4(X=Cl,Br)的实验和理论相关报道。计算所得IR谱均具三个特征区:其中两个较强特征峰分别对应于N3的对称和反对称伸缩振动;在较小频率区还存在一个较为复杂的指纹区。随聚合度增加,N3反对称和对称伸缩振动频率分别发生蓝移和红移。计算所得振动频率与已有实验值很接近。所得热力学函数(C°p,m、S°m及H°m)均随聚合度和温度的增加而近似地呈线性递增;随温度升高,C°p,m与S°m增幅减小,而H°m则相反。多聚化反应在298.2K等压下可自发进行。
     综上所述,本文对系列叠氮化硼、叠氮化铝簇合物进行了分子设计,对其结构-性能关系进行了系统的量子化学DFT计算研究,解释了大量已有实验事实,预示了许多未知结果,提供了丰富信息和规律、利于对当前热门的BN和AlN材料前驱体的实验合成提供参考和指导。
The structures and properties of several series of azide-clusters of boron and aluminum are systematically studied using density functional theory (DFT). The process of searching for single source precursors to BN and AlN materials has been completed. The whole work can be divided into two parts:
     The first part is concentrated on the theoretical studies on the structures and properties of boron azide clusters.
     The fully optimized structures of the clusters (BH2N3)n(n=1 to 4) are obtained using DFT theory at B3LYP level with different basis sets. All the cyclic structures (BH2N3)2-4 contain Bn(Nα)n skeleton structures. The boat-like and chair-like trimers are found to exhibit two minima with very similar binding energies. The tetramers have four structures that correspond to minima with slightly different binding energies. The Nα-Nβand B-H bond lengths increase with the increasing oligomerization degree n, however, the Nβ-Nγbond lengths decrease. Which shows it could easily eliminate N2 (Nβ-Nγ) and H2 groups to yield BN materials. The calculated IR spectra in the gas phase are assigned, and related with the oligomerization degree are discussed. The thermodynamic properties (C0p,m S0m and H0m) all increase with increasing temperature and oligomerization degree n. As for isomers, their thermodynamic functions are all close. The isobaric oligomerizations can occur spontaneously for n=3 and 4 at 298.2 K, but is unfavorable for the case of n=2. The results with the 6-311+G*,6-311++G** and aug-cc-pVTZ basis sets show it is suitable to choose the economic 6-311+G* basis set to study the clusters (BH2N3)n(n=1 to 4).
     The geometric configurations, electronic structures, IR and thermodynamic properties of the clusters (BN3X2)n(n=1 to 4; X=F, Cl, Br) have been studied at the B3LYP/6-311+G* level of DFT. The Nα-Nβ, B-X bond lengths and the B-Nα-B, Nα-B-Nαbond angles all increase with the size of the cluster growing, however, Np-Ny bond lengths decrease. Owing to the strain of the four-membered ring, the B-Nαbonds in the dimer are longer than those in trimers and tetramers. The charge transfer is discussed during oligomerization. The calculated IR spectra are reliable compared with the experimental results. They have three main characteristic regions:the N3 asymmetric stretching, the N3 symmetric stretching and the complicated fingerprint region. The Gibbs free energies (ΔG) of the oligomerizations at 298.2 K are positive, which indicates the isobaric oligomerizations can not occur spontaneously.
     The simplest models for the organoboron azide clusters (BMe2N3)n(n=1 to 3) have been studied similarly at the DFT-B3LYP/6-311+G* level. The trends in the B-Na, Nα-Nβ, Nβ-Nγ and B-C bond lengths with oligomerization degree n are discussed. The B-Nα-B angles in the cyclic oligomers are consistently larger than the Nα-B-Nαones. Frequency calculations have been carried out for each optimized structure, and their IR spectra are assigned. The calculated frequencies agree reasonably with experiment ones. Both the energies and thermodynamic properties demonstrate that twist-boat conformation is preferred over chair conformation in the gas phase for the (BMe2N3)3. Thermodynamic analysis of the gas-phase reaction shows that the trimerization is exothermic at 298.2 K, however, the dimerization is endothermic. With the increasing temperature, the oligomerization becomes less favorable.
     The second part focuses on the theoretical studies of the structures and properties for the aluminum azide clusters.
     DFT/B3LYP method with 6-311+G* basis set was used to calculate the clusters AlN3F2 consisting of up to four molecules, and it predicts that (AlN3F2)n(n=2 to 4) are cyclic-like clusters with Al-Nα-Al linkages. The Nα-Nβand Al-F bond lengths all increase slightly with the size of the cluster growing, however, Nβ-Nγbond lengths decrease, showing it could easily yield AlN materials. With the oligomerization degree n increasing, the charge transfers for the clusters are large. As for isomers, their binding energies are all close, respectively. The ZPE correction has little effect on the binding energy. Thermodynamic properties demonstrate that the isobaric formations of dimer, trimers and tetramers are favorable thermodynamically even up to 800 K. The calculated equilibrium constants for the formation more stable dimer, trimer and tetramer, based on the equation AG=-RTInKp, are large. It reveals that the AIN3F2 systems occur dimer-trimer—tetramer equilibriums. By the vibrational analysis, the simulated infrared (IR) spectra for the AIN3F2 monomer and its clusters are obtained and assigned. The N3 asymmetric stretching moves to higher frequency (hypsochromic phenomenon) as the cluster becomes larger, however, the N3 symmetric stretching moves to lower frequency (bathochromic phenomenon).
     The fully optimized structures for the (AIN3X2)n(n=1 to 4, X=Cl, Br) are obtained similarly at the DFT-B3LYP/6-311+G* level, respectively. The trends in the Al-Nα, Na-Np, Nβ-Nγand Al-X bond lengths with oligomerization degree n are discussed. Al-Nα-Al angles in the cyclic oligomers are consistently larger than the Nα-Al-Nαones. The trimers and tetramers (AlN3X2)3-4 (X=Cl, Br) have not been found experimentally and theoretically. The calculated IR spectra have three main characteristic regions:two of them are very strong. One corresponds to the N3 asymmetric stretching, and the other is associated with the N3 symmetric stretching. And the remaining one is in the lower frequency range and corresponds to the complicated fingerprint region. With the oligomerization degree n increasing, the N3 asymmetric and symmetric stretchings move to higher frequency (hypsochromic phenomenon) and lower frequency (bathochromic phenomenon), respectively. To testify the reliability of the theoretical IR, the experimental and calculated vibrational frequencies are compared. It is evident that the calculated frequencies agree reasonably with experiment ones. Thermodynamic properties all increase linearly with increasing temperature and oligomerization degree n. The gradients of C0p,m and S0m to the temperature decrease, but that of H0m increases. All the isobaric oligomerizations can occur spontaneously at 298.2 K.
     In a word, the systemic studies on the structures, properties and the molecular designs have been investigated for several series of azide-clusters of boron and aluminum using DFT method, which explains a great deal of the experimental facts and predicts many unknown results. The abundance of information and the rules provided are used to instruct the experimental synthesis for the precursors to the currently hot BN and AlN materials.
引文
[1]Rawal V H, Zhong H M. One-step conversion of esters to acyl azides using diethyl aluminum azide. Tetrahedron Lett.,1994,35:4947-4950
    [2]Chung B Y, Park Y S, Cho I S. Conjugate addition of hydrogen azide to the α, β-unsaturated carbonyl compounds:new azidoalumination reaction with diethyl aluminum azide. Bull. Korean. Chem. Soc.,1988,9:269-270
    [3]Mereyala H B, Frei B. Preparation of vicinal azidohydrins by reaction of oxiranes with triethyl aluminum/hydrogen azide. Hev. Chim. Acta.,1986,69:415-418
    [4]Kouvetakis J, McMurran J, Steffek C, Groy T L, Hubbard J L. Synthesis and structures of heterocyclic azidogallanes [(CH3)ClGaN3]4 and [(CH3)BrGaN3]3 en route to [(CH3)HGaN3]x:an inorganic precursor to GaN. Inorg. Chem.,2000,39:3805-3809
    [5]Tice J B, Ritter C J, Chizmeshya A V G, Forrest B, Torrison L, Gray T L, Kouvetakis J. Synthesis and properties of N3 and CN delivery compounds and related precursors for nitride and ceramic fabrication. Appl. Organometal Chem.,2008,22(8):451-459
    [6]Bae B J, Park J E, Kim B, Park J T. Structural characterization of a dimeric dimethylindium azide and its use as a single-source precursor for InN thin films. J. Organome. Chem.,2000,616(1-2): 128-134
    [7]Johnson L A, Sturgis S A, Al-Jihad I A, Liu B, Gilbert J V. Low-temperature matrix isolation and photolysis of BCl2N3:Spectroscopic identification of the photolysis product CIBNC1. J. Phys. Chem. A,1999,103(6):686-690
    [8]Travers M J, Eldenburg E L, Gilbert J V. Low-temperature matrix isolation studies of BCI(N3)2: Infrared spectra and photolysis processes. J. Phys. Chem. A,1999,103(48):9661-9668
    [9]Boo J H, Lee S B, Kim Y S, Park J T, Yu K S, Kim Y. Growth of AlN and GaN thin films on Si (100) using new single molecular precursors by MOCVD method. Phys. Stat. Sol. A,1999,176:711-717
    [10]Munoz-Hernandez M A, Rutherford D, Tiainen H, Atwood D A. Examination of dibenzyl aluminum and gallium azides as potential precursors to AlN and GaN. J. Organome. Chem.,1999,582(1): 103-107
    [11]McMurran J, Kouvetakis J. Development of a low-temperature GaN chemical vapor deposition progress based on a single molecular source H2GaN3. Appl. Phys. Lett.,1999,74:883-885
    [12]Mcmurran J, Dai D, Balasubramanian K, Steffek C, Kouvetakis J, Hubbard J L. H2GaN3 and derivatives:A facile method to gallium nitride. Inorg. Chem.,1998,37:6638-6644
    [13]Mcmurran J, Kouvetakis J, Nesting D C, Smith D J, Hubbard J L. Formation of a tetrameric, cyclooctane-like, azidochlorogallane, [HCIGaN3]4, and related azidogallanes. Exothermic single-source precursors to GaN nanostructures. J. Am. Chem. Soc.,1998,120:5233-5237
    [14]Fischer R A, Sussek H, Miehr A, Pritzkow H, Herdtweck E. Organoindium azides:new precursors to indium nitride. J. Organome. Chem.,1997,548:73-82
    [15]Fischer R, Miehr A. Novel single sourceprecursors for MOCVD of AIN, GaN and InN. J. Cryst. Growth,1997,170(1-4):139-143
    [16]McMurran J, Todd M, Kouvetakis J. Low temperature inorganic chemical vapor deposition of heteroepitaxial GaN. Appl. Phys. Lett.,1996,69:203-205
    [17]Mulinax R L, Okin G S, Coombe R D. Gas phase synthesis, structure, and dissociation of boron triazide. J. Phys. Chem.,1995,99:6294-6300
    [18]Atwood D A, Jones R A, Cowley A H, Atwood J L, Bott S G. X-ray crystal structure of the dimethylgallium azide polymer and its use as a gallium nitride precursor. J. Organometal. Chem., 1990,394:C6-C8
    [19]Schulze R K, Boyd D C, Evans J F, Gladfelter W L. A variable temperature X-ray photoelectron spectroscopic study of the surface conversion of diethylaluminum azide to AIN. J. Vac. Sci. Technol. A,1990,8(3):2338-2343
    [20]Boyd D C, Haasch R T, Mantell D R, Schulze R K, Evans J F, Gladfelter W L. Organometallie azides as precursors for aluminum nitride thin films. Chem. Mater.,1989,1:119-124
    [21]Kouvetakis J, Beach D B. Chemical vapor deposition of gallium nitride from diethylgallium azide. Chem. Mater.,1989,1:476-478
    [22]Schulze R K, Mantell D R, Gladfelter W L. Characterization of AIN films produced by chemical vapor deposition using a novel metal azide precursor. J. Vac. Sci. Technol.,1988,6(3):2162-2163
    [23]Larach S, Shrader R E. Electroluminescence from boron nitride. Phys. Rev.,1956,102(2):582
    [24]Larach S, Shrader R E. Multiband luminescence in boron nitride. Phys. Rev.,1956,104 (1):68-73
    [25]Gorczyca I, Christensen N E. Band structure and high-pressure phase transition in GaN, AIN, InN and BN. Physica B,1993,185:410-414
    [26]Tsay Y E, Vaidyanathan A, Mitra S S. Electronic structure and optical properties of cubic BN. Phys: Rev. B,1979,19(10):5422-5428
    [27]Harris T K, Brookes E J, Taylor C J. The effect of temperature on the hardness of polycrystalline cubic boron nitride cutting tool materials. Int. J. Refr. Met. Hard Mater.,2004,22(2-3):105-110
    [28]Fitz C, Kolitsch A, Fukarek W. Stress relaxation during annealing of boron nitride films. Thin Solid Films,2001,389(1-2):173-179
    [29]Koukab L A, Bath A, Thevenin P. Improved bias-thermal-stress method for the insulator charge measurement of BN/InP MIS structures. Microelectron. J.,2000,31:647-651
    [30]Satta G, Cappellini G, Palummo M, Onida G. Ab initio optical properties of BN in the cubic and in the layered hexagonal phase. Comput. Mater. Sci.,2001,22(1-2):78-80
    [31]Gu X M, Gong Y S, Zhang X W. Inorganic Chemistry Series (Vol.2),Science Press, Beijing,1990, p. 381
    [32]Easwarakhanthan T, Hussain S S, Pigeat P. Spectroellipsometric investigation of optical, morphological, and structural properties of reactively sputtered polycrystalline AlN films. J. Vac. Sci. Technol. A,2010,28 (3):495-501
    [33]Kazan M, Bruyant A, Royer P, Masri P. Thermal conductance of the interfaces between the Ⅲ-nitride materials and their substrates:Effects of intrinsic material properties and interface conditions. Surf. Sci. Rep.,2010,65 (4):111-127
    [34]Pandey D K, Singh Devraj, Yadav R R. Ultrasonic wave propagation in Ⅲrd group nitrides. Applied Acoustics,2007,68(7):766-777
    [35]Bockowski M. High pressure direct synthesis of Ⅲ-Ⅴ nitrides. Physica B,1999,265(1-4):1-5
    [36]程伟,侯芹英,苏希玉.Si掺杂AlN的电子结构和光吸收.发光学报,2009,30(6):802-806
    [37]汪洪海,郑启光,魏学勤.反应式脉冲激光溅射沉积AlN薄膜化学稳定性研究.激光杂志,1998,19(6):28-46
    [38]黄继颇,王连卫,高剑侠,沈勤我,林成鲁.超高真空电子束蒸发合成晶态AlN薄膜的研究.功能材料与器件学报,1998,4(4):278-280
    [39]乔保卫,刘正堂,李阳平.工艺参数对磁控反应溅射AlN薄膜沉积速率的影响.西北工业大学学报,2004,22(2):260-263
    [40]谢松,孟广耀,彭定坤.微波等离子体化学气相沉积法生长取向性纳米氮化铝薄膜.材料研究学报,1998,12(4):369-374
    [41]杨克涛,陈光辉.AlN薄膜的研究进展.山东陶瓷,2005,28(1):17-21
    [42]李长武.利用反应低压离子镀膜法和反应直流磁控溅射法制作氮化硅氮化铝膜.光机电信息,1996,13(1):21-23
    [43]于军,曾祥斌,吴正元.提高金属膜电阻器可靠性的途径.电子元件与材料,1994,13(2):51-54
    [44]汪洪海,郑启光,魏学勤,丘军林.气体放电增强准分子激光溅射反应沉积AlN膜.华中理工大学学报,1998,26(9):59-61
    [45]Wiberg E, Michaud H. Pentafluorophenyl and phenyl substituted azidoborates, Z. Naturforsch.,1954, 96:497-499
    [46]Paetzold P I, Hansen H J. Dimethylborazid und seine aminate. Z. Anorg. Allg. Chem.,1966,345: 79-86
    [47]Wiberg N, Joo W C, Schmid K H. Azide des Be, Mg, B und Al. Z. Anorg. Allg. Chem.,1972,394: 197-208
    [48]Paetzold P I, Habereder P P, Milllbauer R. BeitrAge zur chemie der borazide Ⅶ*. Darstellung und eigenschaften von diorganyl boraziden. J. Organometal. Chem.,1967,7:45-50
    [49]Paetzold P I, Habereder P P, Miillbauer R. BeitrAge zur chemie der borazide Ⅷ*. Thermischer zerfall von diorganylboraziden. J. Organometal. Chem.,1967,7:51-60
    [50]Paetzold P I, Habereder P P, Mullbauer R. BeitrAge zur chemie der borazide Ⅸ*. Wanderungstendenzen, kinetic und mechanismus der thermischen diorganylborazid-umlagerung. J. Organometal. Chem.,1967,7:61-70
    [51]Travers M J, Gilbert J V. UV absorption spectra of intermediates generated via photolysis of B(N3)3, BCl(N3)2, and BCI2(N3) in low-temperature argon matrices. J. Phys. Chem. A,2000,104: 3780-3785
    [52]Fraenk W, Klapotke T M, Krumm B, Mayer P. Bis(pentafluorophenyl)boron azide:synthesis and structural characterization of the first dimeric boron azide. J. Chem. Soc., Chem.Commun.,2000, 667-668
    [53]Fraenk W, Habereder T. Klapotke T M, Noth H, Polborn K. Synthesis and characterization of new azido(O-phenylenedioxy)-boranes and azidobicyclononylboranes. J. Chem. Soc., Chem.Commun., 1999,4283-4286
    [54]Fraenk W, Habereder T, Hammerl A, Klapotke T M, Krumm B, Mayer P, Noth H, Warchhold M. Highly energetic tetraazidoborate anion and boron triazide adducts. Inorg. Chem.,2001,40: 1334-1340
    [55]Fraenk W, Klapotke T M, Krumm B, Noth H, Suter M, Warchhold M. Oligomeric pentafluorophenylboron azides. J. Chem. Soc., Dalton Trans.,2000,4635-4638
    [56]Fraenk W, Klapotke T M, Krumm B, Mayer P, Noth H, Piotrowski H, Suter M. Synthsis and structural studies on fluorophenylboron azides. J. Fluorine Chem.,2001,112:73-81
    [57]Fraenk W, Klapotke T M. Theoretical studies on the thermodynamic stability and trimerization of BF2N3. J. Fluorine Chem.,2001,111:45-47
    [58]Kouvetakis J, McMurran J, Steffek C, Groy T L, Hubbard J L, Torrison L. Synthesis of new azidoalanes with heterocyclic molecular structures. Main Group Met. Chem.,2001,24:77-84
    [59]Dehnicke K, Krueger N. Diiodo-and dibromometal azides X2MN3 of aluminum and gallium. Z. Anorg. Allg. Chem.,1978,444:71-76
    [60]Muller J, Dehnicke K. Darstellung, eigenschaften und schwinungsspekren von dialkylmetall-aziden der elemente aluminium, gallium, indium und thallium. J. Organometal. Chem.,1968,12:37-47
    [61]Muller J. Nitrogen-15 spectroscopic study of dimethylaluminum azide, dinethylgallium azide and dimethylarsenic azide. Z. Naturforsch.,1979,34B:531-535
    [62]Roder N., Dehnicke K. Organometallic azido compounds of elements of group ⅢA and IVA. Chimia,1974,28:349-351
    [63]Dehnicke K, StrAhle J, Seybold D, Muller J. Eine neue synthese fur alkyl-azide. J. organometal. Chem.,1966,6:298-300
    [64]高占先,孙渝,叶亚平,张爱丽,周科衍.叠氮二乙基铝合成方法的改进.含能材料,1996,4:1-5
    [65]高占先,冯立春,张小航,莫自如.叠氮二乙基铝的合成及其热分解.含能材料,2001,9:22-23
    [66]张小航,高占先.低熔点晶体叠氮二乙基铝的合成和证明.无机化学学报,2001,17:439-443
    [67]高占先,张小航.叠氮二乙基铝合成及其相关反应的研究.无机化学学报,2002,18:683-687.
    [68]高占先,冯立春,莫自如,周科衍,李常青.合成二乙基叠氮铝的溶剂效应.含能材料,1999,7:53-56
    [69]高占先,张小航,冯立春.叠氮二乙基铝三聚体和单体的缔合-解离平衡的研究.无机化学学报,2002,18:654-658
    [70]冯立春,高占先.叠氮二乙基铝的性能及应用.上海化工,1998,23:36-38
    [71]周科衍,孙渝,叶亚平,高占先.二乙基叠氮铝的分子结构和性质.含能材料,1997,5:15-21
    [72]高占先,冯立春,张小航.叠氮二异丁基铝及其配合物的制备与表征.含能材料,2002,10:108-111
    [73]张小航,高占先.叠氮二异丁基铝的构造及其缔合-解离平衡研究.无机化学学报,2001,17:819-824
    [74]武海顺,许小红,张聪杰,金志浩(Cl2AlNH2)n和(H2AlNH2)n(n=1-5)簇结构及其热力学性质.物理化学学报,200 1,17(4):324-328
    [75]武海顺,许小红,张聪杰,金志浩(ClAlNH)n簇合物的结构与稳定性.高等学校化学学报,2002,23(3):422-427
    [76]武海顺,许小红,张聪杰,金志浩(HAlNH)n(n=1-6)簇的结构、红外光谱和热力学性质的研究.化学学报,2000,58(7):805-810
    [77]武海顺,许小红,张聪杰,张富强,张乾二.(HAlNH)n(n=1-15)团簇的结构与稳定性.科学通报,2001,46(9):713-719
    [78]薛月圆,王林郁,许小红,武海顺(HAlNH)n(n=2-3)环状化合物的结构特征.化学通报,2001,(9):579-582
    [79]武海顺,许小红,张聪杰,金志浩ClnAlNHn和HnAlNHn(n=1-3)的振动光谱与化学键性质的研究.结构化学,2000,19(5):378-386
    [80]Ma D X, Xia Q Y, Zhang C. Theoretical studies on structural feature and thermodynamic stability of F2BN3 oligomers. J. At. Mol. Phys.,2009,26(2):361-367
    [81]Ma D X, Xia Q Y. Theoretical studies on the structures and properties of the (H2BN3)n (n=1-4) clusters. Chem. Res. Appl.,2009,21(6):852-858
    [82]Ma D X. Xia Q Y, Zhao W W, Zhang C. Theoretical studies on (Cl2BN3)n(n=1-4) clusters. Comput. Appl. Chem.,2009,26(12):1583-1586
    [83]Xia Q Y, Xiao H M, Ju X H, Gong X D. A density functional theory study of the structures and properties of (H2AlN3)n(n=1 to 4) clusters. J. Phys. Chem. A,2004,108:2780-2786
    [84]Xia Q Y, Xiao H M, Ju X H, Gong X D. A density functional theory study of the structures and properties of (H2GaN3)n(n=1 to 4) clusters. Int. J. Quantum Chem.,2004,100:301-308
    [85]Xia Q Y, Xiao H M, Ju X H, Gong X D. DFT Study of dimethylaluminum azide clusters:structures, energies, frequencies, and thermodynamic properties. Chin. J. Chem.,2004,22(11):1245-1249
    [86]夏其英,肖鹤鸣,居学海,贡雪东.第ⅢA金属叠氮多聚体结构和性质的理论研究.高等学校化学学报,2005,26(5):922-926
    [87]夏其英,马登学,杨吉民.叠氮二乙基铝和镓多聚体结构和性质的密度泛函理论研究.含能材料,2009,17(3):260-264
    [88]夏其英,马登学(X2InN3)n(n=1-3; X=F, Cl, Br, I)簇合物的密度泛函理论研究.南京理工大学学报(自然科学版),2010,34(2):207-212
    [89]Hartree D R. Wave mechanics of an atom with a non-coulomb central field. Ⅰ. Theory and methods. Ⅱ. Some results and discussion. Ⅲ. Term values and intensities in series in optical spectra. Prog. Camb. Phil. Soc.,1928,24:89-110; 426-437
    [90]Fock V Z. The initial degrees of freedoms of the electron. Phys.,1931,68:522-534
    [91]Roothan C C J. New developments in molecular orbital theory. Rev. Mod. Phys.,1951,23:69-89
    [92]Moller C, Plesset M S. Note on an approximation treatment for many-electron systems. Phys. Rev., 1934,46:618-622
    [93]Hohenberg P, Kohn W. Inhomogenous electron gas. Phys. Rev.,1964, B136:864-871
    [94]Kohn W, Sham L. Self-consistent equations including exchange and correction effects. J. Phys. Rev. A,1965,140:1133-1138
    [95]Becke A D. Density-functional thermochemistry. Ⅲ. The role of exact exchange. J. Chem. Phys., 1993,98:5648-5652
    [96]Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B,1988,37:785-789
    [97]Perdew J P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B,1986,33:8822-8824
    [98]Perdew J P, Burke K, Wang Y. Generalized gradient approximation for exchange- correlation hole of a many-electron system. Phys. Rev. B,1996,54:16533-16539
    [99]Slater J C. Atomic shielding constants. Phys. Rev.,1930,36:57-64
    [100]Hariharan P C, Pople J A. Self-consistent-field molecular orbital methods.Ⅻ. Further extension of Gaussian-type basis sets. Theor. Chim. Acta,1973,28:213-222
    [101]Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A, Jr., Vreven T, Kudin K N, Burant J C, Millam J M, lyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A. Gaussian 03, Revision C.02. Wallingford CT:Gaussian, Inc.,2004
    [102]克莱兰B J著,龚少明译.统计热力学.上海科技出版社,1980
    [103]Hill T L. An Intrduction to Statistical Thermodynamics. New York:Addision-Wesley Publishing Company INC,1964
    [104]傅献彩,沈文霞,姚天扬编.物理化学.第四版.高等教育出版社,1990
    [1]Boyd D C, Haasch R T, Mantell D R, Schulze R K, Evans J F, Gladfelter W L. Organometallic azides as precursors for aluminum nitride thin films. Chem. Mater.,1989,1:119-124
    [2]Boo J H, Lee S B, Kim Y S, Park J T, Yu K S, Kim Y. Growth of A IN and GaN thin films on Si(100) using new single molecular precursors by MOCVD method. Phys. Stat. Sol. A,1999,176:711-717
    [3]McMurran J, Kouvetakis J. Development of a low-temperature GaN chemical vapor deposition progress based on a single molecular source H2GaN3.Appl. Phys. Lett.,1999,74:883-885
    [4]Mcmurran J, Dai D, Balasubramanian K, Steffek C, Kouvetakis J, Hubbard J L. H2GaN3 and derivatives:A facile method to Gallium nitride. Inorg. Chem.,1998,37:6638-6644
    [5]Mcmurran J, Kouvetakis J, Nesting D C, Smith D J, Hubbard J L. Formation of a tetrameric, cyclooctane-like, azidochlorogallane, [HCIGaN3]4, and related azidogal lanes. Exothermic single-source precursors to GaN nanostructures. J. Am. Chem. Soc.,1998,120:5233-5237
    [6]McMurran J, Todd M, Kouvetakis J. Low temperature inorganic chemical vapor deposition of heteroepitaxial GaN. Appl. Phys. Lett.,1996,69:203-205
    [7]Kouvetakis J, McMurran J, Steffek C, Groy T L, Hubbard J L. Synthesis and structures of heterocyclic azidogallanes [(CH3)ClGaN3]4 and [(CH3)BrGaN3]3 en route to [(CH3)HGaN3]x:An inorganic precursor to GaN. Inorg. Chem.,2000,39:3805-3809
    [8]Kouvetakis J, Beach D B. Chemical vapor deposition of gallium nitride from diethylgallium azide. Chem. Mater.,1989,1:476-478
    [9]Atwood D A, Jones R A, Cowley A H, Atwood J L, Bott S G. X-ray crystal structure of the dimethylgallium azide polymer and its use as a gallium nitride precursor. J. Organometal. Chem., 1990,394:C6-C8
    [10]Mulinax R L, Okin G S, Coombe R D. Gas phase synthesis, structure, and dissociation of boron triazide. J. Phys. Chem.,1995,99:6294-6300
    [11]Strite S, Morkoc H. GaN, AlN, and InN:a review. J. Vac. Sci. Techol. B,1992,10(4):1237-1266.
    [12]Larach S, Shrader R E. Electroluminescence from boron nitride. Phys. Rev.,1956,102(2):582
    [13]Larach S, Shrader R E. Multiband luminescence in boron nitride. Phys. Rev.,1956,104 (1):68-73
    [14]Gorczyca I, Christensen N E. Band structure and high-pressure phase transition in GaN, AlN, InN and BN. Physica B,1993,185:410-414
    [15]Tsay Y E, Vaidyanathan A, Mitra S S. Electronic structure and optical properties of cubic BN. Phys. Rev. B.1979,19(10):5422-5428
    [16]Harris T K, Brookes E J, Taylor C J. The effect of temperature on the hardness of polycrystalline cubic boron nitride cutting tool materials. Int. J. Refr. Met. Hard Mater.,2004,22(2-3):105-110
    [17]Fitz C, Kolitsch A, Fukarek W. Stress relaxation during annealing of boron nitride films. Thin Solid Films,2001,389(1-2):173-179
    [18]Paetzold P I, Hansen H J. Dimethylborazid und seine aminate. Z. Anorg. Allg. Chem.,1966,345: 79-86
    [19]Wiberg N, Joo W C, Schmid K H. Azide des Be, Mg, B und Al. Z. Anorg. Allg. Chem.,1972,394: 197-208
    [20]Paetzold P 1, Habereder P P, Mullbauer R. BeitrAge zur chemie der borazide Ⅶ*. Darstellung und eigenschaften von diorganyl boraziden. J. Organometal. Chem.,1967,7:45-50
    [21]Paetzold P I, Habereder P P, Mullbauer R. BeitrAge zur chemie der borazide Ⅷ*. Thermischer zerfall von diorganylboraziden. J. Organometal. Chem.,1967,7:51-60
    [22]Paetzold P I, Habereder P P, Mullbauer R. BeitrAge zur chemie der borazide IX*. Wanderungstendenzen, kinetic und mechanismus der thermischen diorganylborazid-umlagerung. J. Organometal. Chem.,1967,7:61-70
    [23]Travers M J, Gilbert J V. UV absorption spectra of intermediates generated via photolysis of B(N3)3, BCl(N3)2, and BCl2(N3) in low-temperature argon matrices. J. Phys. Chem. A,2000,104: 3780-3785
    [24]Fraenk W, Klapotke T M, Krumm B, Mayer P. Bis(pentafluorophenyl)boron azide:synthesis and structural characterization of the first dimeric boron azide. J. Chem. Soc., Chem.Commun.,2000, 667-668
    [25]Fraenk W, Habereder T, Klapotke T M, Noth H, Polborn K. Synthesis and characterization of new azido(O-phenylenedioxy)-boranes and azidobicyclononylboranes. J. Chem. Soc., Chem.Commun., 1999,4283-4286
    [26]Fraenk W, Habereder T, Hammerl A, Krumm B, Mayer P, Noth H, Warchhold M. Highly energetic tetraazidoborate anion and boron triazide adducts. Inorg. Chem.,2001,40:1334-1340
    [27]Fraenk W, Klapotke T M, Krumm B, Noth H, Suter M, Warchhold M. Oligomeric pentafluorophenylboron azides. J. Chem. Soc., Dalton Trans.,2000,4635-4638
    [28]Fraenk W, Klapotke T M, Krumm B, Mayer P, Noth H, Piotrowski H, Suter M. Synthsis and structural studies on fluorophenylboron azides. J. Fluorine Chem.,2001,112:73-81
    [29]唐敖庆等.量子化学.北京:科学出版社,1982
    [30]徐光宪,黎乐民,王德民.量子化学-基本原理和从头算法.北京:科学出版社,1985
    [31]Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A, Jr., Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A. Gaussian 03, Revision C.02. Wallingford CT:Gaussian, Inc.,2004
    [32]Becke A D. Density-functional thermochemistry. Ⅲ. The role of exact exchange. J. Chem. Phys., 1993,98:5648-5652
    [33]Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B,1988,37:785-789
    [34]Hariharan P C, Pople J A. Self-consistent-field molecular orbital methods. Ⅻ. Further extension of Gaussian-type basis sets. Theor. Chim. Acta.,1973,28:213-222
    [35]Woon D E, Dunning Jr T H. Gaussian-basis sets for use in correlated molecular calculations.3. the atoms aluminum through argon. J. Chem. Phys.1993,98(2):1358-1371
    [36]Scott A P, Radom L. Harmonic vibrational frequencies:an evaluation of hartree-fock, mcpller-plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors. J. Phys. Chem.,1996,100:16502-16513
    [37]Hill, T. L. Introduction to Statistic Thermodynamics (Addison-Wesley, New York,1960)
    [38]Fraenk W, Klapotke T M. Theoretical studies on the thermodynamic stability and trimerization of BF2N3. J. Fluorine Chem.,2001,111:45-47
    [39]Kouvetakis J, McMurran J, Steffek C, Groy T L, Hubbard J L, Torrison L. Synthesis of new azidoalanes with heterocyclic molecular structures. Main Group Met. Chem.,2001,24:77-84
    [40]Xia Q Y, Xiao H M, Ju X H, Gong X D. A density functional theory study of the structures and properties of (H2AlN3)n(n=1 to 4) clusters. J. Phys. Chem. A,2004,108:2780-2786
    [41]Xia Q Y, Xiao H M, Ju X H, Gong X D. A density functional theory study of the structures and properties of (H2GaN3)n(n=1 to 4) clusters. Int. J. Quantum Chem.,2004,100:301-308
    [42]Xia Q Y, Xiao H M, Ju X H, Gong X D. DFT Study of dimethylaluminum azide clusters:structures, energies, frequencies, and thermodynamic properties. Chin. J. Chem.,2004,22(11):1245-1249
    [43]夏其英,肖鹤鸣,居学海,贡雪东.第ⅢA金属叠氮多聚体结构和性质的理论研究.高等学校化学学报,2005,26(5):922-926
    [44]夏其英,马登学,杨吉民.叠氮二乙基铝和镓多聚体结构和性质的密度泛函理论研究.含能材料,2009,17(3):260-264
    [45]Fischer R A, Sussek H, Miehr A, Pritzkow H, Herdtweck E. Organoindium azides:new precursors to indium nitride. J. Organomet. Chem.,1997,548:73-82
    [1]Wiberg E, Michaud H. Pentafluorophenyl and phenyl substituted azidoborates, Z. Naturforsch.,1954, 96:497-499
    [2]Larach S, Shrader R E. Electroluminescence from boron nitride. Phys. Rev.,1956,102(2):582
    [3]Larach S, Shrader R E. Multiband luminescence in boron nitride. Phys. Rev.,1956,104 (1):68-73
    [4]Gorczyca I, Christensen N E. Band structure and high-pressure phase transition in GaN, AlN, InN and BN. Physica B,1993,185:410-414
    [5]Tsay Y E, Vaidyanathan A, Mitra S S. Electronic structure and optical properties of cubic BN. Phys. Rev. B,1979,19(10):5422-5428
    [6]Harris T K, Brookes E J, Taylor C J. The effect of temperature on the hardness of polycrystalline cubic boron nitride cutting tool materials. Int. J. Refr. Met. Hard Mater.,2004,22(2-3):105-110
    [7]Fitz C, Kolitsch A, Fukarek W. Stress relaxation during annealing of boron nitride films. Thin Solid Films,2001,389(1-2):173-179
    [8]Paetzold P I, Hansen H J. Dimethylborazid und seine aminate. Z. Anorg. Allg. Chem.,1966,345: 79-86
    [9]Paetzold P I, Habereder P P, Mullbauer R. BeitrAge zur chemie der borazide Ⅶ*. Darstellung und eigenschaften von diorganyl boraziden. J. Organometal. Chem.,1967,7:45-50
    [10]Paetzold P I, Habereder P P, Mullbauer R. BeitrAge zur chemie der borazide Ⅷ*. Thermischer zerfall von diorganylboraziden. J. Organometal. Chem.,1967,7:51-60
    [11]Paetzold P I, Habereder P P, Mullbauer R. BeitrAge zur chemie der borazide Ⅸ*. Wanderungstendenzen, kinetic und mechanismus der thermischen diorganylborazid-umlagerung. J. Organometal. Chem.,1967,7:61-70
    [12]Fraenk W, Klapotke T M, Krumm B, Mayer P. Bis(pentafluorophenyl)boron azide:synthesis and structural characterization of the first dimeric boron azide. J. Chem. Soc., Chem.Commun.,2000, 667-668
    [13]Fraenk W, Habereder T, Klapotke T M, Noth H, Polborn K. Synthesis and characterization of new azido(O-phenylenedioxy)-boranes and azidobicyclononylboranes. J. Chem. Soc., Chem.Commun., 1999,4283-4286
    [14]Fraenk W, Habereder T, Hammerl A, Krumm B, Mayer P, Noth H, Warchhold M. Highly energetic tetraazidoborate anion and boron triazide adducts. Inorg. Chem.,2001,40:1334-1340
    [15]Fraenk W, Klapotke T M, Krumm B, Noth H, Suter M, Warchhold M. Oligomeric pentafluorophenylboron azides. J. Chem. Soc., Dalton Trans.,2000,4635-4638
    [16]Fraenk W, Klapotke T M, Krumm B, Mayer P, Noth H, Piotrowski H, Suter M. Synthsis and structural studies on fluorophenylboron azides. J. Fluorine Chem.,2001,112:73-81
    [17]Wiberg N, Joo W C, Schmid K H. Azide des Be, Mg, B und Al. Z. Anorg. Allg. Chem.,1972,394: 197-208
    [18]Fraenk W, Klapotke T M. Theoretical studies on the thermodynamic stability and trimerization of BF2N3. J. Fluorine Chem.,2001,111:45-47
    [19]Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A, Jr., Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A. Gaussian 03, Revision C.02. Wallingford CT:Gaussian, Inc.,2004
    [20]Becke A D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 1993,98:5648-5652
    [21]Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B,1988,37:785-789
    [22]Hariharan P C, Pople J A. Self-consistent-field molecular orbital methods. XII. Further extension of Gaussian-type basis sets. Theor. Chim. Acta.,1973,28:213-222
    [23]Hill, T. L. Introduction to Statistic Thermodynamics (Addison-Wesley, New York,1960)
    [24]Mcmurran J, Kouvetakis J, Nesting D C, Smith D J, Hubbard J L. Formation of a tetrameric, cyclooctane-like, azidochlorogallane, [HCIGaN3]4, and related azidogal lanes. Exothermic single-source precursors to GaN nanostructures. J. Am. Chem. Soc.,1998,120:5233-5237
    [25]Kouvetakis J, McMurran J, Steffek C, Groy T L, Hubbard J L. Synthesis and structures of heterocyclic azidogallanes [(CH3)ClGaN3]4 and [(CH3)BrGaN3]3 en route to [(CH3)HGaN3]x:An inorganic precursor to GaN. Inorg. Chem.,2000,39:3805-3809
    [26]Kouvetakis J, McMurran J, Steffek C, Groy T L, Hubbard J L, Torrison L. Synthesis of new azidoalanes with heterocyclic molecular structures. Main Group Met. Chem.,2001,24:77-84
    [27]Xia Q Y, Xiao H M, Ju X H, Gong X D. A density functional theory study of the structures and properties of (H2AIN3)n(n=1 to 4) clusters. J. Phys. Chem. A,2004,108:2780-2786
    [28]Xia Q Y, Xiao H M, Ju X H, Gong X D. A density functional theory study of the structures and properties of (H2GaN3)n(n=1 to 4) clusters. Int. J. Quantum Chem.,2004,100:301-308
    [29]Xia Q Y, Xiao H M, Ju X H, Gong X D. DFT Study of dimethylaluminum azide clusters:structures, energies, frequencies, and thermodynamic properties. Chin. J. Chem.,2004,22(11):1245-1249
    [30]夏其英,肖鹤鸣,居学海,贡雪东.第ⅢA金属叠氮多聚体结构和性质的理论研究.高等学校化学学报,2005,26(5):922-926
    [31]夏其英,马登学,杨吉民.叠氮二乙基铝和镓多聚体结构和性质的密度泛函理论研究.含能材料,2009,17(3):260-264
    [32]Fischer R A, Sussek H, Miehr A, Pritzkow H, Herdtweck E. Organoindium azides:new precursors to indium nitride. J. Organomet. Chem.,1997,548:73-82
    [33]Scott A P, Radom L. Harmonic Vibrational frequencies:an evaluation of hartree-fock, mφller-plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors. J. Phys. Chem.,1996,100:16502-16513
    [1]Mulinax R L, Okin G S, Coombe R D. Gas phase synthesis, structure, and dissociation of boron triazide. J. Phys. Chem.,1995,99:6294-6300
    [2]Arenal R, Blase X, Loiseau A. Boron-nitride and boron-carbonitride nanotubes:synthesis, characterization and theory. Adv. Phys.,2010,59 (2):101-179
    [3]Salles V, Bernard S, Brioude A, Cornu D, Miele P. A new class of boron nitride fibers with tunable properties by combining an electrospinning process and the polymer-derived ceramics route. Nanoscale,2010,2 (2):215-217
    [4]Napolion B, Williams Q L. Ab initio calculations on the structure and properties of hexagonal boron nitrides. Chem. Phys. Lett.,2010,490 (4-6):210-215
    [5]Larach S, Shrader R E. Electroluminescence from boron nitride. Phys. Rev.,1956,102(2):582
    [6]Larach S, Shrader R E. Multiband luminescence in boron nitride. Phys. Rev.,1956,104 (1):68-73
    [7]Gorczyca I, Christensen N E. Band structure and high-pressure phase transition in GaN, AlN, InN and BN. Physica B,1993,185:410-414
    [8]Tsay Y E, Vaidyanathan A, Mitra S S. Electronic structure and optical properties of cubic BN. Phys. Rev. B,1979,19(10):5422-5428
    [9]Harris T K, Brookes E J, Taylor C J. The effect of temperature on the hardness of polycrystalline cubic boron nitride cutting tool materials. Int. J. Refr. Met. Hard Mater.,2004,22(2-3):105-110
    [10]Fitz C, Kolitsch A, Fukarek W. Stress relaxation during annealing of boron nitride films. Thin Solid Films,2001,389(1-2):173-179
    [11]Paetzold P I.Zur kenntnis von dichlorborazid.Z Anorg Allg Chem,1963,326:47-52
    [12]Muller U. Die kristall-und molekularstruktur von bordichloridazid (BCl2N3)3. Z Anorg Allg Chem, 1971,382:110-122
    [13]Wiberg N, Joo W C, Schmid K H. Azide des Be, Mg, B und Al. Z Anorg Allg Chem,1972,394: 197-208
    [14]Johnson L A, Sturgis S A, Al-Jihad I A, Liu B, Gilbert J V. Low-temperature matrix isolation and photolysis of BCl2N3:spectroscopic identification of the photolysis product ClBNCl. J. Phys. Chem. A,1999,103:686-690
    [15]Fraenk W, Klapotke T M. Theoretical studies on the thermodynamic stability and trimerization of BF2N3. J. Fluorine Chem.,2001,111:45-47
    [16]Becke A D. Density-functional thermochemistry. Ⅲ. The role of exact exchange. J. Chem. Phys., 1993,98:5648-5652
    [17]Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B,1988,37:785-789
    [18]Hariharan P C, Pople J A. Self-consistent-field molecular orbital methods. XII. Further extension of Gaussian-type basis sets. Theor. Chim. Acta.,1973,28:213-222
    [19]Hill, T. L. Introduction to Statistic Thermodynamics (Addison-Wesley, New York,1960)
    [20]Scott A P, Radom L. Harmonic vibrational frequencies:an evaluation of hartree-fock, mcpller-plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors. J. Phys. Chem.,1996,100:16502-16513
    [21]Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A, Jr., Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A. Gaussian 03, Revision C.02. Wallingford CT:Gaussian, Inc.,2004
    [22]唐敖庆等.量子化学.北京:科学出版社,1982
    [23]徐光宪,黎乐民,王德民.量子化学-基本原理和从头算法.北京:科学出版社,1985
    [24]Fraenk W, Klapotke T M, Krumm B, Mayer P. Bis(pentafluorophenyl)boron azide:synthesis and structural characterization of the first dimeric boron azide. Chem Commun,2000,667-668
    [25]Mcmurran J, Kouvetakis J, Nesting D C, Smith D J, Hubbard J L. Formation of a tetrameric, cyclooctane-like, azidochlorogallane, [HClGaN3]4, and related azidogal lanes. Exothermic single-source precursors to GaN nanostructures. J. Am. Chem. Soc.,1998,120:5233-5237
    [26]Kouvetakis J, McMurran J, Steffek C, Groy T L, Hubbard J L. Synthesis and structures of heterocyclic azidogallanes [(CH3)ClGaN3]4 and [(CH3)BrGaN3]3 en route to [(CH3)HGaN3]x:An inorganic precursor to GaN. Inorg. Chem.,2000,39:3805-3809
    [27]Kouvetakis J, McMurran J, Steffek C, Groy T L, Hubbard J L, Torrison L. Synthesis of new azidoalanes with heterocyclic molecular structures. Main. Group. Met. Chem.,2001,24:77-84
    [28]Ma D X,Xia Q Y, Zhang C. Theoretical studies on structural feature and thermodynamic stability of f2bn3 oligomers. J. At. Mol. Phys.,2009,26(2):361-367
    [29]Ma D X, Xia Q Y. Theoretical studies on the structures and properties of the (H2BN3)n (n=1-4) clusters. Chem. Res. Appl.,2009,21(6):852-858
    [30]Xia Q Y, Xiao H M, Ju X H, Gong X D. A density functional theory study of the structures and properties of (H2AIN3)n(n=1 to 4) clusters. J. Phys. Chem. A,2004,108:2780-2786
    [31]Xia Q Y, Xiao H M, Ju X H, Gong X D. A density functional theory study of the structures and properties of (H2GaN3)n(n=1 to 4) clusters. Int. J. Quantum Chem.,2004,100:301-308
    [32]Xia Q Y, Xiao H M, Ju X H, Gong X D. DFT Study of dimethylaluminum azide clusters:structures, energies, frequencies, and thermodynamic properties. Chin. J. Chem.,2004,22(11):1245-1249
    [33]夏其英,肖鹤鸣,居学海,贡雪东.第ⅢA金属叠氮多聚体结构柑陆质的理论研究.高等学校化学学报,2005,26(5):922-926
    [34]夏其英,马登学,杨吉民.叠氮二乙基铝和镓多聚体结构和性质的密度泛函理论研究.含能材料,2009,17(3):260-264
    [1]Wiberg N, Joo W C, Schmid K H. Azide des Be, Mg, B und Al. Z. Anorg. Allg. Chem.,1972,394: 197-208
    [2]Tice J B, Ritter C J, Chizmeshya A V G, et al. Synthesis and properties of N3 and CN delivery compounds and related precursors for nitride and ceramic fabrication. Appl. Organometal Chem., 2008,22:451-459
    [3]Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A, Jr., Vreven T, Kudin K N, Burant J C, Millam J M, lyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A. Gaussian 03, Revision C.02. Wallingford CT:Gaussian, Inc.,2004
    [4]Becke A D. Density-functional thermochemistry. Ⅲ. The role of exact exchange. J. Chem. Phys. 1993,98:5648-5652
    [5]Lee C, Yang W, Parr R G. Development of the Colle-Salverti correlation-energy formula into a functional of the electron density. Phys. Rev. B,1988,37:785-789
    [6]Hariharan P C, Pople J A. Self-consistent-field molecular orbital methods. XII. Further extension of Gaussian-type basis sets. Theor. Chim. Acta.,1973,28:213-222
    [7]Hill, T. L. Introduction to Statistic Thermodynamics (Addison-Wesley, New York,1960)
    [8]Scott A P, Radom L. Harmonic Vibrational Frequencies:An Evaluation of Hartree-Fock, MΦller-Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors. J. Phys. Chem.,1996,100:16502-16513
    [9]Fraenk W, Klapotke T M, Krumm B, Mayer P. Bis(pentafluorophenyl)boron azide:synthesis and structural characterization of the first dimeric boron azide. J. Chem. Soc., Chem.Commun.,2000, 667-668
    [10]Fraenk W, Klapotke T M. Theoretical studies on the thermodynamic stability and trimerization of BF2N3. J. Fluorine Chem.,2001,111:45-47
    [11]Paetzold P I. Zur kenntnis von dichlorborazid. Z Anorg Allg Chem,1963,326:47-52
    [12]Muller U. Die kristall-und molekularstruktur von bordichloridazid (BCI2N3)3. Z Anorg Allg Chem, 1971,382:110-122
    [13]Ma D X, Xia Q Y, Zhang C. Theoretical studies on structural feature and thermodynamic stability of f2bn3 oligomers. J. At. Mol. Phys.,2009,26(2):361-367
    [14]Ma D X, Xia Q Y. Theoretical studies on the structures and properties of the (H2BN3)n(n=1-4) clusters. Chem. Res. Appl.,2009,21(6):852-858
    [15]Ma D X,Xia Q Y, Zhao W W, Zhang C. Theoretical studies on (Cl2BN3)n(n=1-4) clusters. Comput. Appl. Chem.,2009,26(12):1583-1586
    [16]Mcmurran J, Kouvetakis J, Nesting D C, Smith D J, Hubbard J L. Formation of a tetrameric, cyclooctane-like, azidochlorogallane, [HCIGaN3]4, and related azidogallanes. Exothermic single-source precursors to GaN nanostructures. J. Am. Chem. Soc.,1998,120:5233-5237
    [17]Kouvetakis J, McMurran J, Steffek C, Groy T L, Hubbard J L. Synthesis and structures of heterocyclic azidogallanes [(CH3)ClGaN3]4 and [(CH3)BrGaN3]3 en route to [(CH3)HGaN3]x:An inorganic precursor to GaN. Inorg. Chem.,2000,39:3805-3809
    [18]Kouvetakis J, McMurran J, Steffek C, Groy T L, Hubbard J L, Torrison L. Synthesis of new azidoalanes with heterocyclic molecular structures. Main Group Met. Chem.,2001,24:77-84
    [19]Xia Q Y, Xiao H M, Ju X H, Gong X D. A density functional theory study of the structures and properties of (H2AlN3)n(n=1 to 4) clusters. J. Phys. Chem. A,2004,108:2780-2786
    [20]Xia Q Y, Xiao H M, Ju X H, Gong X D. A density functional theory study of the structures and properties of (H2GaN3)n(n=1 to 4) clusters. Int. J. Quantum Chem.,2004,100:301-308
    [21]Xia Q Y, Xiao H M, Ju X H, Gong X D. DFT Study of dimethylaluminum azide clusters:structures, energies, frequencies, and thermodynamic properties. Chin. J. Chem.,2004,22(11):1245-1249
    [22]夏其英,肖鹤鸣,居学海,贡雪东.第ⅢA金属叠氮多聚体结构和性质的理论研究.高等学校化学学报,2005,26(5):922-926
    [23]夏其英,马登学,杨吉民.叠氮二乙基铝和镓多聚体结构和性质的密度泛函理论研究.含能材料,2009,17(3):260-264
    [24]Fischer R A, Sussek H, Miehr A, Pritzkow H, Herdtweck E. Organoindium azides:new precursors to indium nitride. J. Organomet. Chem.,1997,548:73-82
    [1]Paetzold P I, Hansen H J. Dimethylborazid und seine aminate. Z. Anorg. Allg. Chem.,1966,345: 79-86
    [2]Hausser-Wallis R, Oberhammer H, Einholz W, et al. Gas-phase structures of dimethylboron azide and dimethylboron isocyanate. Electron diffraction and ab initio study. Inorg. Chem.,1990,29: 3286-3289
    [3]Paetzold P I, Habereder P P, Mullbauer R. BeitrAge zur chemie der borazide Ⅶ*. Darstellung und eigenschaften von diorganyl boraziden. J. Organometal. Chem.,1967,7:45-50
    [4]Paetzold P I, Habereder P P, Mullbauer R. BeitrAge zur chemie der borazide Ⅷ*. Thermischer zerfall von diorganylboraziden. J. Organometal. Chem.,1967,7:51-60
    [5]Paetzold P I, Habereder P P, Mullbauer R. BeitrAge zur chemie der borazide Ⅸ*. Wanderungstendenzen, kinetic und mechanismus der thermischen diorganylborazid-umlagerung. J. Organometal. Chem.,1967,7:61-70
    [6]Fraenk W, Klapotke T M, Krumm B, Mayer P. Bis(pentafluorophenyl)boron azide:synthesis and structural characterization of the first dimeric boron azide. J. Chem. Soc., Chem.Commun.,2000, 667-668
    [7]Fraenk W, Habereder T, Klapotke T M, Noth H, Polborn K. Synthesis and characterization of new azido(O-phenylenedioxy)-boranes and azidobicyclononylboranes. J. Chem. Soc., Chem.Commun., 1999,4283-4286
    [8]Fraenk W, Klapotke T M, Krumm B, Noth H, Suter M, Warchhold M. Oligomeric pentafluorophenylboron azides. J. Chem. Soc., Dalton Trans.,2000,4635-4638
    [9]Fraenk W, Klapotke T M, Krumm B, Mayer P, Noth H, Piotrowski H, Suter M. Synthsis and structural studies on fluorophenylboron azides. J. Fluorine Chem.,2001,112:73-81
    [10]Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A, Jr., Vreven T, Kudin K. N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi 1, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A. Gaussian 03, Revision C.02. Wallingford CT:Gaussian, Inc.,2004.
    [11]Scott A P, Radom L. Harmonic vibrational frequencies:an evaluation of hartree-fock, mcpller-plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors. J. Phys. Chem.,1996,100:16502-16513
    [12]Hill, T. L. Introduction to Statistic Thermodynamics (Addison-Wesley, New York,1960)
    [13]Wiberg N, Joo W C, Schmid K H. Azide des Be, Mg, B und Al. Z. Anorg. Allg. Chem.,1972,394: 197-208
    [14]raenk W, Klapotke T M. Theoretical studies on the thermodynamic stability and trimerization of BF2N3. J. Fluorine Chem.,2001,111:45-47
    [15]Paetzold P I. Zur kenntnis von dichlorborazid. Z. Anorg. Allg. Chem.,1963,326:47-52
    [16]Miiller U. Die kristall-und molekularstruktur von bordichloridazid (BCl2N3)3. Z. Anorg. Allg. Chem., 1971,382:110-122
    [17]Ma D X, Xia Q Y, Zhang C. Theoretical studies on structural feature and thermodynamic stability of F2BN3 oligomers. J. At. Mol. Phys.,2009,26(2):361-367
    [18]Ma D X, Xia Q Y. Theoretical studies on the structures and properties of the (H2BN3)n(n=1-4) clusters. Chem. Res. Appl.,2009,21(6):852-858
    [19]Ma D X,Xia Q Y, Zhao W W, Zhang C. Theoretical studies on (Cl2BN3)n(n=1-4) clusters. Comput. Appl. Chem.,2009,26(12):1583-1586
    [20]Fischer R A, Sussek H, Miehr A, Pritzkow H, Herdtweck E. Organoindium azides:new precursors to indium nitride. J. Organomet. Chem.,1997,548:73-82
    [1]Boyd D C, Haasch R T, Mantell D R, Schulze R K, Evans J F, Gladfelter W L. Organometallic azides as precursors for aluminum nitride thin films. Chem. Mater.,1989,1:119-124
    [2]Schulze R K, Boyd D C, Evans J F, Gladfelter W L. A variable temperature X-ray photoelectron spectroscopic study of the surface conversion of diethylaluminum azide to A IN. J. Vac. Sci. Technol. A,1990,8(3):2338-2343
    [3]Boo J H, Lee S B, Kim Y S, Park J T, Yu K S, Kim Y. Growth of AlN and GaN thin films on Si (100) using new single molecular precursors by MOCVD method. Phys. Stat. Sol. A,1999,176:711-717
    [4]Schulze R K, Mantell D R, Gladfelter W L. Characterization of AlN films produced by chemical vapor deposition using a novel metal azide precursor. J. Vac. Sci. Technol.,1988,6(3):2162-2163
    [5]黄继颇,王连卫,高剑伙,沈勤我,林成鲁.超高真空电子束蒸发合成晶态AlN薄膜的研究.功能材料与器件学报,1998,4(4):278-280
    [6]乔保卫,刘止堂,李阳平.工艺参数对磁控反应溅射AlN薄膜沉积速率的影响.西北工业大学学报,2004,22(2):260-263
    [7]谢松,孟广耀,彭定坤.微波等离子体化学气相沉积法生长取向性纳米氮化铝薄膜.材料研究学报,1998,12(4):369-374
    [8]杨克涛,陈光辉.AlN薄膜的研究进展.山东陶瓷,2005,28(1):17-21
    [9]李长武.利用反应低压离子镀膜法和反应直流磁控溅射法制作氮化硅氮化铝膜.光机电信息,1996,13(1):21-23
    [10]于军,曾祥斌,吴正元.提高金属膜电阻器可靠性的途径.电子元件与材料,1994,13(2):51-54
    [11]汪洪海,郑启光,魏学勤,丘军林.气体放电增强准分子激光溅射反应沉积AlN膜.华中理工大学学报,1998,26(9):59-61
    [12]Muller J, Dehnicke K. Darstellung, eigenschaften und schwinungsspekren von dialkylmetall-aziden der elemente aluminium, gallium, indium und thallium. J. Organometal. Chem.,1968,12:37-47
    [13]Muller J. Nitrogen-15 spectroscopic study of dimethylaluminum azide, dinethylgallium azide and dimethylarsenic azide. Z. Naturforsch.,1979,34B:531-535
    [14]Roder N., Dehnicke K. Organometallic azido compounds of elements of Group ⅢA and IVA. Chimia,1974,28:349-351
    [15]Dehnicke K, StrAhle J, Seybold D, et al. Eine neue synthese fur alkyl-azide. J. organometal. Chem., 1966,6:298-300
    [16]高占先,孙渝,叶亚平,张爱丽,周科衍.叠氮二乙基铝合成方法的改进.含能材料,1996,4:1-5
    [17]高占先,冯立春,张小航,莫自如.叠氮二乙基铝的合成及其热分解.含能材料,2001,9:22-23
    [18]张小航,高占先.低熔点晶体叠氮二乙基铝的合成和证明.无机化学学报,2001,17:439-443
    [19]高占先,张小航.叠氮二乙基铝合成及其相关反应的研究.无机化学学报,2002,18:683-687
    [20]高占先,冯立春,莫自如,周科衍,李常青.合成二乙基叠氮铝的溶剂效应.含能材料,1999,7:53-56
    [21]高占先,张小航,冯立春.叠氮二乙基铝三聚体和单体的缔合-解离平衡的研究.无机化学学报,2002,18:654-658
    [22]冯立春,高占先.叠氮二乙基铝的性能及应用.上海化工,1998,23:36-38
    [23]周科衍,孙渝,叶亚平,高占先.二乙基叠氮铝的分子结构和性质.含能材料,1997,5:15-21
    [24]Kouvetakis J, McMurran J, Steffek C, Groy T L, Hubbard J L, Torrison L. Synthesis of new azidoalanes with heterocyclic molecular structures. Main Group Met. Chem.,2001,24:77-84
    [25]Xia Q Y, Xiao H M, Ju X H, Gong X D. A density functional theory study of the structures and properties of (H2AlN3)n(n=1 to 4) clusters. J. Phys. Chem. A,2004,108:2780-2786
    [26]McMurran J, Kouvetakis J. Development of a low-temperature GaN chemical vapor deposition progress based on a single molecular source H2GaN3. Appl. Phys. Lett.,1999,74:883-885
    [27]Mcmurran J, Dai D, Balasubramanian K, Steffek C, Kouvetakis J, Hubbard J L. H2GaN3 and derivatives:A facile method to gallium nitride. Inorg. Chem.,1998,37:6638-6644
    [28]McMurran J, Todd M, Kouvetakis J. Low temperature inorganic chemical vapor deposition of heteroepitaxial GaN. Appl. Phys. Lett.,1996,69:203-205
    [29]Dehnicke K, Krueger N. Diiodo-and dibromometal azides X2MN3 of aluminum and gallium. Z. Anorg. Allg. Chem.,1978,444:71-76
    [30]Mcmurran J, Kouvetakis J, Nesting D C, Smith D J, Hubbard J L. Formation of a tetrameric, cyclooctane-like, azidochlorogallane, [HClGaN3]4, and related azidogallanes. Exothermic single-source precursors to GaN nanostructures. J. Am. Chem. Soc.,1998,120:5233-5237
    [31]Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A, Jr., Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A. Gaussian 03, Revision C.02. Wallingford CT:Gaussian, Inc.,2004
    [32]Scott A P, Radom L. Harmonic vibrational frequencies:an evaluation of hartree-fock, mφller-plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors. J. Phys. Chem.,1996,100:16502-16513
    [33]Hill T. L. Introduction to Statistic Thermodynamics (Addison-Wesley, New York,1960)
    [34]Atwood D A, Jones R A, Cowley A H, Atwood J L, Bott S G. X-ray crystal structure of the dimethylgallium azide polymer and its use as a gallium nitride precursor. J. Organometal. Chem., 1990,394:C6-C8
    [35]Kouvetakis J, Beach D. B. Chemical vapor deposition of gallium nitride from diethylgallium azide. Chem. of Mater.,1989,1:476-478
    [36]Steffek C, McMurran J, Pleune B, Kouvetakis J, Concolino T E, Rheingold A L et al. Synthesis of Cl2InN3, Br2InN3, and related adducts. Inorg. Chem.,2000,39:1615-1617
    [37]Kouvetakis J, McMurran J, Steffek C, Groy T L, Hubbard J L. Synthesis and structures of heterocyclic azidogallanes [(CH3)CIGaN3]4 and [(CH3)BrGaN3]3 en route to [(CH3)HGaN3]x:An inorganic precursor to GaN. Inorg. Chem.,2000,39:3805-3809
    [38]Ma D X, Xia Q Y, Zhang C. Theoretical studies on structural feature and thermodynamic stability of F2BN3 oligomers. J. At. Mol. Phys.,2009,26(2):361-367
    [39]Ma D X, Xia Q Y. Theoretical studies on the structures and properties of the (H2BN3)n(n=1-4) clusters. Chem. Res. Appl.,2009,21(6):852-858
    [40]Ma D X, Xia Q Y, Zhao W W, Zhang C. Theoretical studies on (Cl2BN3)n(n=1-4) clusters. Comput. Appl. Chem.,2009,26(12):1583-1586
    [41]Xia Q Y, Xiao H M, Ju X H, Gong X D. A density functional theory study of the structures and properties of (H2GaN3)n(n=1 to 4) clusters. Int. J. Quantum Chem.,2004,100:301-308
    [42]Xia Q Y, Xiao H M, Ju X H, Gong X D. DFT Study of dimethylaluminum azide clusters:structures, energies, frequencies, and thermodynamic properties. Chin. J. Chem.,2004,22(11):1245-1249
    [21]夏其英,肖鹤鸣,居学海,贡雪东.第ⅢA金属叠氮多聚体结构和性质的理论研究.高等学校化学学报,2005,26(5):922-926
    [43]夏其英,马登学,杨吉民.叠氮二乙基铝和镓多聚体结构和性质的密度泛函理论研究.含能材料,2009,17(3):260-264
    [44]Fischer R A, Sussek H, Miehr A, Pritzkow H, Herdtweck E. Organoindium azides:new precursors to indium nitride. J. Organomet. Chem.,1997,548:73-82
    [1]Boyd D C, Haasch R T, Mantell D R, Schulze R K, Evans J F, Gladfelter W L. Organometallic azides as precursors for aluminum nitride thin films. Chem. Mater.,1989,1:119-124
    [2]Schulze R K, Boyd D C, Evans J F, Gladfelter W L. A variable temperature X-ray photoelectron spectroscopic study of the surface conversion of diethylaluminum azide to AlN. J. Vac. Sci. Technol. A,1990,8(3):2338-2343
    [3]Boo J H, Lee S B, Kim Y S, Park J T, Yu K S, Kim Y. Growth of AlN and GaN thin films on Si (100) using new single molecular precursors by MOCVD method. Phys. Stat. Sol. A,1999,176:711-717
    [4]Sehulze R K, Mantell D R, Gladfelter W L. Characterization of AlN films produced by chemical vapor deposition using a novel metal azide precursor. J. Vac. Sci. Technol.,1988,6(3):2162-2163
    [5]Dehnicke K, Krueger N. Diiodo-and dibromometal azides X2MN3 of aluminum and gallium. Z. Anorg. Allg. Chem.,1978,444:71-76
    [6]McMurran J, Kouvetakis J. Development of a low-temperature GaN chemical vapor deposition progress based on a single molecular source H2GaN3. Appl. Phys. Lett.,1999,74:883-885
    [7]Mcmurran J, Dai D, Balasubramanian K, Steffek C, Kouvetakis J, Hubbard J L. H2GaN3 and derivatives:A facile method to Gallium nitride. Inorg. Chem.,1998,37:6638-6644
    [8]Mcmurran J, Kouvetakis J, Nesting D C, Smith D J, Hubbard J L. Formation of a tetrameric, cyclooctane-like, azidochlorogallane, [HClGaN3]4, and related azidogallanes. Exothermic single-source precursors to GaN nanostructures.J.Am. Am. Chem. Soc.,1998,120:5233-5237
    [9]Kouvetakis J, McMurran J, Steffek C, Groy T L, Hubbard J L. Synthesis and structures of heterocyclic azidogallanes [(CH3)ClGaN3]4 and [(CH3)BrGaN3]3 en route to [(CH3)HGaN3]x:An inorganic precursor to GaN. Inorg. Chem.,2000,39:3805-3809
    [10]Crozier P A, Tolle J, Kouvetakis J, Ritter C. Synthesis of uniform GaN quantum dot arrays via electron nanolithography of D2GaN3. Appl. Phys. Lett.,2004,84(18):3441-3443
    [11]Kouvetakis J, McMurran J, Steffek G, Groy T L, Hubbard J L, Torrison L.Synthesis of new azidoalanes with heterocyclic molecular structures. Main Group Met. Chem.,2001,24:77-84
    [12]Kouvetakis J, Beach D. B. Chemical vapor deposition of gallium nitride from diethylgallium azide. Chemistry of Materials,1989,1:476-478
    [13]Atwood D A, Jones R A, Cowley A H, Atwood J L, Bott S G. X-ray crystal structure of the dimethylgallium azide polymer and its use as a gallium nitride precursor. J. organometal. Chem., 1990,394, C6-C8
    [14]McMurran J, Todd M, Kouvetakis J. Low temperature inorganic chemical vapor deposition of heteroepitaxial GaN. Appl. Phys. Lett.,1996,69:203-205
    [15]Xia Q Y, Xiao H M, Ju X H, Gong X D. A density functional theory study of the structures and properties of (H2AlN3)n(n=1 to 4) clusters. J. Phys. Chem. A,2004,108:2780-2786
    [16]Xia Q Y, Xiao H M, Ju X H, Gong X D. DFT Study of dimethylaluminum azide clusters:structures, energies, frequencies, and thermodynamic properties. Chin. J. Chem.,2004,22(11):1245-1249
    [17]夏其英,肖鹤鸣,居学海,贡雪东.第ⅢA金属叠氮多聚体结构和性质的理论研究.高等学校化学学报,2005,26(5):922-926
    [18]夏其英,马登学,杨吉民.叠氮二乙基铝和镓多聚体结构和性质的密度泛函理论研究.含能材料,2009,17(3):260-264
    [19]Scott A P, Radom L. Harmonic vibrational frequencies:an evaluation of hartree-fock, mφller-plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors. J. Phys. Chem.,1996,100:16502-16513
    [20]Hill T. L. Introduction to Statistic Thermodynamics (Addison-Wesley, New York,1960)
    [21]Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A, Jr., Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A. Gaussian 03, Revision C.02. Wallingford CT:Gaussian, Inc.,2004
    [22]Muller J, Dehnicke K. Darstellung, eigenschaften und schwinungsspekren von dialkylmetall-aziden der elemente aluminium, gallium, indium und thallium. J. Organometal. Chem.,1968,12:37-47
    [23]Dehnicke K, StrAhle J, Seybold D. Eine neue synthese fur alkyl-azide. J. organometal. Chem.,1966, 6:298-300
    [24]高占先,孙渝,叶亚平,张爱丽,周科衍.叠氮二乙基铝合成方法的改进.含能材料,1996,4:1-5
    [25]高占先,冯立春,张小航,莫自如.叠氮二乙基铝的合成及其热分解.含能材料,2001,9:22-23
    [26]张小航,高占先.低熔点晶体叠氮二乙基铝的合成和证明.无机化学学报,2001,17:439-443
    [27]高占先,张小航.叠氮二乙基铝合成及其相关反应的研究.无机化学学报,2002,18:683-687
    [28]高占先,冯立春,莫自如,周科衍,李常青.合成二乙基叠氮铝的溶剂效应.含能材料,1999,7:53-56
    [29]高占先,张小航,冯立春.叠氮二乙基铝三聚体和单体的缔合-解离平衡的研究.无机化学学报,2002.18:654-658
    [30]冯立春,高占先.叠氮二乙基铝的性能及应用.上海化工,1998,23:36-38
    [31]周科衍,孙渝,叶亚平,高占先.二乙基叠氮铝的分子结构和性质.含能材料,1997,5:15-21
    [32]Fischer R A, Sussek H, Miehr A, Pritzkow H, Herdtweck E. Organoindium azides:new precursors to indium nitride. J. Organomet. Chem.,1997,548:73-82
    [1]Boyd D C, Haasch R T, Mantell D R, Schulze R K, Evans J F, Gladfelter W L. Organometallic azides as precursors for aluminum nitride thin films. Chem. Mater.,1989,1:119-124
    [2]Schulze R K, Boyd D C, Evans J F, Gladfelter W L. A variable temperature X-ray photoelectron spectroscopic study of the surface conversion of diethylaluminum azide to AIN. J. Vac. Sci. Technol. A,1990,8(3):2338-2343
    [3]Boo J H, Lee S B, Kim Y S, Park J T, Yu K S, Kim Y. Growth of AIN and GaN thin films on Si (100) using new single molecular precursors by MOCVD method. Phys. Stat. Sol. A,1999,176:711-717
    [4]Schulze R K, Mantell D R, Gladfelter W L. Characterization of AIN films produced by chemical vapor deposition using a novel metal azide precursor. J. Vac. Sci. Technol.,1988,6(3):2162-2163
    [5]Dehnicke K, Krueger N. Diiodo-and dibromometal azides X2MN3 of aluminum and gallium. Z. Anorg. Allg. Chem.,1978,444:71-76
    [6]Kouvetakis J, Beach D. B. Chemical vapor deposition of gallium nitride from diethylgallium azide. Chemistry of Materials,1989,1:476-478
    [7]黄继颇,王连卫,高剑伙,沈勤我.林成鲁.超高真空电子束蒸发合成晶态AlN薄膜的研究.功能材料与器件学报,1998,4(4):278-280
    [8]乔保卫,刘正堂,李阳平.工艺参数对磁控反应溅射AlN薄膜沉积速率的影响.西北工业大学学报,2004,22(2):260-263
    [9]谢松,孟广耀,彭定坤.微波等离子体化学气相沉积法生长取向性纳米氮化铝薄膜.材料研究学报,1998,12(4):369-374
    [10]杨克涛,陈光辉.AlN薄膜的研究进展.山东陶瓷,2005,28(1):17-21
    [11]Kouvetakis J, McMurran J, Steffek C, Groy T L, Hubbard J L, Torrison L. Synthesis of new azidoalanes with heterocyclic molecular structures. Main Group Met. Chem.,2001,24:77-84
    [12]Muller J, Dehnicke K. Darstellung, eigenschaften und schwinungsspekren von dialkylmetall-aziden der elemente aluminium, gallium, indium und thallium. J. Organometal. Chem.,1968,12:37-47
    [13]Muller J. Nitrogen-15 spectroscopic study of dimethylaluminum azide, dinethylgallium azide and dimethylarsenic azide. Z. Naturforsch.,1979,34B:531-535
    [14]Roder N, Dehnicke K. Organometallic azido compounds of elements of Group ⅢA and IVA. Chimia,1974,28:349-351
    [15]Dehnicke K, StrAhle J, Seybold D. Eine neue synthese fur alkyl-azide. J. organometal. Chem.,1966, 6:298-300
    [16]高占先,孙渝,叶亚平,张爱丽,周科衍.叠氮二乙基铝合成方法的改进.含能材料,1996,4:1-5
    [17]高占先,冯立春,张小航,莫自如.叠氮二乙基铝的合成及其热分解.含能材料,2001,9:22-23
    [18]张小航,高占先.低熔点晶体叠氮二乙基铝的合成和证明.无机化学学报,2001,17:439-443
    [19]高占先,张小航.叠氮二乙基铝合成及其相关反应的研究.无机化学学报,2002,18:683-687
    [20]高占先,冯立春,莫自如,周科衍,李常青.合成二乙基叠氮铝的溶剂效应.含能材料,1999,7:53-56
    [21]高占先,张小航,冯立春.叠氮二乙基铝三聚体和单体的缔合-解离平衡的研究.无机化学学报,2002.18:654-658
    [22]冯立春,高占先.叠氮二乙基铝的性能及应用.上海化工,1998,23:36-38
    [23]周科衍,孙渝,叶亚平,高占先.二乙基叠氮铝的分子结构和性质.含能材料,1997,5:15-21
    [24]Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A, Jr., Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, AI-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A. Gaussian 03, Revision C.02. Wallingford CT:Gaussian, Inc.,2004
    [25]Scott A P, Radom L. Harmonic vibrational frequencies:an evaluation of hartree-fock, mcpller-plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors. J. Phys. Chem.,1996,100:16502-16513
    [26]Hill T. L. Introduction to Statistic Thermodynamics (Addison-Wesley, New York,1960)
    [27]Xia Q Y, Xiao H M, Ju X H, Gong X D. A density functional theory study of the structures and properties of (H2AlN3)n(n=1 to 4) clusters. J. Phys. Chem. A,2004,108:2780-2786
    [28]Xia Q Y, Xiao H M, Ju X H, Gong X D. DFT Study of dimethylaluminum azide clusters:structures, energies, frequencies, and thermodynamic properties. Chin. J. Chem.,2004,22(11):1245-1249
    [29]夏其英,肖鹤鸣,居学海,贡雪东.第ⅢA金属叠氮多聚体结构和性质的理论研究.高等学校化学学报,2005,26(5):922-926
    [30]夏其英,马登学,杨吉民.叠氮二乙基铝和镓多聚体结构和性质的密度泛函理论研究.含能材料,2009,17(3):260-264
    [31]Fischer R A, Sussek H, Miehr A, Pritzkow H, Herdtweck E. Organoindium azides:new precursors to indium nitride. J. Organomet. Chem.,1997,548:73-82

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700